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Abstract: In this paper, a model is introduced to examine the evolution of the
microstructure function under plastic deformations. This model is based upon a
double continuity relationship that conserves both material particles in the mass
space and orientations in the orientation space. An Eulerian description of the mo-
tion of material particles and orientations is considered, and continuity relations
are derived for both spaces. To show how the proposed model works, two differ-
ent case studies are provided. In the mass space, the continuity relation is used to
examine the evolution of the microstructure function of a two-phase (isotropic) ma-
terial; while, in the orientation space, this model is used to simulate the evolution
of the microstructure of a randomly textured fcc material that has been cold rolled
to a rolling reduction of 70%. In addition, in both case studies, our Eulerian conti-
nuity model is compared against the Lagrangian models that are widely used in the
literature for texture predictions. Results show that by selecting an appropriate grid
size for both workspaces the proposed Eulerian continuity model can accurately
predict the evolution of the microstructure for large plastic deformations.

Keywords: Microstructure, Microstructure Function, Continuity Equation, Con-
servation Principles, CMC.

1 Introduction

Polycrystalline materials are aggregates of numerous crystallites or grains of vari-
ous sizes and shapes. In order to study mechanical and metallurgical properties of
polycrystalline materials one needs to know detailed information about the sizes,
shapes and placement of these crystallites or grains. A grain in a polycrystalline
material, by definition, is an aggregate of neighboring particles having similar crys-
tallographic orientation with respect to the sample coordinate system. Study of the
behavior of grains during deformation processes has been a pervasive subject of
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mechanical and materials sciences. Applying a plastic deformation causes parti-
cles of individual grains inside an examined polycrystalline material to move from
their preliminary location to a new position in the space of material particles which
is called the real space or the mass space. The deformation process, on the other
hand, causes grains of the polycrystalline material to rotate around a specific rota-
tion axis, to change their original orientation, and to take new configurations rela-
tive to the sample coordinate system. These changes are not random and involve
rotations which are directly related to the crystallography of the deformation. As a
consequence, the grains acquire a distinguishing pattern, or texture, which becomes
stronger as deformation proceeds. These rotations take place in the orientation
space, the space that includes all possible rotations of orientations. There are many
ways to show the continuous motion (or rotation) of orientations, among which the
Euler angle space (EAS) [Bunge (1993)] and the Rodrigues vector representations
[Morawiec and Field (1996)] are more common in microstructure simulations. In
this paper, the EAS is selected as the working space for orientation rotations.

From the discussion above, it can be concluded that for any material point in the
material, there are two spaces that should be considered during the evolution pro-
cess: the mass space and the orientation space. Conservation principles can be used
to study the motion of material particles in the real space and lattice orientations in
the orientation space.

In the real space, the motion of material particles is monitored by the mass-based
continuity equation, which has been derived based upon the conservation of mass
principle. The main application of this continuity equation is the solution to Navier-
Stokes equations in fluid mechanics [Kreiss and Lorenz (2004)]. Navier-Stokes’
equations commonly consist of five equations: three momentum equations, the con-
tinuity equation, and the constitutive equation. In the derivation of Navier-stokes
equation, the continuity equation can be expressed in either a material (Lagrangian)
or spatial (Eulerian) framework; and it can be used to monitor the motion of par-
ticles for a compressible or an incompressible fluid. The continuity equation has
been applied mostly for linearly viscous fluids in the literature [Kreiss and Lorenz
(2004); Irgens (2008); Lai, Rubin and Krempl (1993)]; and its application for solid
materials is not common. In the current paper, we will introduce the mass-based
continuity equation and will show how it can be employed to model changes in
microstructure that occur with large deformations.

In the orientation space, we deal with rotations and lattice orientations. There have
been many investigations on the evolution of grain orientations or the texture evo-
lution of polycrystalline materials. The main tool exploited to quantify the crys-
tallographic texture of material particles in the microstructure is the orientation
distribution function (ODF) defined in the orientation space. The orientation dis-
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tribution function, f (g), by definition, is the volume density of material particles in
the microstructure that associates with orientation g:

f (g)dg =
dV
V

(1)

where dV/V denotes the volume fraction of the microstructure that is associated
with local states lying within an invariant measure dg of orientation g. The orienta-
tion g in the Bunge-Euler space is specified by three Euler angles: g = g(ϕ1,Φ,ϕ2)
[see Bunge (1993)].

Modeling texture evolution has been the subject of many studies for about three
decades. Most of these models have been expressed in the Lagrangian framework
[i.e. Kalidindi and Anand (1992); Kalidindi, Bronkhorst and Anand (1992); Ka-
lidindi and Anand (1994)]. In these models the initial ODF is measured experimen-
tally from the original microstructure, some plasticity-related models are exploited,
and the final ODF is predicted by applying the plastic strain gradually. Lagrangian
models have some benefits and limitations. The most serious limitation of using
the Lagrangian system is that the shape and the size of the material volume ele-
ment may change throughout the deformation process leading to a severely dis-
torted mesh at the end of the process. Our preference here is to use an Eulerian
framework in whicha fixed control volume is considered and the rate of change of
any material property, e.g. the mass density or the ODF, is studied in a permanent
coordinate system.

The first approach to predict the evolution of the ODF using an Eulerian framework
was proposed by Clement and Coulomb [Clement and Coulomb (1979); Clement
(1982)]. Their model predicts the texture evolution considering a continuity rela-
tion that is valid in the EAS, and guarantees the conservation of orientation prin-
ciple during the evolution. This continuity relation has been formulated from con-
cepts commonly used in continuum mechanics to observe the rate of change of
mass flowing in a continuous medium.

