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Electric Field Gradient Theory with Surface Effect for
Nano-Dielectrics

Shuling Hu1 and Shengping Shen1,2

Abstract: The electric field gradient effect is very strong for nanoscale dielectrics.
In addition, neither the surface effect nor electrostatic force can be ignored. In this
paper, the electric Gibbs free energy variational principle for nanosized dielectrics
is established with the strain/electric field gradient effects, as well as the effects
of surface and electrostatic force. As regards the surface effects both the surface
stress and surface polarization are considered. From this variational principle, the
governing equations and the generalized electromechanical Young-Laplace equa-
tions, which take into account the effects of strain/electric field gradient, surface
and electrostatic force, are derived. The generalized bulk and surface electrostatic
stress are obtained from the variational principle naturally. The form are differ-
ent from those derived from the flexoelectric theory. Based on the present theory,
the size-dependent electromechanical phenomenon in nano-dielectrics can be pre-
dicted.

Keywords: Electric field gradient; Variational principle; Strain gradient; Surface
polarization; Electrostatic stress; Surface effect

1 Introduction

The development of nanotechnology brings on thinner and thinner dielectric films
and other nanosized electronic devices. With miniaturization of a dielectric mate-
rial down to nanoscale, the size effects become dominant. Although piezoelectric-
ity has attracted many researchers (Chen at al., 2009; Apte, Ganguli, 2009; Ma,
Wu, 2009; Wu, Huang, 2009; Wu et al., 2008; Wu, Liu, 2007; Wu et al., 2005;
Cheng, Chen, 2004), the classical electromechanical coupling theory fails to de-
scribe the size-dependent phenomenon. It is well known that both surface theory
and gradient theory can describe the size effects. However, the theory concerned
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with both gradient and surface effects is still lacked, especially for the electrome-
chanical coupling problems where the gradient effects of electric variables often
play an important role. Shen and Hu (2010), and Hu and Shen (2010) developed
a theory for nanosized dielectrics with the flexoelectric effects as well as the sur-
face effects. For dielectrics, the polarization gradient theory (Mindlin, 1969) and
the electric field gradient theory (Landau and Lifshitz, 1984) can be considered as
theories for weak nonlocal effects (Maugin, 1979; Yang, 2006). The electric field
gradient theory is also called dielectrics with spatial dispersion, and is equivalent
to the theory of dielectrics with electric quadrupoles (Kafadar, 1971) due to that
the electric quadrupole is the thermodynamic conjugate of the electric field gradi-
ent. Theories for elastic dielectrics with electric quadrupoles are also discussed in
Demiray & Eringen (1973), Maugin (1979, 1980), and Eringen & Maugin (1990).
Kalpakides and Agiasofitou (2002) developed a formulation including both strain
gradient and electric field gradient. The duality between the theory of electric
field-gradient and flexoelectric theory can be found in Maugin (1980). Yang et
al. (2004), and Yang & Yang (2004) showed that due to the electric field gradient
the capacitance of a thin film deviates from the classical value when the film thick-
ness approaches a microscopic characteristic length, and that plane waves become
dispersive when the wave length approaches a microscopic characteristic length.
Yang (2004b) examined the effect of electric field gradient on a semi-infinite crack
in polarized ceramics. Yang et al. (2005) studied the field concentration near a
small hole and found that the concentration depends on the size of the hole because
of the electric field gradient. Yang et al. (2006) analyzed the effects of electric
field gradient on the anti-plane problem of a small, circular inclusion in polarized
ceramics. These papers demonstrated that the electric field gradient exhibits a size
effect and has significant impact on the apparent piezoelectric and elastic behavior.

However, the surface effect and electrostatic force are not taken into consideration
in these papers. For dielectrics, the surface effect includes both surface stress and
surface polarization which is induced due to the dangling bonds on the surface.
The rearrangement of the bonding at surfaces causes a charge displacement that
may greatly alter the polarization properties of the surface with respect to the bulk
(Brandino and Cicero, 2007). For nanosized dielectrics, the ratio of surface area to
volume becomes high, so the surface polarization and stress turn out to be signif-
icant. In Slavchov et al. (2006), the effect of the surface polarization was studied
with the help of a definition of surface dielectric constants for surface. The effect
of the surface polarization in polar perovskites was investigated by means of the
first principles in Fechner et al. (2008). Camacho and Nossa (2009) showed that
the influences of surface polarization on the dielectric properties of quantum dots
arrays are significant. Consequently, it is necessary to develop a theoritical frame-
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work to concern with both surface stress and surface polarization for nanosized
dielectrics. In NEMS design, the electrostatic force also plays a very important
role. Many papers (Gao et al., 2001; Dequesnes et al., 2002, 2004; Lee, Chen,
2009) demonstrated that the effects of the electrostatic forces are very strong in
nanoscale even for linear elastic problems. Hence, appropriate consideration of
the electrostatic force on the nanostructures is very important in the analysis of
nanoscale electromechanical coupling problems.

The variational principles have been regarded as the bases of the analysis and com-
putations for electromechanical problems in dielectric materials for a long time.
Toupin (1956) gave a variational principle for a linear piezoelectric material; Kuang
(2007, 2008a, b, 2009) systematically discussed the thermodynamic nonlinear vari-
ational principles with electric Gibbs free energy and internal energy for nonlinear
problems (Shen et al., 2000). From these variational principles the complete gov-
erning equation systems were deduced and the Maxwell stress were naturally de-
rived. However, all these papers did not consider the strain/electric field gradient
and surface effects.

