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Anomaly Detection
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Abstract: The paper presents a revolutionary framework for the modeling, detec-
tion, characterization, identification, and machine-learning of anomalous behavior
in observed phenomena arising from a large class of unknown and uncertain dy-
namical systems. An evolved behavior would in general be very difficult to cor-
rect unless the specific anomalous event that caused such behavior can be detected
early, and any consequence attributed to the specific anomaly following its detec-
tion. Substantial investigative time and effort is required to back-track the cause
for abnormal behavior and to recreate the event sequence leading to such abnor-
mal behavior. The need to automatically detect anomalous behavior is therefore
critical using principles of state motion, and to do so with a human operator in the
loop. Human-machine interaction results in a capability for machine self-learning
and in producing a robust decision-support mechanism. This is the fundamental
concept of intelligent control wherein machine-learning is enhanced by interaction
with human operators.

Keywords: Anomaly detection, soft-computing, decision-making, machine in-
telligence, nonlinear dynamical systems

1 Introduction

Asymmetric threats from roadside improvised explosive devices (IEDs) deployed
by terrorists and insurgents in Iraq and in Afghanistan have given rise to a new
class of anomalies that need to be detected. Detection must occur at the time of
their deployment so that appropriate countermeasures can be undertaken to effec-
tively defuse the IEDs. The US military estimates that 75% of troop casualties in
Iraq and in Afghanistan are due to roadside bombs and fears that casualties might
grow rapidly over the next few years. Mine Resistant Ambush Protected (MRAP)
vehicles have been deployed to war zones as a means to protect US and coalition
forces against the threat of IED attacks. Despite the protection afforded by this
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technologically advanced vehicle, detecting IEDs remains the number one problem
for military operations against terrorist attacks. Of particular interest to the US
Department of Defense is the detection of roadside car bombs and other forms of
IEDs placed by insurgents and terrorists.

Anomalies by virtue of their definition are events that occur spontaneously with
no prior indication of their existence or appearance. Any event deemed as being
out-of-the-ordinary may be called an anomaly. Effects of anomalies are typically
unknown until they actually occur, and their effects aggregate in time to show no-
ticeable change from the original behavior. The question is how to detect any abnor-
mal activity and to do so using efficient computer-aided techniques. At a minimum,
fast and efficient algorithms that will alert human operators to react quickly to what
appears as an anomaly are needed.

An artificial intelligent system is a machine that can mimic human decision-making
capabilities and strategies, and aid humans towards improved understanding of the
observed phenomena. Naturally advanced machine intelligence leads to better and
faster human-machine decision-making abilities. Accomplishing such a goal re-
quires seamless human-machine interactions that make the need for machine self-
learning a fundamental requirement. Machine self-learning leads to autonomy and
gives rise to the possibility for developing systems which provide humans with fast
decision-making capabilities.

A fully autonomous decision-making system however may not always be favorable
due to the possibilities for false alarms and the possible repercussions due to un-
warranted machine-made decisions. A human in the loop must therefore be present
to correct the machine outcomes that satisfy the human perception of the event. We
are referring to the “event” as that detected by the machine as a possible anomaly.
Identification of an event as an anomaly therefore must be performed under human
supervision and intervened, if necessary.

The objective in this paper is to outline and discuss a revolutionary approach to de-
tect anomalous events while simultaneously building machine intelligence through
interaction with humans. The focus of this paper is on the development of a ma-
chine intelligence-based decision-support (MIND) system that can assist humans
in automatic anomaly detection Prasad et al (2005); Rangamani (2006); Prasad et
al (2007). To achieve such an objective, the computational platform that emulates
human intelligence must represent a natural integration of human-like decision-
making capabilities that include logic, memory, and evolutionary abilities that to-
gether provide sufficient decision-making attributes for decision making under un-
certainties. Combining the attributes of these three fundamental decision-making
abilities in human-like form has the propensity for MIND systems to parallel the
decision-making strategies of the human Mind, at least from a task-oriented view-
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point. In principle, one would agree that machine learning initially occurs from
training, and subsequently the machine learns from similarities with training exam-
ples. This represents a transition from supervised learning to self-learning, which
is how humans learn.