Based on Clement’s formalism and the continuity equation in the orientation space,
many studies have investigated the evolution of crystallographic texture for var-
ious deformation processes, such as uniaxial tension [Savoie, Zhou, Jonas and
Macewen (1996)], plane-strain compression [Bunge, Esling, Dahlem and Klein
(1986)], rolling [Wierzbanowski, Clement (1984); Wierzbanowski, Ahzi, Hihi and
Berveilier (1986); Gilormini, Toth and Jonas (1990); Zhou, Toth and Neale (1992),
Morawiec, Wierzbanowski, Jura and Baczmanski (1991)], simple shear or torsion
[Baczynski and Jonas (1996); Beausir, Toth and Neal (2007); Arzaghi, Beausir and
Toth (2009)], and deep drawing [Zhou, Jonas and Neale (1995); Choi, Cho, Oh,
Chung and Barlat (2000)]. A power-law viscoplastic relation has been employed in
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most of these models to generate the rotation rate field in the EAS. The rotation rate
field and the orientation-based continuity equation have then been used to study the
orientation stability of specific texture components of various (mostly fcc and bcc)
materials. In this body of work, the orientation-based continuity equation has been
used only to predict the ODF of stable texture components at the end of the pro-
cess. In the EAS, if the velocity vector is defined as w = wi(g), an orientation g∗
remains stable throughout the deformation if the following conditions are met: first,
all of the components of the velocity vector go to zero, wi(g∗) = 0; and secondly,
the slope of velocity components in the EAS stay negative during the process, or
∂w1/∂ϕ1 ≤ 0, ∂w2/∂Φ≤ 0, ∂w3/∂ϕ2 ≤ 0 [see Clement (1982)]. In Section 5 and
Appendix C, we have described our derivation of the orientation-based continuity
equation in the space of Eulerian coordinates. It can be seen that both the velocity
term and partial derivatives appear in the continuity equation (Eq. 11). It is dis-
covered that when the velocity components become zero, the second term in the
continuity equation vanishes and the numerical simulations for studying ideal ori-
entations or stable texture components are simplified. Accordingly, the continuity
equation can be used to study stable orientations with no difficulty.

However, if studying the evolution of a random texture or a random orientation
is important, the second term in the continuity equation will not be zero, and it
necessarily must be computed. A discrete framework can be established to approx-
imate these partial derivatives. Although the continuity equation has been used in
the literature to study the stability of ideal orientations, it has not been employed
to statistically study the microstructure of materials. A discrete representation of
mass- and orientation-based continuity equations in the basis of Eulerian coordi-
nate system is introduced in this paper. This is a new hypothesis that has not been
conceived in the past; and it can be exploited to study microstructure evolution of
polycrystalline materials,

In the present paper, we will also show that instead of the ODF one can use another
statistical function, called the microstructure function (MF), which represents the
ODF at a specific material point. In this way one can consider a local ODF for any
material point in the microstructure; and instead of texture evolution, the evolution
of the MF can be studied locally. The MF, in addition to the 2-point correlation
function, which is used in statistical continuum theory to study the local effects of
one material particle on the properties of the neighboring particle, are introduced
in Section 2. Then, the conservation of mass principle and the mass-based conti-
nuity equation is introduced in Section 3. To study the evolution of the MF only in
the mass space, a model was established using the mass-based continuity equation.
This model can be used to predict the evolution of the MF under large levels of
plastic strain. The way this model works is described in detail in Section 4. Our
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derivation of the orientation-based continuity equation in the EAS is discussed in
Section 5. To validate the orientation-based continuity relation, rolling deforma-
tion of a randomly textured fcc material is modeled using our Eulerian model and a
Lagrangian model. Details of establishing an Eulerian framework in the EAS and
employing the continuity model for texture prediction of this random microstruc-
ture is presented in Section 6. More detailed formulation of continuity equations
for the mass space and the EAS can be found in Appendices A and C, respectively.
Appendix B provides the reasons of choosing a forward-backward finite difference
method exploited in computations of the rate changes of the MF in the Eulerian
model.

2 Microstructure representation

2.1 Microstructure function

The microstructure function (MF) is a statistical function used to express the vol-
ume fraction of a local state in the vicinity of a material point [Adams, Gao, and
Kalidindi (2005); Fullwood, Niezgoda, Adams and Kalidindi (2009)]. Typical ex-
amples of local state can be phase, grain orientation, composition, and any other
relevant local parameters. Lattice orientation is taken as the local state variable
of interest in this paper consistent with the definition of the ODF. Formally, the
microstructure function is defined as:

M(x,g)dg =
dVg

V
(2)

where V is the volume of the local neighborhood of material particlex, and dVg is
the volume of the local neighborhood within V that is associated with orientations
that lie within an invariant measure dg of orientation g. The invariant measure in
both Eqs. 1 and 2 can be expressed as dg = sinΦdϕ1dΦdϕ2 in the EAS. As one
of the properties of the MF, integrating the MF in the entire volume of interest, one
obtains the volume fraction of orientation gin the entire microstructure, which is
the familiar ODF:

1
V (Ω)

∫
Ω

M(x,g)dx = f (g)|
Ω

(3)

where Ω denotes the region of interest in the real space. This MF can be used in
statistical continuum theory to express correlation functions.

2.2 1- and 2-point correlation functions

The simplest of the statistical functions used to quantify the microstructure are the
1-point distributions. The one point distribution function, which is also the familiar
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ODF or the texture function (Eqs. 1 and 3), essentially reflects the probability
density associated with realizing a specified orientation in the neighborhood of a
point thrown randomly into the microstructure.

Another important statistical function is the 2-point correlation function, f2(g,g′|r),
that denotes the probability density associated with finding specific local states g
and g′, respectively at the tail and the head of a vector r placed randomly into
the internal structure of the material [Kroner (1967); Adams, Gao and Kalidindi
(2005); Fullwood, Niezgoda, Adams and Kalidindi (2009)]:

f2(g,g′|r) =
1

V (Ω)

∫
Ω

M(x,g)M(x+ r,g′)dx (4)

Higher order correlation functions, also referred to as n-point spatial correlation
functions have been also defined in the literature [Adams, Canova and Molinari
(1989); Adams, Xiang and Kalidindi (2005)]. In this paper the 2-point correlation
functions are used to study the local effects on the microstructure.