In this paper, the variational principle for nanosized dielectrics with strain/electric
field gradient and surface effects are established. Based on the variational princi-
ple, a theoretical framework is formulated to examine the size effect due to both
electric field gradient and surface effects for a dielectric material. The surface ef-
fect includes the effect of surface stress and surface polarization. The governing
equations, which include the effect of strain/electric field gradient and the electro-
static force, and the generalized electromechanical Young-Laplace equations for a
electric field gradient dielectric material with surface effect are presented. The gen-
eralized bulk and surface electrostatic stress can be obtained from the variational
principle naturally.

2 The bulk and surface electric Gibbs free energy

In Gurtin and Murdoch (1975), the influence of surface effect on stress and strain
fields is formulated in a continuum framework for elastic surface of solid. The
surface constitutive relations together with the surface conditions of the stress pro-
vide the necessary conditions for the boundary-value problem to determine the
stress and strain fields with surface effect. In this paper, we will develop the con-
tinuum framework for nano-dielectrics to formulate the influence of surface and
strain/electric field gradient effects on electromechanical coupling field. In the gra-
dient dielectric material model, a surface element at a material point can transmit
not only stress and higher order stress (moment stress) but also the electric displace-
ment and electric quadrupole. So in the electric field gradient electromechanical
theory, three traditional displacements, and an electric potential are used to describe
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the deformable point particles. For the electric field gradient electromechanical the-
ory with surface effect, additional surface electromechanical constitutive relations
and the surface conditions are needed. In order to simplify the discussion in this
paper, the infinitesimal deformation is assumed.

To take the surface effects into account, the electric Gibbs free energy can be de-
composed into two parts, i.e., the surface and bulk parts. Within the assumption of
an extended linear theory for dielectrics incorporating terms involving the gradients
of the strain and the electric field, the most general expression for the bulk electric
Gibbs free energy density function Ub can be written as

Ub =− 1
2

aklEkEl−
1
2

bi jklEi, jEk,l +
1
2

ci jklεi jεkl− ei jklεi jEk,l−di jkεi jEk−hi jkEiE j,k

− fi jklEiu j,kl + ri jklmεi juk,lm−ηi jkmnEi, juk,mn +
1
2

gi jklmnui, jkul,mn

=− 1
2

aklEkEl−
1
2

bi jklVi jVkl +
1
2

ci jklεi jεkl− ei jklεi jVkl−di jkεi jEk−hi jkEiVjk

− fi jklEiw jkl + ri jklmεi jwklm−ηi jkmnVi jwkmn +
1
2

gi jklmnwi jkwlmn

(1)

where a, b, c, e, d, h, f, r, ηηη , and g are the material property tensors. Particularly,
a and c, are the second-order permittivity and four-order elastic constant tensors,
respectively. The tensor g represents the purely nonlocal elastic effects and corre-
sponds to the strain gradient elasticity theories. u is the displacement, the comma
indicates differentiation with respect to the spatial variables. εεε is the strain tensor
and E is the electric field tensor, which are defined, respectively, as

εi j =
1
2

(ui, j +u j,i) , (2a)

i.e.,

εεε =
1
2

(∇⊗u+u⊗∇) (2b)

Ei =−ϕ,i,

i.e.,

E =−∇ϕ

where ϕ is the electrostatic potential. w and V are the strain gradient tensor and the
electric field gradient tensor respectively, which are defined as

wi jm = ui, jm, w =
1
2

∇⊗ (∇⊗u+u⊗∇) (3)



Electric Field Gradient Theory 67

Vi j = Ei, j, V =−∇⊗∇ϕ (4)

Thus, we have εi j = ε ji, wi jm = w jim, and Vi j = Vji.

The material property tensors a, b, c, e, d, h, f, r, ηηη , and g may be taken differ-
ent value for different material. If the electromechanical coupling is not taken into
account, all the material property tensors responding to the electromechanical cou-
pling are equal to 0, i.e., e, d, f, and ηηη are 0. For the centrosymmetric dielectric, d
and ηηη are equal to 0. If the strain gradient is not considered (only the electric field
gradient is considered), f, r, ηηη , and g are all zero, which is reduced to that in Yang
(2004b).

Under the infinitesimal deformation, the constitutive equations for the bulk can be
expressed in terms of the electric Gibbs free energy as

σi j =
∂Ub

∂εi j
= ci jklεkl− ei jklVkl−di jkEk + ri jklmwklm (5a)

τi jm =
∂Ub

∂wi jm
=− fki jmEk + rkli jmεkl−ηkli jmVkl +gi jmknlwknl (5b)

Di =−∂Ub

∂Ei
= ai jE j +d jkiε jk +hi jkVjk + fi jklw jkl (5c)

Qi j =−∂Ub

∂Vi j
= bi jklVkl + ekli jεkl +hki jEk +ηi jkmnwkmn (5d)

where σi j is the stress tensor which is same as that in classical elasticity, Di is the
electric displacement vector, and τi jm and Qi j are the higher order stress (moment
stress) and electric quadrupole, respectively. It is noted that σi j = σ ji, τi jm = τ jim

and Qi j = Q ji.

