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EBSD-Based Microscopy: Resolution of Dislocation
Density

Brent L. Adams and Joshua Kacher

Abstract: Consideration is given to the resolution of dislocation density af-
forded by EBSD-based scanning electron microscopy. Comparison between the
conventional Hough- and the emerging high-resolution cross-correlation-based ap-
proaches is made. It is illustrated that considerable care must be exercised in se-
lecting a step size (Burger’s circuit size) for experimental measurements. Important
variables affecting this selection include the dislocation density and the physical
size and density of dislocation dipole and multi-pole components of the structure.
It is also illustrated that simulations can be useful to the interpretation of experi-
mental recoveries.
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1 Introduction

Electron backscatter diffraction (EBSD)-based microscopy is now standard prac-
tice in many materials laboratories worldwide. A recent monograph, entitled Elec-
tron Backscatter Diffraction in Materials Science, reviews state-of-the-art prac-
tice in EBSD-based electron microscopy, including many applications (Schwartz
2000). The purpose of this paper is to consider future applications of the emerging
High-Resolution EBSD microscopy (hereafter HR-EBSD), particularly in relation
to structural materials where defect-sensitive mechanical properties, related to the
state of dislocation, are of paramount importance.

Approximately twelve years ago (1997) the author reviewed emerging and future
applications of conventional EBSD-microscopy (Adams 1997). Typical spatial and
angular resolutions at that time were reported to be ∼100nm and 10, respectively.
Temporal resolution, associated with the rate at which EBSD patterns could be col-
lected and analyzed, was approximately 2 points per second. Significant improve-
ments in resolution have been achieved in modern EBSD systems. Current reso-
lution limits for EBSD-based microscopy are approximately 20nm spatial, 0.0060

angular; and data acquisition rates approach 103 s−1, although these resolution
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limits are not presently achieved simultaneously. These changes in resolution pro-
foundly influence the nature of EBSD-based microscopy, and the microstructure-
based properties that can now be investigated.

The premise of this paper is that HR-EBSD-based microscopy is well positioned
to elucidate some of the most important and challenging contemporary materials
problems – problems that relate to the polarization of stress in heterogeneous mate-
rials. However, great care must be exercised in the measurement and interpretation
of fundamental measurements of dislocation density. Selection of step size, con-
siderations of instrument resolution and noise, and the interpretation of recovered
dislocation density information are the principal topics of this paper.

2 HR-EBSD Measurements, Orientation and Strain Analysis

Accurate measurements of the field of dislocation in ductile polycrystalline materi-
als can provide valuable information for the study of defect-sensitive phenomena,
such as the mechanisms of plastic deformation, formability, electrical resistance,
and likely failure sites under conditions of fatigue and creep. The measurement and
characterization of dislocation fields remains a challenging problem. HR-EBSD is
a valuable tool for the characterization of continuum dislocation structure. Rela-
tively large areas of a sample can be analyzed in reasonable experimental times
to provide information on the local crystallographic orientation and, using more
recent cross-correlation methods, lattice curvature and elastic strain. Here we criti-
cally examine the capabilities of EBSD methods for dislocation density estimations
with a focus on resolution and step size considerations when using such methods.
For comparison, two EBSD methods are presented in this work, traditional Hough-
based orientation analysis and the more recent cross-correlation method introduced
by Troost and refined by Wilkinson (Troost, Van der Sluis et al. 1993; Wilkinson,
Meaden et al. 2005).

In the traditional Hough-based method, the Kikuchi bands in the EBSD pattern are
converted into peaks in Hough space. With the Hough (Radon) transform, lines
become points and bands become spots. Intensity maxima are identified in the spot
pattern, and their positions are used to index the EBSD pattern for lattice orien-
tation, using crystallographic data for known phases. Indexing speeds in excess
of 800 points/s have been reported. The angular resolution of the Hough-based
method is commonly reported to be ∼0.5 degrees (Wright 1993).