3 Conservation of mass

The principle of conservation of mass states that the total mass of any part of a
body does not change with any motion. The mathematical form of this principle
is different in material and spatial descriptions of motion. One benefit of using
the Eulerian coordinate system for computations is that one can discretize the vol-
ume of interest using square-shaped, evenly-spaced grids, facilitating the use of
fast Fourier transforms (FFTs) for economical calculations [Fullwood, Kalidindi,
Niezgoda, Fast and Hampson (2008)]. Another benefit is that we can use the finite
difference method (FDM) to approximate first-order partial derivatives that appear
in the continuity equation.

The derivation of the mass-based continuity equation for the spatial description is
shown in Appendix A. Using the definition of the material time derivative D/Dt,
and taking a control volume in the Eulerian coordinates, the mass-based continuity
equation is expressed as (Eq. 21 in Appendix A):

∂ρ(x)
∂ t

+div(ρ(x)v(x)) = 0 (5)

where ρ(x) is the mass density and v(x) is the velocity of the material particle x in
the mass flow field. Using the divergence law the continuity equation becomes:

∂ρ(x)
∂ t

+ρ(x)
dvi(x)

dxi
+ vi(x)

dρ(x)
dxi

= 0 (6)
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In fluid mechanics, the fluid is comprised of material particles that can be compress-
ible or incompressible. However, in solid materials, to a very good approximation
the polycrystalline material can be considered to be an incompressible material,
and hence the term vi,i = dvi/dxi approaches zero; thus we have:

∂ρ(x)
∂ t

=−vi(x)
dρ(x)

dxi
(7)

This equation is the final form of the mass-based continuity equation for an incom-
pressible material.

4 Application to a two-phase material

The continuity equation formulated in the previous section can be used to predict
the evolution of the MF for a two-isotropic-phase (TIP) material. We assume that
the microstructure is composed of two regions each representing a phase (Fig. 1a:
white and black area indicate phase 1 and 2, respectively). To build a model based
upon the continuity equation for the TIP material, the following assumptions are
made: (1) the material under deformation acts like an incompressible media; (2)
the phases do not change from one to the other during the deformation process;
(3) the phases have isotropic properties; and (4) the motion of phase particles is a
continuous process. In addition, the continuity equation is readily extended from
Eq. 7 to apply to the MF:

∂M(x,g∗)
∂ t

=−vi(x)
dM(x,g∗)

dxi
(8)

where specifying g∗ indicates that we have derived the equation for a particular
orientation (or phase here). If phase change does not occur during deformation, the
continuity equation can be expressed for each phase individually. We will here-
after focus on the continuity equation for the second phase expressed in Cartesian
coordinates.

The TIP model is constructed for a plane-strain compression test (similar to rolling).
A plane-strain compression test has two planes of symmetry and four regions that
material particles are symmetrically moving in each of these regions. In this study,
the upper right corner of a plane-strain test is sampled. Accordingly, since plane-
strain condition is applied, plastic strain in the 2-direction is assumed to be zero
(ε2 = 0) and based upon the incompressibility we will have ε1 = −ε3. Assuming
that the macroscopic motion conditions also apply locally (following the familiar
Taylor hypothesis), the equations of motion throughout the material are then simpli-
fied to x1 = X1 exp(ε̇t), x2 = X2, and x3 = X3 exp(−ε̇t). Here ε̇ is the applied strain
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rate, x represents the position of a material particle with respect to a pre-defined
Eulerian coordinate system at time t, and X shows the position of that particular
material particle at the reference configuration (t = 0). Based upon the definition
of velocity vi = dxi/dt, the velocity components can then be obtained: v1 = ε̇x1,
v2 = 0, and v3 =−ε̇x3. Equations of motion also provide the boundary conditions
required in the simulation. Three boundary conditions are required for modeling
the upper-right region of a plane-strain compression test: (1) Material particles are
not moving in the 2-direction during the process (i.e. x2 = X2 or v2 = 0). (2) At the
lower boundary, material particles are not allowed to move vertically. For this case
since we have X3 = 0, using the equation of motion x3 = X3 exp(−ε̇t), we get x3 = 0
and consequently v3|X3=0 = 0. Note that material particles can freely move in the
1- direction at this boundary. (3) At the left boundary, based upon the equations of
motion, we will have x1 = 0 and v1|X1=0 = 0, while material particles can move in
the 3- direction. This can be seen in Fig. 1b.

Fig. 1b shows a section of the velocity field determined for the TIP model. To
obtain this field, the real space is discretized into small bins. The velocity vector
is calculated for each Eulerian point for a strain rate of ε̇ = 0.001s−1. Once the
velocity field is defined we can apply an iteration scheme to get the evolution of the
microstructure. If the plastic deformation is applied in small steps of time we can
rewrite the continuity equation as:

∆M(x)|2
∆t

=−v1(x)
dM(x)|2

dx1
− v3(x)

dM(x)|2
dx3

(9)

where the notation |2 specifies that we are modeling the evolution of the MF for the
second phase.

In the above equation the only unknown terms are the partial derivatives. To com-
pute these derivatives a finite difference method (FDM) can be used. It was found
that among all the finite difference schemes, forward and backward differences
were the best choices. Distinguishing between the usage of forward or backward
methods depends upon the sign of the velocity component. If velocity is positive,
the backward difference is best; and if it is negative, the forward difference method
should be used. An example that can clarify reasons of choosing this finite differ-
ence scheme is provided in Appendix B. When all terms are calculated, the change
of the microstructure function at one time step can be calculated from Eq. (9),
and simply the microstructure function at the end of the iteration is calculated by
M f = Mi + ∆M where ∆M is calculated from Eq. 9, assuming that ∆t = 1 . For
simplicity, it was assumed that the deformation is a steady process with a uniform
velocity field that does not change as deformation proceeds. Then, to obtain an
exact amount of strain this process is iterated until the total strain is reached. For
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instance, if we assume that the strain rate is ε̇ = 0.001s−1, to apply a total plas-
tic strain of 10%, the number of iterations will be 100. The final microstructure
function is eventually captured from the last iteration.