By means of equations (5a-d), the bulk electric Gibbs free energy density function
Ub can be rewritten as

Ub =
1
2

σi jεi j +
1
2

τi jmui, jm−
1
2

DiEi−
1
2

Qi jVi j

=
1
2

σσσ : εεε +
1
2

τττ
...w− 1

2
D ·E− 1

2
Q : V

(6)

The residual surface stress affects the elastic properties of nanostructure signifi-
cantly. Hence, in this paper, the residual surface tension and residual surface charge
are considered. The surface internal energy density Us (εεεs,ws,Es,Vs) is a smooth
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nonlinear function of the surface strain, surface electric field, and their first gradi-
ents, which can be expressed into a series expansion

Us =Us0−ωαEs
α −καβV s

αβ
+Γαβ ε

s
αβ

+Ωαβγws
αβγ
− 1

2
as

αβ
Es

αEs
β

− 1
2

bs
αβγκ

V s
αβ

V s
γκ +

1
2

cs
αβγκ

ε
s
αβ

ε
s
γκ − es

αβγκ
ε

s
αβ

V s
γκ −ds

αβγ
ε

s
αβ

Es
γ −hs

αβγ
Es

αV s
βγ

− f s
αβγκ

Es
αws

βγκ
+ rs

αβγκλ
ε

s
αβ

ws
γκλ
−η

s
αβγκλ

V s
αβ

ws
γκλ

+
1
2

gs
αβγκλτ

ws
αβγ

ws
κλτ

(7)

where Us0, ωα , καβ , Γαβ , Ωαβγ , as
αβ

. . . are material constants depended on surface,
which can be determined by either experiments or atomistic simulations. The prop-
erty of all these material constants can be determined according to Aris (1962), for
example, Γαβ is isotropic if and only if Γαβ = Γ11δαβ . ωα , καβ , Γαβ , and Ωαβγ

give the residual surface electric displacement, residual surface electric quadrupole,
residual surface stress, and residual surface higher order stress, respectively. In this
paper, both the superscript and subscript ‘s’ represent the quantity on the surface,
and the Greek indices run from 1 to 2 while the Latin indices run from 1 to 3. Here,
we only give the low-order terms. In the case of infinitesimal deformation, the
high-order terms (>2) can be ignored. Then the linear surface constitutive relation
can be expressed as

σσσ s =
∂Us

∂εεεs
, τττs =

∂Us

∂ws
(8a)

Ds =−∂Us

∂Es
, Qs =−∂Us

∂Vs
(8b)

or

σ
s
αβ

=
∂Us

∂εs
αβ

= Γαβ + cs
αβγκ

ε
s
γκ − es

αβγκ
V s

γκ −ds
αβγ

Es
γ + rs

αβγκλ
ws

γκλ
(9a)

τ
s
αβγ

=
∂Us

∂ws
αβγ

= Ωαβγ− f s
αβγκ

Es
κ + rs

αβγκλ
ε

s
κλ
−η

s
κλαβγ

V s
κλ

+gs
αβγκλτ

ws
κλτ

(9b)

Ds
α =− ∂Us

∂Es
α

= ωα +as
αβ

Es
β

+ds
βγα

ε
s
βγ

+hs
αβγ

V s
βγ

+ f s
αβγκ

ws
βγκ

(9c)

Qs
αβ

=− ∂Us

∂V s
αβ

= καβ +bs
αβγκ

V s
γκ + es

γκαβ
ε

s
γκ +hs

γαβ
Es

γ +η
s
αβγκλ

ws
γκλ

(9d)
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where σσσ s and τττs are the surface stress and surface higher order stress tensors, Ds

and Qs are the surface electric displacement and surface electric quadrupole, re-
spectively. εεεs and ws are the surface strain and surface strain gradient, Es and Vs

are the surface electric field and the surface electric field gradient, respectively. The
surface electric displacement Ds comes from the surface polarization which is due
to the dangling bonds on the surface. The rearrangement of the bonding at surfaces
leads to a charge displacement that may deeply modify the polarization proper-
ties of the surface with respect to the bulk (Brandino and Cicero, 2007). The unit
of surface electric displacement is C/m, which means the dipole moment per unit
area and was used in Brandino and Cicero (2007), while that of the bulk electric
displacement is C/m2. In the surface electromechanical model, the electrostatic po-
tential ϕ is continuous across the surface same as the displacement, so the electric
field Es of the surface can be defined. By means of equations (9a-d), the surface
internal energy density function Us can be rewritten as

Us =Us0 +
1
2

Γαβ ε
s
αβ

+
1
2

Ωαβγws
αβγ
− 1

2
ωαEs

α −
1
2

καβV s
αβ

+
1
2

σ
s
αβ

ε
s
αβ

+
1
2

τ
s
αβγ

ws
αβγ
− 1

2
Ds

αEs
α −

1
2

Qs
αβ

V s
αβ

=Us0 +
1
2

ΓΓΓ : εεεs +
1
2

ωωω
...ws−

1
2

ωωω ·Es−
1
2

κκκ : Vs

+
1
2

σσσ s : εεεs +
1
2

τττs
...ws−

1
2

Ds ·Es−
1
2

Qs : Vs

(10)

A curvilinear coordinate system with covariant base vector ξξξ α (α = 1,2) on the
tangent plane of the surface is constructed on the surface,. The unit normal vector
is denoted by ξξξ 3 or n. The surface strain εεεs is a second rank tensor in a two-
dimensional space, and can be considered as the projection of the tensor εεε in
the three-dimensional space onto the tangent plane. The strain tensor in a three-
dimensional space can be expressed as

εεε = εεεs + εα3ξξξ α ⊗ξξξ 3 + ε3βξξξ 3⊗ξξξ β + ε33ξξξ 3⊗ξξξ 3, α, β = 1,2 (11)

where εεεs = εαβξξξ α⊗ξξξ β . The same relationships exist between other surface tensors
and their corresponding bulk tensors. Analogous to Chen et al. (2007), the surface
strain εεεs and surface strain gradient ws can be expressed as

εεεs =
1
2

(∇s⊗u+u⊗∇s) , ws =
1
2

∇s⊗ (∇s⊗u+u⊗∇s) (12)

where ∇s denotes the gradient operator of the surface, and the surface electric field
Es and the surface electric field gradient Vs can be expressed as