The cross-correlation method relies on direct comparisons of EBSD patterns at a
number of corresponding ‘regions of interest’ (ROI) within the patterns. The shift
that best aligns the features in corresponding ROIs is measured using the cross-
correlation function. These shifts in the patterns can be related to elastic deforma-
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tion of the crystal lattice according to the following formula:

~q = ~w− (~w · r̂)r̂ (1)

where

~w = Ur̂ (2)

~q is the shift measured on the phosphor screen using the cross-correlation function,
r̂ is a unit vector pointing from the sample to the center of the ROI on the phosphor,
and U is the displacement gradient tensor. By rewriting equation (1) in component
form, the w · r̂ term can be eliminated to reduce the system to two equations. If the
shifts in the EBSD pattern are measured at four or more regions, eight of the nine
components of U can be recovered. The ninth component is the spherical strain,
which causes no shift in the position of features within the EBSD patterns, but an
expansion or contraction of the size of those features which is not easily resolved.
This unresolved spherical strain can be determined if a traction-free boundary con-
dition is added to the system of equations (1, 2). Applying this added condition
requires knowledge of the local elastic constants at the material point to be exam-
ined. For polycrystalline materials this is available if the basic elastic constants
of the constituent phase is known, when coupled with the local lattice orientation,
through the standard transformation laws for fourth rank tensors. U can be further
decomposed into symmetric and asymmetric parts corresponding to the infinitesi-
mal elastic strain gradient and rotation tensors respectively. The cross-correlation
method is capable of measuring misorientations to within +/−0.006˚ and compo-
nents of the elastic strain tensor to within +/−1.6×10−4 (Wilkinson, Meaden et
al. 2006). The cross-correlation method and resolution limits, originally reported
by Wilkinson, have been reproduced by the authors (Kacher, Landon et al. 2009).

3 Determination of Continuum Dislocation Densities

The theoretical groundwork for dislocation density estimates is largely based on
the work of Nye (Nye 1953). He was able to show how the lattice curvature, or
curl of the orientation field, could be linked to geometrically necessary dislocations
(GNDs). Later work by Kröner advanced Nye’s work to include the elastic strain
gradient in the formulation (Kroner 1958). The following equation emerged (Sun,
Adams et al. 2000):

αik = κki−δkiκpp + ekl jε
e
i j,l (3)

where κki is the lattice curvature and is given by:

κki =
∂θk

∂xi
(4)
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εe
i j,l is the jth spatial derivative of the elastic strain, ekl j is the Levi Cevita sym-

bol, δki is the Kronecker delta function, and αik is the dislocation density tensor.
The components of the dislocation density tensor weight the dyadic formed by the
direction of the dislocation line and the Burgers’ vector characterizing that dislo-
cation. When the data obtained is limited to a two-dimensional plane, the disloca-
tion density tensor can only be partially resolved. Any out of plane derivatives, or
derivatives with respect to x3, are unobtainable. This limits the measurable com-
ponents of the dislocation density tensor to αi3. Additionally, α12 and α21 are also
resolvable when contributions from the elastic strain are ignored (Pantleon 2008).

It is important to emphasize that the Nye formulation is dependent on measuring
the net Burgers’ vector within a single Burgers’ circuit. When estimating disloca-
tion densities using EBSD, a Burgers’ circuit is formed by a square grid of four
EBSD measurement points. The orientation and elastic strain information can be
collected at each corner of the circuit and used to estimate the dislocation density
within the circuit (Pantleon 2008). Statistically stored dislocations (SSDs) occur in
dipoles and multipoles with no net Burgers’ vector when their poles fall within the
prescribed Burger’s circuit. SSDs can be detected only when the size of the Burg-
ers’ circuit is small enough to separate the poles for individual detection (Kacher,
Landon et al. 2009).

When estimating dislocation densities using EBSD, it is vital that an appropriate
step size is used. It has been estimated that the critical distance at which dislo-
cations will self annihilate is ∼20 atomic distances (Kroner 1958). Ideally, there
would be a method with sufficient spatial and angular resolution that each disloca-
tion could be individually resolved. However, both spatial and angular limitations
of current EBSD-based techniques make this infeasible. There are two competing
considerations when choosing a step size. Nye’s formulation for dislocation den-
sity is dependent on spatial derivatives. It follows that as the step size decreases,
any measurement error of the data is amplified. While increasing the step size does
reduce the effect of noise in the data, it has an adverse effect in that important infor-
mation on dislocation networks can be lost. As stated previously, any dislocations
with opposing signs within a single Burgers’ circuit have no effect upon the net
Burgers’ vector detected within the circuit, and so remain undetected.

The limiting dislocation density resolution of any EBSD method can be expressed
as a function of the angular resolution of the applied method (conventional Hough-
based method or the high resolution cross-correlation method) and the chosen step
size.

