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Heat Transfer in Composite Beams using Combined
Cellular Automaton and Fibre Model

W.F. Yuan1 and K.H. Tan1

Abstract: A simple cellular automaton (CA) scheme is proposed to simulate heat
conduction in anisotropic domains. The CA is built on random nodes rather than
an irregular grid. The local rule used in the CA is defined by physical concepts
instead of differential equations. The accuracy of the proposed approach is verified
by classical examples. As an application of the proposed method, the CA approach
is incorporated into fibre model which is widely used in finite element analysis
to calculate the temperature distribution on the cross-section of composite beams.
Numerical examples demonstrate that the proposed scheme can be conveniently
applied to finite element analysis.
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1 Introduction

An accurate prediction of temperature distribution across a section for a given fire
condition plays a key role in the simulation of thermal effect in structural analyses
[Tan and Yuan (2008); Tan and Yuan (2009)]. In finite element modelling, fibre
model is frequently applied to beam and column members since it offers a good
balance between simplicity and accuracy [Spacone, Filippou and Taucer (1996a);
Spacone, Filippou and Taucer (1996b)]. According to this model, the cross-section
of a beam element is divided into a matrix of fibres; each of these fibres may have
different material, thermal and mechanical properties. Normally, to simplify the
simulation, the temperature in a fibre is assumed to be uniform along the longitudi-
nal direction of members.

Heat transfer is a classical issue in physics. It is also a normal problem in En-
gineering. Up to today, many approaches have been developed to calculate the
temperature distribution in structural members. To obtain accurate result, analyti-
cal approach can be used in some typical problems [Wang and Tan (2008); Chao,
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Chen and Chen (2009)]. On the other hand, approximate solution deduced from en-
gineering assumption may be adopted for simplicity [Tan, Ting and Huang (2002)].
Numerical analysis is another alternative choice. For instance, MFS algorithm and
residual correction method have been applied to the Cauchy problem in anisotropic
heat conduction [Marin (2009)] and non-linear heat transfer [Cheng, Chen and
Yang (2009)], respectively. Moreover, the hybrid numerical method has been used
to analyze the heat conduction in a plate with functionally graded material. Be-
sides, other numerical approaches, such as finite element analysis (FEA) [Huang,
Tan and Phng (2007)], boundary element method (BEM) [Divo and Kassab (2006)]
and Meshless [Sladek, Sladek, Tan and Atluri (2008); Sladek, Sladek, Solek, Wen
and Atluri (2008); Sladek, Sladek, Solek and Wen (2008)] are also very useful
methods to conduct heat transfer analysis. However, among these methods, FEA is
the most popular tool used by engineers. On the other hand, due to the meshing of
the cross-section, it is tedious to incorporate heat transfer analysis into fibre model
formulations. Compared with FEA, BEM seems more convenient to be used since
it only requires discretization on the boundaries of the cross-sections of beams and
columns. But, BEM will become inefficient if the fibres have many different types
of material properties. Although analytical approach is the basis of numerical val-
idations for FEA and BEM, its use is rather limited as it is confined to well-posed
problems. Engineers resorting to analytical approach will encounter great difficul-
ties when dealing with a cross-section of complex shape consisting of anisotropic
material. The fourth approach engineering assumption pre-supposes that the tem-
perature distribution on a cross-section follows a linear or quadratic function in
spatial domain. This method is easy to use but lacks rigor.

To overcome the difficulties mentioned above, the authors propose a mesh-free
method based on cellular automaton (CA). The history of CA can be traced back to
1940s when Von Neumann et al. studied biological reproduction and crystal growth
[Von and Burks (1966)]. Since then, CA has been used to model complex phenom-
ena in various areas such as fluid dynamics [Wolfram (1986)], biology [Ermentrout
and Edlestein (1993)] and emergency evacuation [Yuan and Tan (2007a); Yuan and
Tan (2007b)]. Basically, CA is a discrete model which consists of a regular grid
of cells, each cell in one of a finite number of states. In a CA model, time is also
discretized into finite number of steps, and the current state of a specific cell is in-
fluenced and determined by the states of its neighboring cells at the last time step.
When CA is applied to heat conduction problems, the rules which dominate the
simulation are deduced directly from the physical phenomenon instead of solving
differential equations. To implement the CA approach, random nodes are generated
within a domain and along its boundary as well. Since meshing is not required, this
approach can be used to model domains with arbitrary boundaries. Moreover, it
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can also be used to calculate the temperature distribution in non-homogeneous ma-
terials. Therefore, the proposed approach provides a useful and practical numerical
tool to simulate heat conduction in composite structural members, such as compos-
ite concrete columns with embedded steel I-section.

2 Formulation

Generally, a CA model requires a spatial domain to be discretized into regular cells.
Besides, the time domain is divided into a series of intervals. As a main feature,
a CA model is established based on several local rules which relate the current
state of a particular cell to the states of its neighbouring cells at the last time step.
To analyze heat conduction in solids, this basic concept of CA is extended in the
present study. Firstly, irregular grid of random nodes in the spatial domain is used to
replace regular cells in traditional CA. Secondly, a virtual time domain is generated
and divided into constant intervals to match the features of CA. In this paper, only
steady-state heat conduction is discussed, although with some modifications, the
method can be extended to transient-state heat conduction.
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Figure 1: Illustration of an arbitrary three-dimensional domain

Consider a three-dimensional solid domain Ω as shown in Figure 1. The term Ti

is the temperature at an arbitrary point Pi within Ω. The point Pi is located at the
centre of its neighbouring volume which is illustrated by a sphere with a radius
r0. Within the sphere, Pj is a typical node among Ni monitoring points. Similar
toPi, the temperature at point Pj is denoted by Tj. To construct a CA model, the
relationship between Pi and other points within its neighbouring sphere is defined
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by Eq. (1).