Es =−∇sϕ, Vs =−∇s⊗∇sϕ (13)
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The displacement u on the surface can be decomposed into a tangential part ut and
a normal part un as

u = ut +un (14)

where

ut = R ·us, un = unn (15)

with the projector tensor R = I−n⊗n, I is the unit tensor and n is the unit normal
vector. By using the Weingarten formula (Gurtin and Murdoch, 1975), it can be
obtained that

∇s⊗un =−unk (16)

where k is the curvature tensor of the surface. Then the surface strain εεεs and surface
strain gradient ws can be expressed respectively as

εεεs = ∇s⊗ut −unk (17)

ws = ∇s⊗∇s⊗ut −∇s⊗ (unk) (18)

3 The governing equations and generalized electromechanical Young-Laplace
equations

Now, we consider a dielectric material with surface and gradient (strain/electric
field gradient) effects, which is subjected to a displacement and electric potential
boundary and the body force and body charge density are neglected. Assuming that
the dielectric material occupies a volume V bounded by a surface a, then, analogous
to that in Eringen & Maugin (1990), the variational principles can be taken as

δ

∫
V

UbdV +δ

∫
a

Usda = 0 (19)

where δ is the variational sign.

According to the Reynold’s transport theorem (Kuang, 2002; Ogden, 1984), we
have

δ

∫
V

UbdV =
∫
V

δUbdV +
∫
V

Ubδ (∇ ·u)dV (20)

δ

∫
a

Usda =
∫
a

δUsda+
∫
a

Usδ (∇s ·u)da (21)
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At first, we consider the variation of the bulk electric Gibbs free energy, which is
followed that

δ

∫
V

UbdV =
∫
V

δUbdV +
∫
V

Ubδuk,kdV

=
∫
V

(σi jδui, j + τi jmδui, jm +Diδϕ,i +Qi jδϕ,i j)dV

+
∫
V

1
2

(σi jui, j + τi jmui, jm +Diϕ,i +Qi jϕ,i j)δuk,kdV

(22)

As pointed out in Kuang (2007, 2008a, b, 2009), the virtual displacement not only
causes the variation of strain, but also causes the variation of electric potential and
its gradients, then we can obtain that

δϕ = δϕϕ +δuϕ = δϕϕ +ϕ, jδu j (23)

δϕ,i = δϕϕ,i +δuϕ,i = δϕϕ,i +ϕ,i jδu j = δϕϕ,i +ϕ, jiδu j (24)

δϕ,i j = δϕϕ,i j +δuϕ,i j = δϕϕ,i j +ϕ,i jkδuk = δϕϕ,i j +ϕ,ik jδuk (25)

where δϕϕ , δϕϕ,i, and δϕϕ,i j are produced by the virtual electric potential, δuϕ =
ϕ, jδu j, δuϕ,i = ϕ,i jδu j = ϕ, jiδu j and δuϕ,i j = ϕ,i jkδuk = ϕ,ik jδuk are produced by
the virtual displacement. Equations (23)-(25) is somewhat analogous to the Landau
and Lifshitz’s theory (1984) and Stratton (1941), where they pointed out that the
virtual displacements not only produce the variation, but also produce the variation
of electric potential.

Using the Gauss divergence theorem and relations (23)-(25), the integrals in the
first part of equation (22) can be reduced to as following

∫
V

(σi jδui, j + τi jmδui, jm)dV =
∫
a

σi jn jδuida−
∫
V

σi j, jδuidV

+
∫
a

τi jmnmδui, jda−
∫
a

τi jm,mn jδuida+
∫
V

τi jm,m jδuidV (26)
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∫
V

Diδϕ,idV =
∫
V

(
Diδϕϕ,i +Diϕ, jiδu j

)
dV

=
∫
a

niDiδϕϕda−
∫
V

Di,iδϕϕdV +
∫
a

niDiϕ, jδu jda−
∫
V

ϕ, j (Diδu j),i dV

=
∫
a

niDiδϕϕda−
∫
V

Di,iδϕϕdV +
∫
a

niDiϕ, jδu jda

−
∫
V

(ϕ, jDiδu j,i +ϕ, jDi,iδu j)dV

=
∫
a

niDiδϕϕda−
∫
V

Di,iδϕϕdV +
∫
a

niDiϕ, jδu jda

−
∫
a

niDiϕ, jδu jda+
∫
V

(ϕ, jDi),i δu jdV −
∫
V

ϕ, jDi,iδu jdV

=
∫
a

niDiδϕda−
∫
V

Di,iδϕdV −
∫
a

niDiϕ, jδu jda+
∫
V

(ϕ, jDi),i δu jdV

(27)

and

∫
V

Qi jδϕ,i jdV =
∫
V

Qi j
(
δϕϕ,i j +ϕ,ik jδuk

)
dV (28)

The first term on the right hand side of equation (28) can further reduce to

∫
V

Qi jδϕϕ,i jdV =
∫
a

n jQi jδϕϕ,ida−
∫
V

Qi j, jδϕϕ,idV

=−
∫
a

niQi j, jδϕϕda+
∫
V

Qi j, jiδϕϕdV +
∫
a

n jQi jδϕϕ,ida
(29)
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and the second term on the right hand side of equation (28) can reduce to∫
V