ρ
GND
min =

θmin

Lb
(5)

where θmin is the limiting angular resolution of the chosen method in radians, L
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is the step size, and b is the magnitude of the Burgers’ vector. When equation
(5) is plotted for these two methods, it can act as a guide for both the selection of
an appropriate step size and the interpretation of dislocation density data obtained.
Assuming a Burgers’ vector of 2.5 Å, the minimum resolvable dislocation density
is plotted as a function of step size for both the traditional Hough-based method and
the cross-correlation method (Figure 1). The interpretation of the plot is that any
dislocation density that falls below the minimum resolvable dislocation density line
will be dominated by noise, and is thus unobtainable by the selected technique. Any
measured dislocation density that falls along the line corresponding to the selected
technique should not be treated as an accurate estimate since it is not possible to
determine whether the effect is from noise or if the physical dislocation density is
being measured.

 
Figure 1: Dislocation density resolution estimates

Another line (solid line in Figure 1) is plotted showing the physically feasible dis-
location density measureable as a function of step size. Any data falling below this
line corresponds to a non-physical fraction of a dislocation per Burgers’ circuit.
This minimum dislocation density is given by:

ρmin =
1
L2 (6)

ρmin is the dislocation density corresponding to one dislocation per Burgers’ circuit.
It should be emphasized that this analysis refers to the local dislocation density (at
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the level of one Burgers’ circuit). It is often the case that the dislocation density
will vary significantly over a single grain such as when dislocations pile up near
grain boundaries. These local variations in dislocation density should be taken into
account when choosing a step size. Future schemes to address this issue dynam-
ically could include adaptive alterations of the step size according to the current
dislocation density recoveries.

Average dislocation densities have been commonly measured to be ∼1013-1016

m−2. As can be seen in Figure 1, because of angular resolution limitations in the
Hough-based method, a relatively large step size must be used to resolve such dislo-
cation densities. However, this increases the risk that many of the dislocations will
be averaged out within the Burgers’ circuit, thereby reducing the estimated dis-
location density. By increasing the angular resolution using the cross-correlation
method, the resolution of dislocation density estimates can be improved by almost
two orders of magnitude over traditional Hough-based techniques. This improve-
ment in resolution of the local state of dislocation will be particularly important to
studies of elastic/plastic polarization and their effects on defect nucleation.

4 Simulations of EBSD Resolution

To demonstrate the effect of angular resolution on dislocation density estimates, a
number of dislocation networks in a material was simulated. The simulation is a
simplified model where only one type of edge dislocation is considered. The dis-
location line direction is fixed perpendicular to the Burger’s circuit. Two possible
Burgers’ vectors were allowed, pointing in either the positive or negative directions,
perpendicular to the fixed dislocation line direction. Two-dimensional networks
were simulated to have a random spatial placement of dislocations, and a random
assignment of Burger’s vector. Total dislocation densities were prescribed. Also,
under the conditions set for the simulations, a small bias between the two types
of Burger’s vectors was allowed, resulting in roughly 4% of the dislocations being
geometrically necessary for each of the simulations. The total area simulated was a
10×10 µm square. At this size, the total dislocation content for ρ tot = 1016m−2 is
106, for ρ tot = 1015m−2 the total dislocation content is 105, and so on. Using these
simulated networks, the dislocation density was estimated at increasing step sizes
using square Burger’s circuits. Mean values of multiple samplings of the complete
simulated field are reported as dislocation densities at a specified step size. A noise
component was added to the measured data that corresponds to the angular resolu-
tion of each technique. The magnitude of the added noise varied randomly between
zero and the value given by Equation 5. The recovered (mean) dislocation densi-
ties, as a function of step size, are shown for each of the two methods in Figure 2.
For comparison, reference points were also plotted with no noise component. The
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lines from Figure 1, indicating the estimated resolution limits, are also plotted in
Figure 2.

The following observations can be drawn from the simulated data. First, it can
be seen that the data follows a general trend of reaching an upper plateau (left
side) at the total dislocation density. This occurs whenever the resolution limit of
the method lies below the simulation density. For example, at 1013m−2 the cross-
correlation method plateaus at a step size of∼ 10−7m but rejoins the line indicating
its resolution limit at about 8x10−7m, where the results are dominated by noise. At
the same simulated density it is obvious that no useful information can be obtained
from the conventional Hough-based method, which is dominated by noise over the
entire range of step sizes. This plateau, for every case except for highest simulated
dislocation density, 1016m−2, is reached at a significantly larger step size than the
minimum plotted step size.