The technology discussed in this paper exploits the innate human abilities for log-
ical reasoning, learning, and adaptation to distinguish between normal and abnor-
mal behavior in observed phenomena, and in detecting, identifying, characterizing,
monitoring, and possibly in some cases exerting control to avert anomalous behav-
ior. The fundamental issue that we must address is the recognition of an abnormal
event when it occurs so we can classify the event as abnormal and then use the
information in the context of deciding what to do next. This would require having
a perception of what we are attempting to identify amidst “noise” in the observed
system, or within the background clutter in the environment we are attempting to
perceive. Specific perceptions are needed to identify the type of anomaly that needs
detection.

Anomalous behavior is the emergence of disorder within an ordered set of coupled
dynamical systems which under “normal” conditions generally exhibit some form
of quasi-steady-state behavior. A good example of this is the societal dynamics in
regions like Iraq and Afghanistan that are volatile and unstable, and are yet con-
sidered normal within their societies amidst turmoil and chaos. The fundamental
nature of such dynamical systems is that they react quite rapidly to perturbations,
and appear to settle to a state of quasi-normal conditions relatively quickly. The
causes for such dynamic behavior are due to the embedded uncertainties that are
inherent to the system as a whole and more specifically represent the adaptive ca-
pabilities of the system.

From a system-theoretic viewpoint, reaction to perturbations cause ripples within
the system which transfers energy to neighboring coupled systems – a form of
chain reaction. If the energy transfer is large enough then there is a potential for
disorder to grow, and ultimately result in chaos. As such, order within chaos may
be regarded as a flux-field that is typically in a quasi-steady-state and which enables
us to speculate upon the magnitude of change required to disturb the flux that could
lead to disarray and confusion.

It is well understood in chaos theory that order and chaos are not mutually exclu-
sive. Order within chaos is a transitory process. In fact anomalous behavior has
a tendency to drive a system that is initially in quasi steady-state towards instabil-
ity. A system that is in “steady-state” is only marginally stable in a sense with the
possibility of being moved into a chaotic state depending upon the magnitude and
impact of perturbations. For a system that remains in steady-state there is a sense of
robustness that is governed by the energy transfers between the states manifested
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by the system dynamics. The robustness is due to the ability of system super-
states whose energy to withstand perturbations is greater than the energy imparted
by sub-states to cause any transitions in overall state behavior. Transitions from
steady-state to a chaotic state are in essence the result of anomalous behavior that
represents sufficient energy build-up in the sub-states within the neighborhood of
stable states to cause a shift in the dynamic behavior. Such shifts are generally the
cause for dynamic instability. Anomalous behavior in systems therefore is a cause
for dynamic instability and detecting such shifts is of paramount importance.

Figure 1 illustrates a conceptual characterization of “normalcy” and the shift from
normalcy due to anomalous behavior.

 
Figure 1: State transitions of an observed system characterizing the change from
normalcy due to anomalous behavior

Referring to Figure 1, we define normalcy as the degree of pattern consistency in
observed states where the motion of states represented by a state vector has a rela-
tively constant norm. One example could be that each state has a relatively constant
velocity and hence the vector norm is also relatively constant. Small variations in
state motion could be acceptable as long as the norm is within a threshold of per-
ceived normalcy. Again we emphasize that human perception of what constitutes
“normal” is indeed very subjective. If we observe a scene long enough, we tend
to characterize the states in a scene to be normal if there is no significant deviation
from what we already know is normal.

When something very unusual occurs, such as the velocity of some states sud-
denly becoming zero for a period of time that is longer than anticipated, or the
sudden scattering of a crowd in a mass gathering for example, then there is cause
for concern which points to the beginning of an anomaly. Here again the notion of
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normalcy in the pattern of behavior is important to note so that if indeed there is an
onset of abnormal behavior then the anomaly can be detected.

Logic has an important role in identifying whether or not a specific set of observed
conditions constitute anomalous behavior. Using rule-based reasoning, dynamic
system states momentarily exhibiting zero velocity in the observed pattern of be-
havior can be identified as being normal, or as abnormal. A simple example of
this is a stop sign at a road intersection where automobiles must stop momentarily.
An anomaly however is when an automobile does not stop when directed to do
so. Another example could be the normal traffic on a roadway when suddenly an
automobile comes to a standstill along the roadside where automobiles are gener-
ally not parked. While these examples serve to demonstrate specific instances, it is
indeed possible to develop rules in which the antecedents can take on substantial
variations in parameters to cover the wide range of human perceptions needed to
identify anomalous behavior.