Fig. 1 demonstrates the evolution of microstructure function for the TIP model.
Micrograph (a) shows an area (15×15 µm2) taken from the original microstructure.
The microstructure is discretized into equally-spaced bins with 0.3 µm grid size.
The MF at every bin is set to 0 if phase 1, and 1 if phase 2 fills the bin. If the bin
contains a fraction of phase 1 and 2, its MF takes a value based on the fraction of
phase 2. MF evolution is progressed using Eq. 9 and the iteration scheme that was
described. The evolution of microstructure for different amounts of total strain is
shown in subplots (c-e). It can be seen that as the deformation proceeds, the MF
becomes more diffuse near interfaces.

To validate our model for predicting MF evolution, another model can be estab-
lished that will provide the final microstructure without applying any iteration tech-
nique. For this model, which has a Lagrangian basis, about 100 points were thrown
randomly into every bin in the initial microstructure. These points are labeled as
phase 1 or 2 based on their original location. If we know the final amount of strain
that should be applied, the number of total iterations is also determined, then the
final location of points can be determined using the equations of motion. For ex-
ample, if we take a point at position (2,0,2) and if it is desired to apply 10% strain
at the rate of ε̇ = 0.001s−1, 100 iterations are required. Based upon the equations
of motion, this point at the end of process is located at (2.21 0 1.81) because e.g.
x1 = 2exp(0.001× 100) = 2.21. These points were forced to move directly using
the equations of motion. The final MF then was calculated for each Eulerian bin
by finding the fraction of the number of points belonging to phase 2 relative to
the number of all points occupying that bin. A comparison of final microstructure
predicted by the continuity relations and the second (direct) model, is illustrated in
Fig. 2 (a and b).

The 2-point correlation function between phase 1 and 2, f2(1,2|r) was also com-
puted using FFTs; for more information regarding the implementation of FFTs in
manipulating the 2-point functions the reader is referred to the work of Fullwood
et al. [Fullwood, Kalidindi, Niezgoda, Fast and Hampson (2008)]. The f2 plots
for both models are shown in Fig. 2 (c and d). In the microstructure predicted by
the continuity relations, some spreading of the second phase (similar to a diffusion
phenomenon) can be seen on the boundaries. The smearing happens during the iter-
ation scheme. It initiates from the use of finite difference methods. There is not an
explicit way to calculate partial derivatives in Eq. 9. Using finite difference method
gives an error of the order of the bin size at every step of deformation. This error
accumulates with the number of calculation steps, and results in a thicker smeared
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Figure 1:  MF evolution under plane-strain conditions for the two phase model (white: 
phase 1; black: phase 2). (a) initial MF; (b) velocity field for the plane-strain condition; (c, 
d, and e) MF evolution after 10%, 30%, and 50% total strain. 
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Figure 1: MF evolution under plane-strain conditions for the two phase model
(white: phase 1; black: phase 2). (a) initial MF; (b) velocity field for the plane-
strain condition; (c, d, and e) MF evolution after 10%, 30%, and 50% total strain.
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boundary layer as a function of the number of iterations. The extent of these errors
depends upon the number of iterations and the bin size. This smearing effect is
more obvious in Fig. 1 (c-e) where different amounts of strain are applied.

 

Figure 2: MF evolution for 30% total plastic strain predicted by (a) continuity
relations; (b) the direct (Taylor) model; (c and d) 2-point correlation function plots
for Eulerian-based continuity model and the direct model, respectively.

Fig. 3 shows the error plot representing the absolute error between the f2 obtained
from the two models. It can be observed that the maximum absolute error for 30%
total strain is about 9.4 %. This maximum error occurs for small vectors r, with
ends that land on phase 1 and 2, which samples the region between the two phases,
or the boundaries. If we neglect the smearing effect on the boundaries, the mean
absolute errors is about 0.8% which is reasonably acceptable. It is concluded that
if the effect of boundary spreading somehow can be resolved, the continuity model
can provide precise predictions of MF evolution under large deformations. Control



152 Copyright © 2009 Tech Science Press CMC, vol.14, no.2, pp.141-169, 2009

of boundary layer thickness can be addressed by either choosing a smaller grid size
or applying fewer iterations (with larger strain applied in each step). On the other
hand, there is a limit on the maximum amount of strain that can be applied in one
time step. It can be shown that the maximum strain needs to be consistent with
the limit that vi∆t ≤ d where d is the bin size. The velocity field in this study is
steady; hence it can be shown that as the time step increases, the binning size has
to increase as well. Therefore, only one parameter remains that can control the
process, which is the bin size.

 
Figure 3: Error plot showing the absolute error of the 2-point correlation functions
for the two models.

The effect of bin size on the accuracy of our model was studied in Fig. 4. A variety
of grid sizes were chosen from 0.3 to 0.0375 microns. The original microstructure
was deformed to a total strain of 30% in 300 iterations. One can see that choosing
smaller grids will help to enhance the resolution and reduce the effect of boundary
spreading. Tab. 1 also shows the binning effect on the resolution and the time of
process. Calculations were conducted on a regular PC. Taking smaller grid size
increases processing time dramatically, but results in less error. The times shown
in here are for a 2-D model; it is anticipated that a 3D model would demonstrate a
significant amplification of the trend in calculation times.

An optimum case of selection of binning size should be taken to achieve good res-
olution with a reasonable error and an acceptable processing time. For the present
study with a selection of grid size of about 0.075 microns results in an appropriate
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(a) (b) 

(d) (c) 

Figure 4: MF after 30% total plastic strain with different grid sizes: (a) 0.3; (b)
0.15; (c) 0.075; (d) 0.0375 microns.

Table 1: Effect of binning size on the accuracy of the proposed model.