Comparison of the simulation results in Figure 2, with the minimum physical dislo-
cation density plotted in Figure 1, suggests that a substantial range of these density
plots lies below the physical limit of 1 net Burger’s vector per Burger’s circuit.
This limit is not reflected in the plots of Figure 2 because the reported densities are
averages over many Burger’s circuits of the indicated size. Experimental data on
real materials at these (sub-physical) densities would reflect variations in density
from point to point, bounded from below by the resolution limit of the technique,
and from above by the minimum physical dislocation density. Thus, in these sim-
ulations the plateau to the left of the graphs corresponds to the range of step sizes
where every dislocation is resolved; however, it is only in the mean value of many
Burger’s circuits that the true (imposed) dislocation density is recovered.

It is a common misconception that a smaller step size will always lead to more ac-
curate data. Instead, the opposite is often the case. As the step size decreases, the
noise component of the data becomes increasingly dominant, and important infor-
mation is lost. Instead, the selection of the method (Hough versus cross-correlation)
and step size should be considered with an eye upon the expected dislocation den-
sity. As data is collected, alterations in method and step size may need to be consid-
ered, based upon preliminary results. Valid dislocation densities at a single material
point occur only when those results lie above the resolution limits plotted in Figure
1. Statistical averaging over extended regions may resolve densities lying below
the physical minimum density plotted in Figure 1, but errors in such averaging
must consider the noise limitations of each method.

Next, as one proceeds to the right on the graphs in Figure 2, beyond the end of
the upper plateau, the estimated dislocation density steadily decreases. This is due
to dislocations of opposite signs cancelling each other within the Burgers’ circuit.
The slope of the descent closely parallels the slopes of the lines indicating the
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Figure 2: Simulations of dislocation density estimates. The standard deviation of
the results between simulations was about 1012 m−2 for all simulations.

predicted resolution limit, which is as expected. However, the simulated dislocation
density measurements consistently fall slightly below the predicted resolution limit
(this can be seen most clearly in the upper left plot of Figure 1). This can be
understood by taking into account that the plotted resolution limits are dictated
by the maximum expected noise level. On average, the actual noise level will be
slightly lower.

Proceeding further to the right on the plots of Figure 2, the data reach a second
plateau at the larger step sizes. This plateau is related to the discrete nature of the
simulations. Differences in the numbers of positive and negative Burger’s vectors in
the simulations give rise to an overall net Burger’s vector for the complete region.
The demarcation of this second plateau is the step size at which the maximum
possible cancellation of multi-pole structures occurs. Within this second plateau
the recovered dislocation density corresponds to the overall net Burger’s vector of
the simulated system. It is evident from the data presented in Figure 2 that the level
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of polarization between positive and negative Burger’s vectors is less than 10% for
all simulations.

5 Experimental Evaluations

Experimental data were collected and analyzed as an evaluation of the simulations
as well as a test to determine the effect of ignoring the elastic strain term when
calculating the dislocation density tensor. The data were collected on a Philips
XL30 S-FEG SEM operated at an accelerating voltage of 20 kV. EDAX/TSL’s OIM
software was used as the representative Hough-based method. The EBSD patterns
were saved for offline cross-correlation analysis. A Matlab code was written by the
authors for the offline cross-correlation analysis of the patterns.

Scans were collected from two different samples: a single crystal undeformed ger-
manium sample and a 58% cold rolled copper sample. The copper sample was
annealed for 1.5 hours at 225˚C after the cold rolling. The scans were taken upon
a square grid at 20 nm step size over a 4x4 µm square region. Lattice orientation
(Hough and cross-correlation) and elastic strain (cross correlation only) data were
obtained at every point, and used to compute the dislocation density tensor. As a
first order approximation, the total dislocation density was calculated as:

ρTot = 9〈|α|〉 (7)

Here 〈|α|〉 represents the average value of the absolute value of the available com-
ponents of the dislocation density tensor. More sophisticated techniques for esti-
mating the total dislocation density from the dislocation density tensor, account-
ing more completely for dislocation crystallography, can be found elsewhere [Sun,
Adams et al 2000; Pantleon 2008).