The duration over which the anomaly persists causes a dramatic change in the nor-
malcy that could have prevailed earlier. This possibility can be examined by ex-
tending the previous example wherein if more than one automobile were to pass a
stop sign without stopping and the pattern continues, then a condition of artificial
normalcy may come about. Similarly if the automobile which came to a standstill
remains in a specific location for more than a specified amount of time with other
observed states appearing to be normal, then an artificial state of normalcy exists.
The duration of this artificial normalcy will last until the effect of the anomaly
unfolds itself.

Suppose the standstill automobile turned out to be an IED, namely, a roadside
bomb, then immediately following its detonation (intentional or unintentional) there
is a shift in normalcy towards a new flow of traffic. From this moment on the state
of normalcy begins to evolve and achieve a new state until the next anomaly oc-
curs, and the cycle of transitions between normalcy and abnormality continues.
State transition between normal and abnormal behavior therefore is a consequence
of anomalous behavior and approaches which can transform observations to signal
form are needed to capture this transition.

From a systems science perspective the idea of anomaly detection is synonymous
to detecting change in motion around “singularity” points in the observed phenom-
ena. Singularities exhibit trajectories (patterns) that are characteristic to the type
of behavior known to exist in nonlinear systems, e.g., stable node, stable focus,
saddle-point, limit cycles, etc. Detecting change from normalcy therefore requires
the identification of change in trajectories (patterns) from “normal” behavior.

Figure 2 illustrates two examples of nonlinear motion around singularity points.
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Figure 2: Phase portraits of trajectories around singularities exhibiting stable focus,
saddle points, and limit cycle behavior

The trajectories in Figure 2 illustrate typical behavior of nonlinear systems which
aid in the interpretation of physical systems. Referring to the phase portrait on the
left, it is seen that trajectories close to the singularity points are attracted toward a
stable focus, while those at a saddle-point are marginally stable and are deflected
towards a stable point. The phase portrait on the right represents a limit cycle
behavior with all trajectories, regardless of their initial states, converging toward a
closed path

2 Modeling approach

In a multi-sensor environment such as that in the battlefields of Iraq and Afghanistan
where electro-optical (EO), infrared (IR), video, synthetic aperture radar (SAR),
and Moving Target Indicator (MTI) sensing systems mounted on UAVs and manned
aerial vehicles are used for surveillance, the area covered is so large that a polling
system is required to poll all the sensors and as such images are obtained at discrete
time intervals. Fusing the information generated by these sensors effectively is a
complicated task towards achieving a high degree of situational awareness Fennell
and Wishner (1998). To utilize these discrete-time images requires some effective
means to observe change in the images that clearly show anomalous behavior. As
such, the development outlined in this paper focuses on a highly innovative, sim-
ple and yet elegant modeling approach which supports closed-loop sensor-based
monitoring and control of dynamical processes.

Because anomaly detection is based upon a perceived sense for change, the moti-
vation towards employing a fuzzy logic-based approach is clearly warranted by the
need to give linguistic meaning to what anomalous behavior means Zadeh (2002).
This is especially significant where the detection pertains to the nature of human be-
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havior that is the cause of an anomaly. Our overall objective is to develop a revolu-
tionary framework using machine intelligence that will allow the characterization,
detection, identification, and modeling of anomalous behavior in observed phe-
nomena arising from a large class of unknown and uncertain dynamical systems.
A computational platform using “soft computing” to bio-mimic human decision-
making in detecting anomalous behavior is proposed.

As stated previously, from a system-theoretic viewpoint it is postulated that anoma-
lies are synonymous to singularities in chaotic/nonlinear systems. Singularities ex-
hibit trajectories that are characteristic of the type of behavior known to exist in
nonlinear systems. By exploiting this characteristic of nonlinear systems, our ap-
proach of mapping the trajectories of process states has the potential to uncover
unique trajectories corresponding to possible anomalous behavior.

Figure 2 illustrates a conceptual framework for anomaly detection.

 
Figure 3: Conceptual framework for developing normalcy models and for detecting
anomalous behavior in complex dynamical systems

The concept is centered around tracking the dynamics of unknown and uncertain
dynamical systems, and to utilize tracking data in developing a self-evolving nor-
malcy model of the observed phenomenon. A self-evolving normalcy model is de-
veloped using a fuzzy-neural architecture Jang et al (1996); Nguyen et al (2002).
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The use of robust tracking algorithms ensure the tracking error is at a minimum so
that a reliable normalcy model could be anticipated as a basis for anomaly detection
Li et al (2008); Gentile (2001). The effect of noise and occlusion of objects in
frames need to be minimized. Normalcy modeling is equivalent to establishing a
set of initial conditions from which system state changes can occur. If the change
is significant enough to cause observable perturbations then the perturbations have
the potential for being characterized as anomalies.