Mesh size (µm) 0.3 0.15 0.075 0.0375
Maximum Absolute Error
(%)

9.39 7.49 5.64 4.01

Mean Absolute Error (%) 0.79 0.48 0.27 0.13
Calculation Time (sec) 3 8 19 52
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simulation time with ∼ 5% error.

The absolute error between the 2-point correlation functions computed for both
models is presented in Fig. 5. Evidently, smaller grid size minimizes the spreading
effect, achieving a maximum absolute error of ∼5.6% by comparison to Fig. 3.

 
Figure 5: Error plot representing the absolute error of the 2-point correlation func-
tions. The continuity model with 0.075 micron grid size is compared against the
direct model.

5 Conservation of Orientation

Similar to the conservation of mass principle in the real space, a conservation of
orientation is also suited for the orientation space. The continuity equation for
orientations was first proposed by Clement and Coulomb [Clement and Coulomb
(1979); Clement (1982)]:

∂ f
∂ t

+div( f w) = 0 (10)

where f is the ODF and w is the velocity vector in the orientation space. This equa-
tion is similar to the continuity equation in the real space (Eq. 2), and it guarantees
the principle of conservation of orientations, meaning that crystallite orientation
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may be altered, but neither created nor destroyed during plastic deformation. An
Eulerian representation of the orientation-based continuity equation is presented in
Appendix C assuming that the working space is the EAS. This derivation is pro-
posed based on presuming the EAS to be a Riemannian Manifold. (In fact, the EAS
can be expressed in either a Euclidean space or a Riemannian Manifold. A Rie-
mannian manifold is a differential manifold on which a smooth field of symmetric
and positive definite metric tensor is specified [Hicks (1965); Morawiec (2004)].)
The divergence in the continuity equation can be formulated using the covariant
derivative and Christoffel symbols. The final form of the continuity equation can
be expressed for the EAS as (Eq. 30 in Appendix C):

∂ f (g)
∂ t

=− f (g)
∂wi(g)

∂gi
−wi(g)

∂ f (g)
∂gi

− f (g)cotΦw2(g) (11)

The first term on the RHS represents the rate of change of the velocity vector in
the EAS. Although we have an incompressible material in the real space and this
term in the formulation of mass-based continuity equation was zero, the flow of
orientations in the EAS is compressible and we should treat rotations of orientations
as a compressible fluid process. Similar to the continuity equation in the mass
space, finite difference methods can be used to compute the partial derivatives in
Eq. 11. To find the velocity vector w and the rotation rate field in the EAS, various
plasticity models can be used. The binning process is similar to the discertization
scheme applied to the mass space. The EAS is discretized into a small size Eulerian
grid. The center point of each bin is then taken as the Eulerian point and the velocity
vector is calculated for all bins in the Euler angle domain.

The orientation-base continuity equation (Eq. 11) has been used to find the evolu-
tion of the ODF. Following a process similar to our formulation in Section 3, Eq. 11
can be extended to describe the evolution of the MF for a specific material particle
x:

∂M(g)
∂ t
|x =−M(g)|x

∂wi(g)|x
∂gi

−wi(g)|x
∂M(g)|x

∂gi
−M(g)|x cotΦw2(g)|x (12)

This equation can be used to find the evolution of the MF at every material particlex.
The double continuity relationship can be obtained by linking Eqs. 8 and 12 to-
gether. For a polycrystalline material, the motion of its material particles can be
studied using Eq. 8, and at the same time, its evolution of grain orientations can
be examined using Eq. 12. As long as the velocity fields and partial derivatives
in Eqs. 8 and 12 are calculated in both working spaces, we will be able to make a
prediction of the microstructure evolution for polycrystalline materials under any
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form of plastic deformation. A simple example of using Eq. 12 for texture predic-
tions, without taking into account the location of material particles, is presented in
the next section.

6 Application to a randomly textured material

The Eulerian-based formulation of the continuity equation in the EAS was pre-
sented in the previous section. In this section, an example of obtaining the lattice
rotation field (velocity field in the orientation space) and rotation of orientations
under this field is explained. To find the velocity terms presented in Eq. 12 a crys-
tal plasticity model should be used to find the lattice spin tensor. The lattice spin
tensor is a rotation tensor that causes the rotation of crystallographic orientations
under plastic deformation. A Taylor-like rate-dependent viscoplastic model is used
here to obtain the lattice rotations. Based upon the Taylor assumption, the local
strain applied into every grain in the microstructure is proportional to the macro-
scopic plastic strain applied into the entire microstructure [Taylor (1928)]; in addi-
tion a rate-sensitive viscoplastic model is linked to the conventional Taylor model
to resolve the ambiguity of the Taylor model in finding five optimum activated slip
systems [Asaro and Needleman (1985)]. The viscoplastic relation that we use is
identical to that defined by Hutchinson [Hutchinson (1976)], where for a resolved
shear stress,τ(s), acting on the sth slip system, the slip shear rate, γ̇(s), is connected
by the equation:

γ̇
(s) = γ̇0

(
τ

(s)/τ∗(s)
)1/m

sgn
(

τ
(s)
)

(13)

where m is the rate sensitivity parameter, τ∗(s) is called either the critical resolved
shear stress or the slip resistance, and γ̇0 is an arbitrary reference slip rate. The
reference shear stress can be obtained from ordinary tension or compression test-
ing. To use the viscoplastic relation, it is necessary to calibrate the model with
experiments [Fromm, Adams, Ahmadi and Knezevic (2009); Knezevic, Kalidindi
and Fullwood (2008)]. We use the Taylor-like viscoplastic model to simulate the
evolution of orientations for a fcc material under fully plastic deformation with
slip systems of {111}<110>. The parameters appearing in Eq. 13 are taken as:
γ̇0 = 0.001sec−1, m = 0.012, and τ∗ = 35MPa. For simplicity, it is further as-
sumed (1) that the critical resolved shear stress is identical for all slip systems; and
(2) that the material is deformed under a rigid-perfectly-plastic condition without
taking into account any slip hardening effects.