Qi jϕ,ik jδukdV =
∫
a

n jQi jϕ,ikδukda−
∫
V

Qi j, jϕ,ikδukdV −
∫
V

Qi jϕ,ikδuk, jdV

=
∫
a

n jQi jϕ,ikδukda−
∫
a

niQi j, jϕ,kδukda+
∫
V

ϕ,k (Qi j, jδuk),i dV

−
∫
a

n jQi jϕ,ikδukda+
∫
V

(Qi jϕ,ik), j δukdV

=−
∫
a

niQi j, jϕ,kδukdV +
∫
V

ϕ,kQi j, jiδukdV +
∫
V

ϕ,kQi j, jδuk,idV

+
∫
V

(Qi jϕ,ik), j δukdV +
∫
a

n jQi jϕ,ikδukda−
∫
a

n jQi jϕ,ikδukda

=−
∫
a

niQi j, jδuϕdV +
∫
V

Qi j, jiδuϕdV +
∫
V

(Qi jϕ,ik), j δukdV

−
∫
a

n jQi jϕ,ikδukda

+
∫
a

niϕ,kQi j, jδukda−
∫
V

(ϕ,kQi j, j),i δukdV +
∫
a

n jQi jϕ,ikδukda

(30)

The sum of the last term of equation (29) and the last term of equation (30) can be
written as∫
a

n jQi jδϕϕ,ida+
∫
a

n jQi jϕ,ikδukda

=
∫
a

n jQi jδϕϕ,ida+
∫
a

n jQi jδuϕ,ida =
∫
a

n jQi jδϕ,ida
(31)

Since δui, j is not independent of δui, and δϕ,i is not independent of δϕ on the
surface a, in order to identify the independent traction and charge boundary con-
ditions, we separate the integrals including δui, j and the integrals including δϕ,i

respectively as

τi jmnmδui, j = τi jmnm∆ jδui + τi jmnmn j∆δui (32)

n jQi jδϕ,i = n jQi j∆iδϕ +n jQi jni∆δϕ (33)
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by decomposing the gradient δui, j into a tangential gradient ∆ jδui and a normal
gradient n j∆δui, and decomposing δϕ,i into a tangential gradient ∆iδϕ and a nor-
mal gradient ni∆δϕ , viz.,

δui, j = ∆ jδui +n j∆δui (34)

δϕ,i = ∆ jδϕ +n j∆ϕ (35)

where the operators ∆ j ≡
(
δ jk−n jnk

)
∂k ≡∇s, ∆≡ nk∂k, and ∂k denotes the partial

derivative with respect to xk. The terms in (32) may be resolved, further, in more
than one way. For the first terms on the right hand side of (32) and (33), which
contains the non-independent variation τi jmnm∆ jδui and n jQi j∆iδϕ respectively,
and can be rewritten as (Mindlin, 1964)

τi jmnm∆ jδui = ∆ j (τi jmnmδui)−nm∆ jτi jmδui−∆ j (nm)τi jmδui (36)

n jQi j∆iϕ = ∆i (n jQi jδϕ)−n j∆i (Qi j)δϕ−∆i (n j)Qi jδϕ (37)

The last two terms in the right hand side of (36) and (37), now contain the indepen-
dent variations δui and δϕ , respectively. For the preceding terms of equations (36)
and (37), we note that, on the surface a,

∆ j (τi jmnmδui) = (∆lnl)n jnmτi jmδui +nqeqpk∂p
(
ekl jnlnmτi jmδui

)
(38)

∆i (n jQi jδϕ) = (∆lnl)nin jQi jδϕ +nqeqpn∂p (enlinln jQi jδϕ) (39)

where eqpk is the alternating tensor. By Stokes’s theorem, the integrals, over a
smooth surface, of the last terms in (38) and (39) vanish.

Similarly, the second part of equation (22) can be reduced to

∫
V

1
2

(σi jui, j + τi jmui, jm−DiEi−Qi jVi j)δuk,kdV

=
1
2

∫
a

(σi jui, j + τi jmui, jm +Diϕ,i +Qi jϕ,i j)nkδukda

− 1
2

∫
V

(σi jui, j + τi jmui, jm +Diϕ,i +Qi jϕ,i j),k δukdV

(40)
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Thus, the variation of the electric Gibbs free energy can be obtained as

δ

∫
V

UbdV =
∫
a

σi jn jδuida−
∫
V

σi j, jδuidV +
∫
a

(∆lnl)τi jmnmn jδuida

−
∫
a

∆ j (τi jmnm)δuida+
∫
a

τi jmnmn j∆δuida−
∫
a

τi jm,mn jδuida

+
∫
V

τi jm,m jδuidV +
∫
a

niDiδϕda−
∫
V

Di,iδϕdV −
∫
a

niDiϕ, jδu jda

+
∫
V

(ϕ, jDi),i δu jdV −
∫
a

niQi j, jδϕda

+
∫
V

Qi j, jiδϕdV +
∫
V

(Qi jϕ,ik), j δukdV −
∫
a

n jQi jϕ,ikδukda

+
∫
a

niϕ,kQi j, jδukda−
∫
V

(ϕ,kQi j, j),i δukdV +
∫
a

n jQi jni∆δϕda

−
∫
a

∆i (n jQi j)δϕda+
∫
a

(∆lnl)nin jQi jδϕda

+
1
2

∫
a

(σi jui, j + τi jmui, jm +Diϕ,i +Qi jϕ,i j)nkδukda

− 1
2

∫
V

(σi jui, j + τi jmui, jm +Diϕ,i +Qi jϕ,i j),k δukdV

(41)