Referring to Figure 2, tracking error is computed by comparing the actual object
motion dynamics with synthesized (estimated) object motion dynamics. A fuzzy-
neural rule-based model estimator minimizes the tracking error by continuously
updating the normalcy model at each sampling instant.

As illustrated in Figure 3, close tracking provided by the tracking algorithms mask
the occurrence of an anomaly, if one did occur. In other words, if the model-based
estimator produces very accurate estimates of the object motion dynamics, then the
tracking error must be very close to zero. Consequently, the anomaly is masked
and hence cannot be observed.

 

Figure 4: Detecting anomalies as a step change

For the detection of anomalous behavior, we propose a novel approach that bio-
mimics human reasoning of comparing past information with present in order to
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distinguish change from normalcy. The idea is to compare a delayed tracking signal
with a real-time signal of the actual object motion dynamics. This approach sepa-
rates the signals thereby amplifying the change from normalcy. The “step change”
allows a clear means for anomaly detection.

The unit delay shown in Figure 3 has the effect of providing a means to examining
the sensitivity of normalcy models to change caused by anomalous events. Because
the exact delay is not known a priori it must be treated as a sensitivity parameter
– a parameter that automatically adjusts the “sensitivity” to change in patterns of
the observed phenomena. Because anomalies are typically short-lived, the return to
normalcy is provided by yet another indication of a step change that could be used
to confirm an anomaly as having occurred. This adds reliability to the detection
and towards the use of normalcy-based models for predicting anomalous behavior
in complex dynamical systems.

2.1 Characterization and detection of anomalous behavior

Modeling the normal background clutter in which anomalous events could occur
is indeed a major step in characterizing anomalous behavior. This is analogous to
developing the necessary initial conditions which prescribe the environment or do-
main in which anomalous behavior could occur. The idea is to employ data prod-
ucts from existing and future intelligence surveillance and reconnaissance (ISR)
systems such as unmanned aerial vehicles (UAVs) and Space-based imaging sys-
tems that offer both sensitivity and selectivity, respectively. High resolution im-
ages from UAVs offer the desired level of observation sensitivity (fine-granularity),
while Space-based observations provide selectivity (coarse-granularity). A combi-
nation of these imaging sources provides the desired information detail to develop
models of normal background activity He (2005).

While anomalous behavior is characterized as a deviation from normal observed be-
havior, detecting such a change at the instant of occurrence requires knowledge of
what is normal to begin with. Not all changes from normal behavior are anomalies
and may in fact represent evolutionary changes from what was previously consid-
ered normal. In fact, it is important to differentiate between the normal nonlinear
behavior and that which constitutes an anomaly. This requires a constant “up-
date” of normalcy models that describe gradual changes in observed information.
What we seek is the so-called step change that may be characterized as anomalous
and hence worthy of further investigation. In regions such as Iraq and Afghanistan
where there is constant change, it is reasonable to expect normalcy models to evolve
continuously throughout a 24-hour period.

Of particular concern and interest to the US military in Iraq and in Afghanistan
is the occurrence of anomalies in the urban battlefield that if left undetected pose
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serious threat to the safety of the warfighter. An example of this is the deployment
of improvised explosive devices (IEDs) by terrorists and militant insurgents whose
activities constitute anomalous behavior. The most serious threat issues are indeed
when, where, and how terrorists deploy such deadly force against unsuspecting US
warfighters and coalition security forces. In this context, two very important crite-
ria, namely, selectivity and sensitivity need to be considered. These two important
criteria need to be integrated within the framework for anomaly detection systems.

When and where insurgents deploy IEDs is a selectivity issue as it requires a macro-
scopic (large area) view of potential attack sites. This is true both from the insur-
gent’s point-of-view as well as from the military point-of-view to selectively iden-
tify/locate potential attack sites. From the insurgent’s standpoint we can perceive
that selectivity is based upon their mission success and ultimately the effectiveness
of their planned action. The issue pertaining to “how” such deployment is per-
formed is indeed a sensitivity issue. From the military point-of-view sensitivity is
reflected in the imaging resolution of the urban ground terrain that allows a micro-
scopic (small area) examination of insurgent activity in and around suspected and
potentially viable attack sites. It leaves no doubt therefore that both sensitivity and
selectivity dictate the granular details of the anomaly within the observed process.