Simplified rolling process (e.g. taking a plane-strain compression condition) is
modeled here to find the evolution of orientations in a randomly textured microstruc-
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ture. In this case the velocity gradient tensor is defined as:

Lapp = L0

1 0 0
0 0 0
0 0 −1

 (14)

where L0 for the case of rolling is called the rolling deformation (the true stress
in the rolling direction), and is taken to be 0.001s−1in our calculations. Having
defined the applied velocity gradient, it is assumed that the local velocity gradi-
ent is identical to the applied one (Taylor assumption), and the crystal orientation
changes, i.e. the lattice spins, can be obtained by:

W L = Lapp−∑
(s)

M(s)
i j γ̇

(s) (15)

where M(s) = b(s)⊗ n(s) is the Schmid tensor for the slip system s; while b(s) and
n(s) are the unit slip direction and unit slip plane normal for the slip system s in the
deformed configuration, respectively. Furthermore, the rotation velocity terms for
every orientation in the EAS can be calculated by:

w1 =−cotΦsinϕ1W L
32 + cotΦcosϕ1W L

13 +W L
21

w2 = cosϕ1W L
32 + sinϕ1W L

13

w3 = cscΦsinϕ1W L
32− cscΦcosϕ1W L

13

(16)

These velocity terms then can be used in two different ways to study the evolu-
tion of orientations: (1) A Lagrangian model with an iteration scheme can be con-
structed such that orientations at the end of each iteration are updated simply by
summing up the amount of rotation caused by the lattice spins. In this way if we
take the original orientation as gi then the final orientation at the end of current it-
eration is obtained by g f = gi +w.∆t. (2) We can use the Eulerian formulation that
was expressed in Section 5, along with the iteration scheme that was introduced
for the mass-based continuity equation. In this case, to obtain the velocity field the
conventional 3-fold redundant cubic fundamental zone space, FZ3C, with parame-
ters lying in the ranges of 0o ≤ ϕ1,Φ,ϕ2 ≤ 90o, was discretized into small cubic
bins. Lattice rotations were calculated for centers of bins. A schematic representa-
tion of the rotation rate field calculated for the rolling process is shown in Fig. 6.
This plot shows a 2D section of the 3-dimentional FZ3C sliced at ϕ2 = 45o. After
obtaining the velocity field, every orientation of the microstructure is placed into
this field and the movement of the orientation is monitored by an iteration scheme
(similar to the mass-based scheme).
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Figure 6: A 2D section plot of the conventional cubic FZ3C indicating the lattice
rotation rate field of orientations in the ϕ2 = 45o section.

To validate our proposed Eulerian model, a comparison against a Lagrangian model
was performed. The comparison model selected is that used in most of FEM anal-
yses [e.g. Kalidindi and Anand (1992); Kalidindi, Bronkhorst and Anand (1992);
Kalidindi and Anand (1994)]. Evolution of the texture of a randomly textured mi-
crostructure with 1000 random orientations is studied with both models. These
orientations are randomly taken from FZ3C. The chosen microstructure is assumed
to be rolled into the final reduction of 70% (rolling deformation of ∼120%). Using
the Lagrangian model, as it was explained, is straight forward. To employ the Eu-
lerian model these steps are followed: (1) One orientation is studied at a time. The
selected orientation is located in the conventional FZ3C and a cube with the size of
20×20×20 degrees is taken around the chosen orientation. The MF for this cube
is set at 1 for the bin that contains the orientation and 0 everywhere else; (2) In
addition to the velocity field, partial derivatives and all the terms presented in Eq.
12 are determined for the surrounding cube; (3) A finite difference scheme similar
to the one introduced for the mass space is also employed here to find the evolu-
tion of the microstructure function; (4) To have an efficient model, the deformation
process is subdivided into small increments in which 5% strain is applied in 500
time steps. At every time step, 0.1% true strain is applied; then, the rate change
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of the MF is calculated and added up to the current value of the MF. This iterative
process continues until it reaches the limit that is 5%. This gives one increment of
the deformation that is equivalent to true strain of 5%. Because we use FDM in
the iterative scheme, similar to the mass problem, smearing of the MF will occur;
therefore, a cleaning process was designed here such that the bin having the max-
imum value of MF is taken as the final rotated orientation after 5% strain. (5) To
apply further amounts of rolling deformation a new cube is taken around the up-
dated orientation and previous steps (step 1-4) are repeated until the desired amount
of deformation is reached. The final strain for applying 70% rolling reduction is
∼120%; this amount of deformation is applied in 24 deformation increments. Dur-
ing this iterative process it must be anticipated that some of the orientations fall
out of FZ3C, for such cases the related crystal- and sample-symmetry operators are
used to map the orientation back into FZ3C after which the process continues on.

To statistically analyze results from Lagrangian- and Eulerian-based models (200)
and (111) pole figures were constructed. A Gaussian distribution with a half-scatter
width of 5˚, and an orthorhombic sample symmetry was used in calculations of
pole plots. All pole figures presented in this paper are equal area projections of the
specified crystallographic poles. Fig. 7 shows the pole figures calculated for the
randomly textured microstructure. Weak intensities in the pole plots admit that the
microstructure is randomly textured.

 
Figure 7: (200) and (111) pole plots calculated for the randomly textured mi-
crostructure.

The Lagrangian and Eulerian models were later used to predict the evolution of the
texture of this microstructure. The pole figures predicted by the Lagrangian model
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are illustrated in Fig. 8 (subplot a). To study the effect of binning size, the Eulerian
continuity model with three different grid sizes was used. Fig. 8 (subplots b-d) is
showing the binning effects for bin sizes of 1, 0.5, and 0.25 degrees (subplots b-d
respectively).

From Fig. 8, it obviously can be seen that the Eulerian-based model can quantita-
tively give reasonable predictions of texture evolution (it can predict the locations of
the high intensity peaks); however, because the pole plots predicted by larger mesh
sizes show lower intensities compared to the ones predicted by the Lagrangian
model, we suspect that the application of the Eulerian continuity model with too
large mesh sizes may not adequately predict the quantitative details of texture evo-
lution. Conversely, by decreasing the mesh size and taking smaller bins in FZ3C,
the resolution of the continuity model is increased.