The above equation can be further rewritten as

δ

∫
V

UbdV =
∫
a

(
σi j− τi jm,m +σ

ES
i j
)

n jδuida−
∫
V

(
σi j− τi jm,m +σ

ES
i j
)
, j

δuidV

+
∫
a

[(∆lnl)τi jmnmn j−∆ j (τi jmnm)]δuida+
∫
a

τi jmnmn j∆δuida

+
∫
a

n jQi jni∆δϕda+
∫
a

[(∆lnl)nin jQi j−∆i (n jQi j)]δϕda

+
∫
a

ni (Di−Qi j, j)δϕda−
∫
V

(Di−Qi j, j),i δϕdV

(42)
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where σES
i j is the generalized bulk electrostatic force, which is defined as

σ
ES
i j =−ϕ,iD j−Qk jϕ,ki +ϕ,iQ jk,k +

1
2

(σi jui, j + τi jmui, jm +Dkϕ,k +Qklϕ,kl)δi j

(43)

Comparing with σi j and τi jm,m the terms σkluk,l and τklmuk,lm can be neglected since
the strain is small. Hence, equation (43) can be reduced to

σ
ES
i j = σ

M
i j − τ

M
i jm,m (44)

where σM
i j and τM

i jm,m are the generalized bulk Maxwell stress and the generalized
bulk electrostatic stress corresponding to the electric field gradient, respectively,
and defined as

σ
M
i j =−ϕ,iD j +

1
2

Dkϕ,kδi j (45)

τ
M
i jm,m =−Qk jϕ,ki +ϕ,iQ jk,k +

1
2

Qklϕ,klδi j (46)

Equation (42) can be rewritten in tensors as

δ

∫
V

UbdV =−
∫
V

[
∇ ·
(
σσσ −∇ · τ +σσσ

ES)] · (δut +δun)dV

−
∫
V

∇ · (D−∇ ·Q)δϕdV +
∫
a

T · (δut +δun)da

+
∫
a

τττ : (n⊗n) ·∆δuda+
∫
a

qδϕda+
∫
a

Q : (n⊗n)∆δϕda

(47)

with T and q represents the force and charge, respectively,

Ti =
(
σi j− τi jm,m +σ

ES
i j
)

n j +(∆lnl)τi jmnmn j−∆ j (τi jmnm) (48a)

q = (Di−Qi j, j)ni +(∆lnl)nin jQi j−∆i (n jQi j) (48b)

Now, we turn to the variation of the surface electric Gibbs free energy. From equa-
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tion (21), the variation of the surface electric Gibbs free energy can be written as

δ

∫
a

Usda =
∫
a

δUsda+
∫
a

Usδ (∇s ·u)da

=
∫
a

(
σσσ s : δεεεs +τττs

...δws +Ds ·δ∇sϕ +Qs : δ (∇s⊗∇sϕ)
)

da

+
∫
a

1
2
[2Us0 +(σσσ s +ΓΓΓ) : εεεs +(τττs +ωωω)

...ws

+(Ds +ωωω) ·∇sϕ +(Qs +κκκ) : (∇s⊗∇sϕ)]δ (∇s ·u)da

(49)

where

∇s ·u = divsu = tr(∇s⊗u) (50)

By means of ∇s⊗u = ∇s⊗ut −unk, the above equation can be written as

∇s ·u = divsu = ∇s ·ut −2γun (51)

where the mean curvature γ can be obtained as

γ =
1
2

trk =
1
2

I : k (52)

Analogous to the variation in bulk, on the surface we have the similar relations as

δϕ = δϕϕ +δuϕ = δϕϕ +∇sϕ ·δu (53)

δ∇sϕ = δϕ∇sϕ +δu∇sϕ = δϕ∇sϕ +∇s⊗∇sϕ ·δu (54)

δ (∇s⊗∇sϕ) =δϕ (∇s⊗∇sϕ)+δu (∇s⊗∇sϕ)
=δϕ (∇s⊗∇sϕ)+∇s⊗∇s⊗∇sϕ ·δu

(55)

where on the surface, δϕϕ , δϕ∇sϕ and δ (∇s⊗∇sϕ) are produced by the virtual
electric potential, δuϕ = ∇sϕ · δu, δu∇sϕ = ∇s⊗∇sϕ · δu, and δu (∇s⊗∇sϕ) =
∇s⊗∇s⊗∇sϕ ·δu are produced on the surface by the virtual displacement.

Consider a region enclosed by an arbitrary closed smooth curve c in the curved
surface a. The integrals along the curve c over a smooth surface should be zero,
hence are omitted in this paper. Using the Green-Stokes theorem, the first part of



78 Copyright © 2009 Tech Science Press CMC, vol.13, no.1, pp.63-87, 2009

equation (49) can reduce to∫
a

δUsda

=
∫
a

[
σσσ s : δ (∇s⊗ut −unk)+τττs

...δ (∇s⊗∇s⊗ut −∇s⊗ (unk))
]

da

+
∫
a

[Ds ·δ∇sϕ +Qs : δ (∇s⊗∇sϕ)]da

=
∫
a

[∇s · (σσσ s ·δut)− (∇s ·σσσ s)δut − (σσσ s : k)δun +∇s · [τττs : δ (∇s⊗ut)]

− (∇s ·τττs) : δ (∇s⊗ut)−∇s · (τττs : kδun)+(∇s ·τττs) : kδun]da

+
∫
a

[Ds ·δ∇sϕ +Qs : δ (∇s⊗∇sϕ)]da

=−
∫
a

[(∇s ·σσσ s) ·δut +(σσσ s : k)δun]da+
∫
a

∇s · (∇s ·τττs) ·δutda

+
∫
a

(∇s ·τττs) : kδunda+
∫
a

[Ds ·δ∇sϕ +Qs : δ (∇s⊗∇sϕ)]da

(56)