It is clear that anomaly detection requires the ability to first track the behavior of
the dynamical system. Tracking provides all the information to develop a model
“on-the-fly” while also being able to reproduce the trajectories of object motion
from any frame or sequence of frames on demand. This may be required for the
purpose of verifying that an anomalous event occurred, and to verify the accuracy
of the normalcy model itself. This is how humans would have to reconstruct the
scenario after an IED event.

Detecting anomalies requires the recognition of some pattern of behavior in the ob-
served process that has either never been seen before, or that the pattern of behavior
is out-of-the-ordinary and is different from the norm. As such there are a number
of questions one could ask that deal with what needs to be observed in order to
see what is different from the norm. Naturally there is a compelling need towards
discovering some underlying “pattern” in behavior that vividly describes the funda-
mental behavior of systems. From a systems science perspective these patterns are
indeed those which describe the trajectories which characterize strange attractors.

In the following sections we illustrate how trajectories of motion can be extracted
from image sequences that give rise to the potential for anomaly detection.
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3 An example for anomaly detection

Scenarios aid in developing a general framework for machine learning while pro-
viding a means to formulate a strategy for detecting anomalies. Scenarios provide a
“benchmark” towards establishing normalcy in observed information, and to detect
any change in normalcy as and when they appear.

For illustrative purposes, we consider a scenario of an isolated intersection fre-
quently patrolled by the US Army which is targeted by Al Qaeda for a possible
IED site. Figures 4(a)-(e) illustrate a sequence of simulated images illustrating ob-
ject motion within the horizontal field-of-view of a UAV. We assign states to each
moving object. We arbitrarily establish a center-line reference such that the range
of state motion is constrained within a field-of-view labeled [-X, X].

 
Figure 5: Image sequence (a) through (e) showing “normalcy” pattern in observed
field-of-view

Although there are no restrictions to the number of states in motion, we assume two
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states x1 and x2 to represent two vehicles in the field-of-view, and at any instant of
time that are travelling in opposite directions, i.e., one travelling in the direction
from –X to +X and the other travelling in the direction from +X to -X. Both po-
sition and velocity are easily determined based on the imaging frame rate and the
position of objects in each frame. Mapping the position and velocity of the two
states provide a time-series representation of the observed phenomena. The objec-
tive then is to map the time-series data to a state-space that yields a phase portrait
of the observed process. Depending upon the time of travel from either the posi-
tive reference to the negative reference, or vice versa, the phase portrait over time
represents “normalcy” in the field-of-view. The time series data serves as input to
a set of fuzzy rules developed in the form of a neural network structure. Over suf-
ficient time, patterns of behavior emerge that could be used as those representing
normalcy.

Figures 5(a)-(e) show a simulated image sequence to illustrate a possible anomaly.

 

Figure 6: Image sequence (a) through (e) in which two new states have appeared
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In Figure 5, two new objects suddenly appear in the field-of-view that are in fact
two new additional states x3 and x4. Notice that the two new states emerge from a
box that is offset from the center-line of the field-of-view. This is a change from the
normalcy patterns observed in figure 4 which allows detecting anomalous change
in behavior due to the “possibility of IED threat”.

The following descriptions of state motion apply to the image sequence in Figure
5.

Normalcy pattern is shown with two initial states x1 and x2 exhibiting position and
directional velocity.

Additional states x3 and x4 suddenly appear and exhibit position and directional
velocity. This is the beginning of an anomaly, and a “step change”. At this point
there are four states in motion.

Since the initial anomaly where a set of four states were in motion, a new state
behavior emerges wherein all states x1, x2 x3, and x4 come to rest for a finite interval,
another step change.

The next change of behavior in the anomalous pattern is when states x1 and x2 begin
motion while states x3 and x4 remain at rest. This would constitute a step change
as well.

A new normalcy pattern emerges with two states in motion and two states at rest.
Based on the scenario that this was an IED possibility by insurgents it would be
wise to train a machine to recognize the pattern signatures. We assume the re-
mainder of the imaging will show the behavior of states x1 and x2 in addition to
stationary states x3 and x4 which show the evolved change in normalcy.