In addition to the resolution effect, the computation time is also an important con-
sideration. It can be proven that the algorithms of the Eulerian continuity model
are more time-efficient. The total time spent for employing the Lagrangian model
to simulate the 70% rolled macrostructure is ∼7.5 hours on a standard PC. This
time is mostly spent to find a solution for the nonlinear power-law equation (Eq.
13) using a Newton-Raphson scheme (e.g. [Fromm, Adams, Ahmadi and Kneze-
vic (2009)]) and to calculate the lattice spins from Eq. 15. At each iteration, 0.1%
strain is applied; therefore, there are 1000 orientations and 1.2/0.001=1200 itera-
tions, which means that this nonlinear equation must be solved 1,200,000 times for
this particular microstructure (If another microstructure is modeled all these cal-
culations must be retaken). However, in using the Eulerian continuity model to
build the rotation rate field, FZ3C is discretized into 2 degree bins and the nonlinear
equation is generally calculated 45×45×45=91,125. If taking a smaller mesh size
is desired, due to the fact that the rotation rate field is a continuous field and velocity
terms are gradually changing from one bin to the other, we can take the midpoint
of two adjacent grid points as the new point and the average velocities of the adja-
cent points can be assigned as its velocity. Total calculation time to construct the
velocity field with 2 degree mesh size is ∼36 minutes. This calculation is carried
out only once and the velocity field is valid for simulating cold rolling of all types
of fcc materials. In addition to this calculation time we should also include the time
that is needed to update the MF by the iteration scheme, as explained earlier. Table
2, shows this calculation time and the amount of error that appeared from using the
Eulerian continuity model compared to the Lagrangian model.

From Fig.8 and Tab. 2, it can be concluded that a mesh size of 0.5 degrees is
optimal since the average absolute error is less than 1 degree and the overall time
(including the time required to compute the rotation rate field) is reasonable: ∼82
minutes. This computational time is a factor of ∼5.5 less than the time spent in
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Figure 8: (200) and (111) pole plots predicted by: (a) Lagrangian model; Eulerian
model with binning sizes of (b) 1 degree; (c) 0.5 degrees, and (d) 0.25 degrees.
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Table 2: Effects of binning size on the accuracy and calculation time of continuity

Mesh size (degree) 1 0.5 0.25
Maximum Absolute Error (de-
gree)

11.31 6.43 4.79

Mean Absolute Error (degree) 1.78 0.97 0.83
Calculation Time (min) 8 46 115

calculations by the Lagrangian model.

7 Conclusions

A new Eulerian model for predicting the evolution of microstructure under plastic
deformation was presented. This model was established based upon the conserva-
tion principles in two spaces, the mass space, and the orientation space. Assuming
the EAS as a Riemannian manifold, a new derivation of the orientation-based conti-
nuity equation was introduced. To examine the proposed continuity model two case
studies were provided: (1) A limited 2-D example of the application of the model
was presented. This example was offered to validate the mass-based continuity
equation (Eq. 7). A two-isotropic-phase structure, without phase transformation,
was studied under large plastic deformations. The framework of the model was
validated against a direct calculation of particle motions. Results show that the
accuracy is enhanced by choosing a mesh of small size. (2) Rolling deformation
of a randomly textured aggregate including 1000 random orientations was studied
using the Lagrangian- and Eulerian- continuity models. In this example, the aim
was to only examine the orientation-based continuity equation. Predicted pole fig-
ures and results obtained from the comparison of Lagrangian and Eulerian models
confirm that, as we were expecting from the two-phase example, the binning size
has also an important effect on the accuracy of the continuity model in the orien-
tation space. As the size of the bins decreases, the accuracy of the model and the
overall processing time are increased. Results show that an optimum compromise
is achieved when we choose a 0.075 micron mesh for the mass space and a 0.5 de-
gree mesh in the orientation space. The two cases that are studied in this paper are
examining the evolution of the MF in the mass and orientation spaces separately;
however, one can realize that by coupling the two mass- and orientation-based con-
tinuity equations (Eqs. 7 and 12) the evolution of a polycrystalline material under
any type of deformation process can be studied by using the Eulerian approach
provided in this paper. This approach seems to be faster (and sufficiently accurate)
compared to the Lagrangian approach that is used in FEM models. Another benefit
of using the Eulerian approach is that, as explained, FFTs can be used in computing
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the 2-point statistics that nowadays are commonly used to statistically analyze the
microstructure of polycrystalline materials.
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Appendix A Continuity equation in the mass space

Based upon the conservation of mass principle, a continuity equation in the real
space is presented here. We are interested to formulate the continuity equation
in the Eulerian coordinate system, thus a spatial description of the material time
derivative of a function, Dφ / Dt, can be shown as [Lai, Rubin and Krempl (1993)]:

Dφ

Dt
=
(

∂φ

∂ t

)
X=const

=
(

∂φ

∂ t

)
x=const

+
(

∂xi

∂ t

)
X=const

∂φ

∂xi

=
(

∂φ

∂ t

)
x=const

+ vi
∂φ

∂xi

(17)

where x represents the position of a material particle at time t with regard to a
spatial (or Eulerian) coordinate system, and Xdenotes the position of that material
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particle at the beginning of the process (t = 0). The velocity of material particle
moving in the microstructure is shown as v.