In order to show the step size and angular resolution effects on the experimental
data, the dislocation density was estimated using the information obtained by both
OIM and the cross-correlation method. The step size was artificially increased
by skipping an increasing number of scan points and the dislocation density was
estimated at each step size. The dislocation density was then plotted as a function
of step size for the data obtained using OIM, the cross-correlation method without
the elastic strain term, and the cross-correlation method with the elastic strain term
included (Figure 3).

When the density of dislocations associated with dipoles and multi-poles is low
compared to the density of GNDs, their effect is more likely to become negligible
at a smaller step size, leading to an earlier plateau (right side). This may explain
the trends obtained from the deformed copper sample. There is no evidence of a
right side plateau in the data taken from the germanium single crystal; and the mea-
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Figure 3: Total dislocation density measurement variations with step size from
copper (left) and germanium single crystal (right). The y-axis is on a log scale.

sured trends correspond quite well to the low dislocation density simulation at the
given range of step size. In neither case is there a plateau at small step size, sug-
gesting that the total dislocation density (both statistically stored and geometrically
necessary) is not reliably measured in the selected samples.

The experimental data also reconfirms that OIM in most cases is only able to mea-
sure higher than average local dislocation densities. This is especially apparent in
the data taken from the germanium single crystal, where OIM estimates the dislo-
cation density to be significantly higher than the density estimated using the cross-
correlation method. In both cases, the OIM data has an upper plateau at ∼1014.5

m−2. It would seem that OIM is incapable of making reliable estimates of the
dislocation density below this level.

An interesting aspect displayed in the experimental data but excluded from the sim-
ulations is the effect of the elastic strain term on dislocation density estimations. In
both samples, the inclusion of the elastic strain term caused the estimated dislo-
cation density to increase. This increase is approximately independent of the step
size, suggesting that the effects of the elastic strain gradients average in the same
manner as orientation gradients.

6 Summary and Conclusions

It is quite evident, from the analysis and simulations presented in this paper, that
the choice of step size for recovery of dislocation density field data by EBSD-based
methods, is a complex one. Angular resolution is critical, and in all situations, the
highest angular resolution method will give the most accurate results. Beyond this,
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it is important to consider expected dislocation densities when selecting a suitable
step size. With low dislocation density materials, such as the germanium single
crystal presented in this study, small step sizes lead to erroneously high estimates
of overall dislocation density – as can be seen by comparing Figures 3 and 1. Con-
trarily, for materials such as the deformed copper, where higher dislocation den-
sities are expected, larger step sizes lead to significant averaging over multi-pole
dislocation structures, resulting in a loss of potentially significant data.

Clearly, Hough-based techniques are capable of detecting only relatively large ac-
cumulations of dislocations. This makes Hough-based techniques useful for de-
tecting dislocation pileups as might be expected to occur near grain boundaries or
accumulations of dislocations that can occur at lower densities over larger length
scales, but less effective when measuring low magnitude variations of dislocation
density at small length scales. Based upon the work presented here, the resolu-
tion limit for ordinary Hough-based methods is ∼ 1014.5m−2. Cross-correlation
methods offer almost two orders of magnitude improvement in angular resolution,
making local low density dislocation structure characterization at high resolution
much more feasible.

Although the simulated data presented in Figure 2 depict a (left) plateau that cor-
responds to step sizes that violate the physical minimum density shown in Figure
1, we have clarified that this is only possible when averaging over a statistically
significant set of such measurements to obtain a mean value. Under experimental
conditions where the goal is to evaluate the spatial fields of dislocation density, av-
eraging is not appropriate, and individual measurement points must be evaluated in
terms of their relationship to this physical minimum density and to the resolution
limits of the method, which is governed by angular resolution.

Including the elastic strain gradient terms in estimates of the available components
of the dislocation density tensor was found to increase the density estimates by
a relatively uniform amount across the range of step sizes. This correction is of
the order of ∼10-20% of the magnitude of density obtained when excluding these
terms. In some situations it is anticipated that this correction could be significant.

It is evident that at this stage of EBSD development continued care is needed when
interpreting EBSD-based dislocation estimates. Indeed, this paper presents evi-
dence that some level of simulation may be required and useful to the interpretation
of experimental results.
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