A phase portrait of objects in motion taken from a synthesized set of images is
depicted in Figure 6. The trajectories show normal behavior when object motion
has a pattern consistency. When the pattern consistency is disturbed a possible
anomaly is identified. Following the anomaly the emergence of a new state of
normalcy is identified.

4 A framework for automatic anomaly detection

Tracking provides a basis for developing normalcy models from which any “dis-
tinct” deviations may be characterized as being anomalous. We assume that we
have very good tracking algorithms that track the object motion described in Fig-
ures 4 and 5 very closely. As such the tracking error may be assumed to be very
close to zero. Given that we now have both tracking and actual motion trajectories,
we separate the signals by a delay of duration “aτ” seconds, where “a” is the sen-
sitivity control parameter. In a typical manual setting, users would shift the data
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Figure 7: Phase portrait of the sequence of images showing object motion

based on time stamping or else use an average value for the time shift when in-
dividual sample information was unavailable. Instead, by using an adaptive delay
parameter, each output sample value transparently shifts, according to its applicable
delay, to form the pattern-forming data set. Training a neural network to adjust the
sensitivity factor for maximum transparency therefore is an essential component to
the automatic detection of anomalous behavior.

The strategy to formulate an automatic anomaly detection system requires a system
identification approach to identify “normal” behavior of the observed system. Our
approach is to employ a fuzzy-neural framework to identify the dynamical behavior
of any unknown and uncertain system whereby the states of the unknown system
can be estimated. This naturally yields a model reference of the unknown system
dynamics Prasad et al (2004). Figure 7 illustrates a more detailed conceptual
framework compared to Figure 2 presented earlier.

We assume that the behavior of the unknown system can be observed through an
array of sensors comprising video, infrared and multispectral, electro-optical, syn-
thetic aperture radar, MTI, and possibly other sensor systems. These observations
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Figure 8: Framework for an automatic anomaly detection system

correspond to some observed states of the unknown dynamical system. Position,
rate, and other higher-order information may be derived by employing appropriate
data fusion algorithms Klein (2007); Chatzigiannakis et al (2007); Goodman et al
(1997).

Let Y =
(
y ẏ ÿ · · ·

)T represent the vector of observations of the unknown dy-
namical system obtained as a result of data fusion.

For brevity, we can state that Y = CXobs is the observed behavior of the unknown
system dynamics, where C is the matrix of data fusion coefficients that combine the
state observations. The data fusion coefficients are primarily similarity coefficients
which provide relative measures of similarity between states observed from each
of the sensor measurements Salim et al (2003).

Background clutter can have significant effect in masking the observed behavior
and is an important consideration in formulating the fusion coefficients.

We postulate the state model for the observer system dynamics as an autonomous
system of the form ˙̂Xest = f (X̂est , t) where X̂est is the estimated state vector of the
unknown dynamical system. The state estimates implicitly include any latency in
the sensor behavior relative to each other in the modeled system dynamics.

In principle, the synthetic data fusion coefficients are similar to the data fusion
coefficients that combine real observed data. So we let Ŷ = CXest represent the
observer model response.
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Ideally, if the observed output signal and the synthesized signal are approximately
the same, namely,Ŷ ∼= Y , then the estimated system states and observed system
states are also approximately equal, i.e., Xest

∼= Xobs, and the dynamics of the un-
known system is fully identified. For this condition to be achieved within some
desired tolerance, we need to minimize the error between the observed response
and the modeled system response, i.e.,

(
Y − Ŷ

)
→ ε , a very small value.

Let Y e =
(
Y − Ŷ

)
=
(
ye ẏe ÿe · · ·

)T represent the error vector to be minimized.
We can now define each element of the error vector in terms of linguistic variables,
for example small, medium, and large position error; small, medium, and large
velocity error, etc., which serve as the subsets of fuzzy variables that can be used
to develop a set of fuzzy rules.

Let L{•} represent a set of fuzzy “If-Then” learning rules that associate the el-
ements of the error vector to obtain close estimates of the unknown dynamical
system states.

Considering the unknown dynamical system as an autonomous system, RuleLi for
example may be written in Sugeno form as:

I f ye ∈ Si
1k, and ẏe ∈ Si

2l and ÿ ∈ Si
3m · · · , T hen δ ẋ1 = ai

11x1
est +ai

12x2
est + · · ·

where the consequent is expressed as a time rate of change of the estimated states.
The coefficients {ai

11, ai
12, · · ·} are obtained from linear regression.