Now if we take an arbitrary volume denoted by Ω, and assume that the bounding
closed surface of this region be continuous and denoted by Γ, using the spatial
description of the material time derivative, it can be shown that the time derivative
of the volume integral over the mass density ρ(x, t) is given by:

D
Dt

∫
Ω

ρdx =
d
dt

∫
Ω

ρdx+
∮
Γ

ρv.n̂ds (18)

The principle of conservation of mass for a material region requires that the amount
of mass over the entire region does not change with the passage of time; therefore
the material derivative of mass density over this region must be zero and we have:

d
dt

∫
Ω

ρdx =−
∮
Γ

ρv.n̂ds (19)

This equation is known as the control-volume formulation of the conservation of
mass principle. Converting the surface integral to a volume integral by means of
the divergence theorem, we obtain:∫
Ω

[
∂ρ

∂ t
+div(ρv)

]
dx = 0 (20)

Since this equation must be valid for any arbitrary volume in the mass space, the
integral vanishes, and the local form of the conservation of mass principle can be
formulated as:

∂ρ

∂ t
+div(ρv) = 0 (21)

This equation, called the continuity equation, expresses local conservation of mass
at any point in a continuous medium.

Appendix B Forward-backward finite difference scheme

The finite difference method that is used in computation of partial derivatives pre-
sented in continuity equations (Eqs. 9 and 12) is explained by a simple exam-
ple here. Suppose that we have a one-dimensional MF, as in Tab. 3. The MF
is taken to be 0 for phase 1 and 1 for phase 2. Furthermore, we suppose that
a positive velocity is applied and it deforms the MF such that it moves the MF
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one bin to the right. Then, for instance for the mass-based continuity equation,
Eq. 9 is simplified to ∆M = −v(x)(dM(x)/dx)∆t. By assuming that ∆t = 1and
that ∆x = 1, for a positive velocity everywhere in the domain we have v = 1;
Thus the only undetermined term is the partial derivatives for which a forward
or backward FDM can be used. As we know the forward FDM adopted for the MF
has the form M′i = (Mi+1−Mi)/∆x, and the backward difference has this form:
M′i = (Mi−Mi−1)/∆x. Therefore, to find the final MF based upon this simplified
iteration scheme we will have: M f = Mi− vM′∆t. Tab. 3 shows the final MF cal-
culated by the forward and backward differences for a positive velocity. The final
MF calculated by the forward difference gives improper values for the MF and it
cannot be used for positive velocities; however, the MF predicted by the forward
FDM shows that phase 2 is moving to the right under positive velocities.

Table 3: An example of applying forward/backward differences for positive veloc-
ities

Mi 0 0 1 1 1 0 0
dM/dx (forward) 0 1 0 0 -1 0

M f (forward) 0 -1 1 1 2 0
dM/dx (backward) 0 1 0 0 -1 0

M f (backward) 0 0 1 1 1 0

Similarly it can be shown that the forward difference method can be used for nega-
tive velocities.

Appendix C Continuity equation in the orientation space

In this section, the continuity equation for orientations is formulated. The continu-
ity equation for orientations is expressed as:

∂ f
∂ t

+div( f w) = 0 (22)

where f is the ODF and w is the velocity vector in the orientation space. The
idea here is to find the divergence term in the Euler angle workspace. The EAS is
taken as a Riemannian manifold and the divergence is obtained. In a Riemannian
manifold, the covariant derivative can be used to find the differentiation of a vector
field, with t icomponents, on the manifold [Hicks (1965); Schutz (1985)]:

t i
; j =

∂ ti
∂x j

+Γ
i
jkt

k (23)



168 Copyright © 2009 Tech Science Press CMC, vol.14, no.2, pp.141-169, 2009

where Γi
jk are the Christoffel symbols having a unique canonical connection, called

the Levi-Civita connection, with the coordinate systems on the manifold [Morawiec
(2004)]:

Γ
i
jk =

1
2

gim
(

∂gkm

∂x j +
∂gim

∂xk −
∂g jk

∂xm

)
(24)

In this equation, gi j is the covariant form of the metric tensor, gi j, and its compo-
nents are defined by gi jg jk = δ i

k where δ i
k is the Kronecker delta taking 1 if i = k,

and 0 otherwise.

For Euler angles the components of the metric tensor and its covariant tensor, gi j,
are:

gi j =
1
4c

(
δi j +2δ1(iδ j)3 cosΦ

)
gi j =

4c
sin2

Φ

(
δ

i j−2δ
1(i

δ
j)3 cosΦ−δ

i2
δ

j2 cos2
Φ

)
(25)

where c = π4/3 and δi( jδk)l = 1
2

(
δi jδkl +δikδ jl

)
. Similarly δ i( jδ k)l = 1

2

(
δ i jδ kl +δ ikδ jl

)
.

The Christoffel symbols are:

Γ
i
jk =

1
sinΦ

((
δ

i1 cosΦ−δ
i3)

δ1( jδk)2 +
(
δ

i3 cosΦ−δ
i1)

δ2(kδ j)3
)

+ δ
i2

δ1( jδk)3 sinΦ (26)

Representing the orientation flow field as J = f w, one can find the divergence term
in Eq. 18 based upon the definition of the covariant derivative: div(J) = Ji

;i. Using
Eq. 23 the divergence can be shown in the form of Christoffel symbols in the EAS:

div(J) = Ji
;i =

∂Ji

∂g j
+Γ

i
i jJ

j (27)

where gi = g(ϕ1,Φ,ϕ2) denotes the correspondence Euler angles in the EAS and
should not be confused by the metric tensor. It is found that among all Christof-
fel symbols of the form Γi

i j only the following terms are not zero: Γ1
12 = Γ3

32 =
1/2cotΦ. Now the final form of the divergence operator will be:

div(J) =
∂Ji

∂g j
+(Γ1

12 +Γ
3
32)J

2 =
∂Ji

∂gi
+(cotΦ)J2 (28)

We can now place the divergence operator into the continuity equation:

∂ f
∂ t

=− ∂Ji

∂g j
− (cotΦ)J2 (29)
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The final form of the continuity equation in the Euler Angle space can then be
obtained by replacing the orientation flow field Ji = f wi:

∂ f
∂ t

=− f
∂wi

∂gi
−wi

∂ f
∂gi
− f cotΦw2 (30)

which represents the conservation of orientation principle in the Eulerian frame-
work.