The last two terms on the right hand side of the above equation can reduce, respec-
tively, to∫

a

Ds ·δ∇sϕda

=
∫
a

[
Ds ·δϕ∇sϕ +Ds · (∇s⊗∇sϕ) ·δu

]
da

=−
∫
a

∇s ·Dsδϕϕda−
∫
a

∇s · (δu⊗Ds) ·∇sϕda

=−
∫
a

∇s ·Dsδϕϕda−
∫
a

[(∇sϕ⊗Ds) : δ (∇s⊗u)+(∇s ·Ds)∇sϕ ·δu]da

=−
∫
a

∇s ·Dsδϕϕda

−
∫
a

[(∇sϕ⊗Ds) : δ (∇s⊗ut −unk) ·Ds +(∇s ·Ds)∇sϕ ·δu]da
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=−
∫
a

∇s ·Dsδϕϕda+
∫
a

∇s · (∇sϕ⊗Ds) ·δutda−
∫
a

(∇s ·Ds)∇sϕ ·δuda

+
∫
a

(∇sϕ⊗Ds) : kδunda

=−
∫
a

∇s ·Dsδϕda+
∫
a

∇s · (∇sϕ⊗Ds) ·δutda+
∫
a

(∇sϕ⊗Ds) : kδunda

(57)

and

∫
a

Qs : δ (∇s⊗∇sϕ)da

=
∫
a

Qs : δϕ (∇s⊗∇sϕ)da+
∫
a

Qs : [(∇s⊗∇s⊗∇sϕ) ·δu]da
(58)

The first term of the right hand side of the above equation can be reduced to

∫
a

Qs : δϕ (∇s⊗∇sϕ)da =−
∫
a

∇s ·Qs ·δϕ∇sϕda

=
∫
a

∇s ·∇s ·Qsδϕϕda
(59)

The last term of the right hand side of equation (58) can be reduced to

∫
a

Qs : [(∇s⊗∇s⊗∇sϕ) ·δu]da

=−
∫
a

∇s ·Qs · (∇s⊗∇sϕ) ·δuda−
∫
a

[(∇s⊗∇sϕ) ·Qs] : (∇s⊗δu)da

=−
∫
a

∇s ·Qs · (∇s⊗∇sϕ) ·δuda−
∫
a

[(∇s⊗∇sϕ) ·Qs] : (∇s⊗δut −δunk)da
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=
∫
a

∇s · [δu⊗ (∇s ·Qs)] ·∇sϕda+
∫
a

∇s · [(∇s⊗∇sϕ) ·Qs] ·δutda

+
∫
a

[(∇s⊗∇sϕ) ·Qs] : kδunda

=
∫
a

(∇s ·∇s ·Qs)∇sϕ ·δuda+
∫
a

[∇sϕ⊗ (∇s ·Qs)] : (∇s⊗δu)da

+
∫
a

∇s · [(∇s⊗∇sϕ) ·Qs] ·δutda+
∫
a

[(∇s⊗∇sϕ) ·Qs] : kδunda

=
∫
a

(∇s ·∇s ·Qs)δuϕda+
∫
a

∇s · [(∇s⊗∇sϕ) ·Qs] ·δutda

+
∫
a

[(∇s⊗∇sϕ) ·Qs] : kδunda−
∫
a

∇s · [∇sϕ⊗ (∇s ·Qs)] ·δutda

−
∫
a

[∇sϕ⊗ (∇s ·Qs)] : kδunda

(60)

The variation of the second term on the right hand side of equation (49) can be
written as

∫
a

Usδ (∇s ·u)da

=
∫
a

1
2
[2Us0 +(σσσ s +ΓΓΓ) : εεεs +(τττs +ωωω)

...ws

+(Ds +ωωω) ·∇sϕ +(Qs +κκκ) : (∇s⊗∇sϕ)]δ (∇s ·ut −2γun)da

=−
∫
a

{1
2

∇s[2Us0 +(σs +ΓΓΓ) : εεεs +(τττs +ωωω)
...ws +(Ds +ωωω) ·∇sϕ

+(Qs +κκκ) : (∇s⊗∇sϕ)]δut +[2Us0 +(σσσ s +ΓΓΓ) : εεεs +(τττs +ωωω)
...ws

+(Ds +ωωω) ·∇sϕ +(Qs +κκκ) : (∇s⊗∇sϕ)]γδun}da

(61)



Electric Field Gradient Theory 81

Then, by substituting equations (56)-(61) into equation (49), we have

δ

∫
a

Usda =
∫
a

[−∇s · (σσσ s−∇s ·τττs)]δutda−
∫
a

[(σσσ s−∇s ·τττs) : k]δunda

−
∫
a

{1
2

∇s[2Us0 +(σs +ΓΓΓ) : εεεs +(τττs +ωωω)
...ws +(Ds +ωωω) ·∇sϕ

+(Qs +κκκ) : (∇s⊗∇sϕ)]δut +[2Us0 +(σσσ s +ΓΓΓ) : εεεs +(τττs +ωωω)
...ws

+(Ds +ωωω) ·∇sϕ +(Qs +κκκ) : (∇s⊗∇sϕ)]γδun}da

+
∫
a

∇s · [(∇sϕ⊗Ds)+(∇s⊗∇sϕ) ·Qs−∇sϕ⊗ (∇s ·Qs)] ·δutda

+
∫
a

[(∇sϕ⊗Ds)+(∇s⊗∇sϕ) ·Qs−∇sϕ⊗ (∇s ·Qs)] : kδunda

−
∫
a

∇s · (Ds−∇s ·Qs)δϕda

(62)