From classical control theory it can be easily recognized that the coefficients
{ai

11, ai
12, · · ·} are the row elements of a canonical form of the characteristic ma-

trix. The time rate of change of the estimated states in top companion controller
canonical form at time step “ j” is given by the autonomous system:

δ ẋ =


δ ẋ1
δ ẋ2
δ ẋ3

...
δ ẋn

=


a j

11 a j
12 a j

13 · · · a j
1n

1 0 0 · · · 0
0 1 0 · · · 0
...

...
. . . · · ·

...
0 0 0 1 0




x1
x2
x3
...

xn


From the canonical representation above we observe that it is sufficient to obtain the
derivative of one of the n states as illustrated in Rule Li, and to directly formulate
the derivatives of the remaining (n-1) states according to the canonical form. The
approximation provided by the rule consequent is equivalent to the piecewise linear
approximation of a nonlinear system at an operating point.

The advantage of this approach is that due to the piecewise linear approximation,
the eigenvalues of the linear system can be computed at each time step and used as
an indicator to track the stability of the self-evolving model.
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The consequent part in Rule Li, is an estimated deviation in state that updates the
state derivative of the observer model. A recursive relationship that yields new

estimates of state derivatives is of the form: ˙̂X
new
est = ˙̂X

old
est +δ ẋ. Integration provides

the estimated states X̂est of the unknown dynamical system.

Near real-time anomaly detection is conceivable if a self-tuning system is inte-
grated within the tracking system to automatically zoom-in to the beginning of an
abrupt change. The best performance of any detection scheme is the speed and sen-
sitivity in response. An approach to optimize the sensitivity of information sources
towards identification of anomalous behavior can be developed using a radial ba-
sis recurrent neural network that will automatically determine the delay between
the present “normalcy” state and the previous “normalcy” state. The purpose of a
radial-basis recurrent neural network (RBRNN) is to adaptively determine the max-
imum time-delay so the instant of occurrence of an anomaly can be captured Tan
(2004); Kokkinos and Maragos (2005); Sarimveis et al (2002). This is effectively
a “zoom” function that is used to monitor the sensitivity of observed information
to change.

By entering a threshold parameter 0 < τ ≤ 1, and based upon the RBRNN initial-
ization, the sensitivity parameter output “a” of the RBRNN is used to generate a
delay “aτ” such that the tracking signal Ŷ (t) can be delayed by a maximum amount
with respect to the observed state motion signal Y (t). Figure 8 shows the region
of RBRNN performance relating the signal Us(t) = Y (t)− Ŷ (t − aτ) versus the
sensitivity parameter “a”.

 
Figure 9: RBRNN performance region
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Because of the feedback structure of the recurrent neural network, the sensitivity
parameter is rapidly adjusted to a value which makes the amplitude of the signal
Us(t) generated reach a maximum. If the signal characteristic suddenly changes,
the existence of an anomaly may be suspected, and appropriate operator alerts can
be generated. The range of “a” chosen in Figure 8 is only for illustrative purposes
and is suitable for fast dynamics such as the motion of automobiles or other fast
moving objects. For slow dynamics, such as tracking the motion of humans the
range may be extended on a logarithmic scale to several hundred seconds.

Estimating the maximum value of the sensitivity parameter “a” therefore enables
the identification of the anomaly at the instant of occurrence. This is shown graph-
ically in the following section wherein the pattern signal generated from state mo-
tion looses its normal structure and shows the tendency to transform into a chaotic
signal.

4.1 Graphical interpretation of anomaly detection

We consider the example scenario discussed earlier to provide a graphical interpre-
tation of anomaly detection. This is illustrated in Figure 7.

 

Figure 10: Effect of time-delay on normalcy pattern generation and transition to
anomalous behavior

Prior to detecting any anomalies in a physical process, the idea is to first obtain a
very effective tracking system that will keep the tracking error to a minimum. If
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the actual dynamics is then compared to a delayed tracking signal the time-shifted
error signal provides “signatures” for anomaly detection.

Figure 7 illustrates three cases of pattern signal generation as a result of obtaining
the difference between an observed signal and a delayed tracking signal. In the top
part of the figure, blue and red lines are use to represent the trajectories of objects
moving from left to right and from right to left, respectively, at any instant of time
in a given field-of-view. The slope of the red or blue lines represents the velocities
of moving objects. In the bottom part of the figure the difference between the actual
and delayed pattern signals are plotted for cases involving minimum delay, average
delay, and maximum delay.