The above equation can be further rewritten as

δ

∫
a

Usda =
∫
a

[
−∇s ·

(
σσσ s−∇s ·τττs +σσσ

ES
s
)]

δutda

+
∫
a

[
−
(
σσσ s−∇s ·τττs +σσσ

ES
s
)

: k
]

δunda−
∫
a

∇s · (Ds−∇s ·Qs)δϕda

(63)

where σσσES
s is the generalized surface electrostatic force, which is defined as

σσσ
ES
s =− (∇sϕ⊗Ds)− (∇s⊗∇sϕ) ·Qs +∇sϕ⊗ (∇s ·Qs)

+
1
2
[2Us0 +(σσσ s +ΓΓΓ) : εεεs +(τττs +ωωω)

...ws

+(Ds +ωωω) ·∇sϕ +(Qs +κκκ) : (∇s⊗∇sϕ)]I

(64)

The expression (64) of the surface electrostatic force is almost same as the one
for the bulk, i.e., equation (43). Comparing with σσσ s and ∇s ·τττs the term σσσ s : εεεs

and τττs
...ws can be neglected since the strain is small. Hence, equation (64) can be
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reduced to

σσσ
ES
s =− (∇sϕ⊗Ds)− (∇s⊗∇sϕ) ·Qs +∇sϕ⊗ (∇s ·Qs)

+
1
2

[2Us0 +(Ds +ωωω) ·∇sϕ +(Qs +κκκ) : (∇s⊗∇sϕ)]I

=σσσ
M
s −∇s ·τττM

s

(65)

where σσσM
s and ∇s ·τττM

s are the generalized surface Maxwell stress, and the gener-
alized surface electrostatic stress corresponding to the electric field gradient effect,
respectively, which are defined as

σσσ
M
s =−(∇sϕ⊗Ds)+

1
2

[2Us0 +(Ds +ωωω) ·∇sϕ]I (66)

∇s ·τττM
s =− (∇s⊗∇sϕ) ·Qs +∇sϕ⊗ (∇s ·Qs)

+
1
2

[(Qs +κκκ) : (∇s⊗∇sϕ)]I
(67)

Due to the arbitrariness of δut , δun, and δϕ , from equations (47) and (63), the
governing equations can be written as

∇ ·
(
σσσ −∇ ·τττ +σσσ

ES)= 0 (68)

∇ · (D−∇ ·Q) = 0 (69)

with the boundary conditions on a

T ·R = ∇s ·
(
σσσ s−∇s ·τττs +σσσ

ES
s
)

(70)

T ·n =
(
σσσ s−∇s ·τττs +σσσ

ES
s
)

: k (71)

q = ∇s · (Ds−∇s ·Qs) (72)

τττ : (n⊗n) = 0 (73)

Q : (n⊗n) = 0 (74)

Equations (70)-(72) become the generalized electromechanical Young-Laplace equa-
tions, where equation (72) is the electric Young-Laplace equation and represents
the surface charge equation (surface Gauss’s law). Equations (68) and (69), with
boundary conditions (70)-(74), form the equations for nanosized linear elastic di-
electrics with the surface and strain/electric field gradient effects, as well as the
effect of the electrostatic force. After appropriate simplifications and transforma-
tions, these equations can be reduced to some special theory and those available
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in the literature. For example, without the surface effect, the strain gradient and
the electric field gradient effect, these equations are reduced to the classical elec-
tromechanical problems (Yang, 2004a; Zhang, 2004). If we do not consider the
electromechanical coupling and electric field gradient, only consider the electro-
statics, equation (72) can reduce to the same as that in Slavchov et al. (2006) for
surface polarization.

If we do not consider the effects of the electric field gradient and strain gradient,
∇ ·τττM and ∇s ·τττM

s should disappear. Then, without the external traction, the Young-
Laplace equations become

n ·
(
σσσ +σσσ

M) ·R = ∇s ·
(
σσσ s +σσσ

M
s
)

(75)

n ·
(
σσσ +σσσ

M) ·n =
(
σσσ s +σσσ

M
s
)

: k (76)

If the electrostatic force, strain gradient and the surface effect are not taken into
account, then the governing equations reduce to those for electric field gradient
in Yang (2004a, b). If the electrostatic force, strain gradient and the electric field
gradient effects are not taken into account, we can obtain the surface piezoelectric
theory.

If the electrostatic force are omitted, the second integrals in equations (20) and (21)
can be neglected, then the electromechanical surface/gradient theory can be derived
directly from (68)-(74) by leaving the generalized bulk and surface electrostatic
stresses σσσES and σσσES

s out.

If the surface polarizations are neglected, the surface constitutive relations are pure
mechanical, and the surface electrostatic stress σσσES

s should be canceled from equa-
tions (70) and (71) while the right hand side of equation (72) becomes zero.

If we do not consider the electromechanical coupling, then we can obtain the sur-
face/gradient elastic theory. Further, equations (68) and (69) will reduce to the
classical surface elastic theory as in Gurtin (1975) if we do not consider the strain
gradient effect either.

4 Conclusions

In this paper, a variational principle was established for nanosized dielectrics with
the strain/electric field gradients and surface effects. Based on the variational prin-
ciple, we formulated a theoretical framework to examine the size effect due to both
the electric field gradient effect and surface effect for dielectrics. The surface effect
includes both the effect of surface stress and surface polarization. The governing
equations and the generalized electromechanical Young-Laplace equations, which
include the effects of strain/electric field gradients, surface and electrostatic force,
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were presented. The generalized bulk and surface electrostatic stress are obtained
from the variational principle naturally. These formulae are different from those
for the flexoelectricity (Shen and Hu, 2010).
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