The example shows pattern evolution as the time delay is increased from a mini-
mum value to a maximum value. When the delay is at a minimum, the signal has
low amplitude. When the delay is at a maximum, the difference shows the ten-
dency towards transformation into chaotic outputs (note the blue signal spiking).
The example shows amplification of the difference signal as the delay is increased.
A sudden transition in pattern will occur when the delay is increased beyond its
maximum. The time-series plot of object motion dynamics therefore is a key to
determining anomalous behavior. The behavior is analogous to stretching a rubber
band to the maximum until it snaps.

5 Conclusions

Identifying anomalies as and when they occur provides a means to understand the
complex dynamics of the observed non-stationary stochastic process, and aids in
developing adaptive models that can be used as predictive tools. Identifying anoma-
lous behavior is based upon a perception of what constitutes abnormal behavior in
the observations and how such abnormalities can be spotted within the normal oc-
currences of events.

We have discussed a highly innovative, simple and yet elegant systems-theoretic
concept which supports closed-loop sensor-based monitoring and control of the
environment. To enable the application of such an approach it is postulated that
anomalies are synonymous to singularities in chaotic/nonlinear systems. Singulari-
ties exhibit trajectories that are characteristic of the type of behavior known to exist
in nonlinear systems. The objective is to use state motion of objects as a means to
map their behavior.

Mapping the trajectories of objects in an image sequence has the potential to un-
cover unique patterns that can be used to distinguish between normal and abnormal
behavior and to correlate these patterns to possible anomalous behavior. The con-
cept provides a revolutionary framework for the characterization, detection, iden-
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tification, and modeling of anomalous behavior. The framework is adaptable to
various applications including urban ground surveillance using combinations of
ground, air and Space-based radar, electro-optical and infrared images, and MTI
systems.

The human in the loop is a very important consideration as it provides a “filter”
towards eliminating spurious machine identification of anomalous behavior. In a
sense this provides a platform that incorporates both supervised as well as unsu-
pervised training/learning capabilities. Human-machine interaction should be used
to enhance the quality of performance and the reliability of models developed for
classification and prediction of anomalous behavior.

Much work remains to be addressed pertaining to the issue of background clutter
and its effect on the precision of data extracted. While in principle object mo-
tion can be determined and tracked, testing the viability of the proposed approach
to human motion will greatly add to the value of the proposed approach. This
can be very useful in monitoring and detecting how, when, and where insurgents
physically plant IEDs under concrete sidewalks, inside garbage dumps, and other
locations where there are masses of ordinary citizens who are extremely vulnerable.

To the best of our knowledge there is no public-domain literature that discusses
automatic anomaly detection for possible roadside IEDs. Available literature that
discuss anomaly detection ultimately rely upon humans to identify anomalous be-
havior. The proposed approach is therefore a radical departure from current tech-
nologies and is a novel approach using machine intelligence for automatic anomaly
detection.

From a homeland security viewpoint there is a need for the detection of anomalies
along international borders and border checkpoints, in and around air/water/land
transportation centers, within large metropolitan shopping centers, in the vicinity
of federal, state, and local government establishments, and around a wide range of
other sensitive and crucial infrastructure establishments. Implementing real-time
anomaly detection systems aid in preserving national security and protect the soci-
ety at-large against threats to human life and safety. Detecting anomalous activities
therefore is the first step towards mitigating a clear and present danger of terrorist
threat to the Nation and for the safety of the US warfighter.

A soft computing approach clearly helps bio-mimic human decision-making abili-
ties in detecting anomalous behavior. The approach exploits the innate human abil-
ities for logical reasoning, learning, and adaptation to distinguish between normal
and abnormal behavior in observed phenomena. From a computational standpoint
this literally translates to a fuzzy-neural-evolutionary architecture.

We have discussed the qualitative aspects of anomalous behavior in a class of dy-
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namical systems for which the mathematical model is unknown, and which exhibit
high levels of uncertainty in their behavior. The uncertainty lies in variables and
coupled-variable interactions that constitute the system dynamics. In this context
we have outlined a revolutionary, and a viable systems-theoretic approach towards
developing an intelligent anomaly detection system.
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