Ti =
Ni

∑
j=1

ωi jTj (1)

where ωi j is a weighting factor where subscript idenotes point Pi and subscript j
relates to the congregate effects of temperature at neighbouring points Pj. Thus,
clearly, from Eq. (1), the temperature at Pi is determined by the neighbouring
temperatures. This rule is based on the assumption that the variable Ti will not
vary too much within a very small sphere. It is implicitly assumed that there is
continuous variation of temperature over the spatial distance within the sphere. Eq.
(1) also indicates that the influence of point Pj to Ti is dependant on the value of
weighting factor ωi j. To allow for anisotropic heat transfer, it is assumed that the
material in the domain is non-homogeneous, where ωi j is given by Eq. (2):

ωi j = (ki + k j)

/
Ni

∑
l=1

(ki + kl) (2)

where ki, k j and kl are the respective thermal conductivities at points Pi, Pj and Pl .

One observes that
Ni

∑
j=1

ωi j = 1.

From Eqs. (1) and (2), one finds that the temperature at each point within the
neighbouring area of Pi affects the value of Ti. The definition in Eq. (2) accords with
the physical law in heat transfer in that, the larger the average thermal conductivity
between points Pi and Pj, the closer are the temperatures at these two points.

To complete the construction of the CA model, Eq. (1) can be extended to Eq. (3)
by incorporating virtual time steps t:

Ti(tm) =
Ni

∑
j=1

ωi jTj(tm−1) (3)

The interpretation for Eq. (3) is that the temperature at Pi at tm is determined by the
temperatures at neighbouring points of Pj at the previous time step tm−1.

To implement the CA model described above, analogous to points Pi and Pj, one
can define many random points within Ω and on its boundary. During an analysis,
the temperature at each point is updated according to Eq. (3) until it converges to
a stable value. The final converged value of the temperature at each point forms
a state which represents the solution of the particular domain. One may realize
that Eqs. (1) ∼ (3) are entirely based on physical intuition of the heat conduction
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phenomenon. It should be noted that differential equations are not involved in the
derivation. Like traditional CA model, the procedure to calculate the distribution
of temperature forms a loop which contains the following steps:

(1) Generate random nodes within the domain and on its boundary.

(2) Assign an initial value to each node where temperature is unknown.

(3) Based on the state at time tm−1, calculate the temperature at each node at tm
using Eq. (3).

(4) Repeat step (3) till the final time step tM. At tM, the temperature at each node
has converged to a stable value. It cannot be further updated compared with
the previous time tM−1.

3 Verification and application

3.1 Example 1: A rectangular domain under thermal conditions

As shown in Figure 2, a rectangular two-dimentional domain a-b-d-c is subjected to
thermal conditions. In the domain, the varying thermal conductivity of the material
is described by the function k(x,y) = ex2−y2

where x and y represent the physical
domain. On the boundaries, it is assumed that the temperatures are given as Tab = 0,
Tac = 0, Tbd = 2y and Tcd = x.

 

Figure 2: A rectangular domain under thermal conditions

For comparison purpose, the analytical solution can be derived for this example.
From the heat transfer theory, Eq. (4) is the governing partial differential equation
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for example 1.

∂ (k∂T/∂x)/∂x+∂ (k∂T/∂y)/∂y = 0 (4)

The solution of Eq. (4) can be obtained without difficulty. Its expression is:

T = xy (5)

The diagonals a-c and d-b can be respectively described by y = x/2 and y = 1−x/2.
Hence, the temperature distributions on the diagonals of rectangle a-b-d-c can be
derived:

T =

{
x2/2, (y = x/2)
x− x2/2, (y = 1− x/2)

(6)

On the other hand, to evaluate the temperature distribution using CA method, 1200
points inside the domain and 120 points along the four edges are generated ran-
domly, as shown in Figure 3. In the figure, there are 21 points (in red dots) dis-
tributed along the two diagonals of rectangle a-b-d-c. Temperatures at these points
are used for comparison with analytical answers given by Eq.(6). The value of
spatial distance of the sphere r0 is set to 0.1 in the calculation.

 

Figure 3: Distribution of points generated randomly in example 1

Both numerical and analytical results are depicted in Figure 4. It can be seen from
the figure that the CA predictions agree very well with the analytical results. In fact,
to minimize numerical errors, one can conduct several trial runs based on different
distribution of random points. The average values of few trial run results will be
more accurate.
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Figure 4: Numerical and analytical temperatures on diagonal lines

3.2 3.2 Example 2: A hollow ball under different inner and outer temperatures

Figure 5 illustrates a hollow ball with an inner radius rI = 0.25 and an outer radius
rO = 1.0. The thermal conductivity is assumed to be constant throughout the whole
domain. The temperatures on the two surfaces are TO = 2000C and TI = 5000C,
respectively.

 

Or  
OT

IT  
Ir  

Figure 5: A hollow ball under different inner and outer temperatures

Since the thermal conductivity is constant, this example turns out to be a one-
dimensional problem. However, to investigate the applicability of the proposed
approach in three-dimensional domain, 14744 points including 4000 in the domain
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and 10744 on the surfaces were generated randomly, as shown partly in Figure 6.
In the modelling, the value of r0 defined in Figure 1 is set to 0.08. To monitor the
temperature in the domain, 11 nodes were distributed evenly along a straight line
between the inner and outer surfaces. Through the comparison depicted in Figure
7, one finds that the numerical result agrees well with analytical result.

 
 

Figure 6: Random nodes generated for the calculation
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Figure 7: Temperatures at monitoring points

During the study in example 1 and 2, it has also been found that the accuracy of
simulation is affected by the number of nodes and the value of r0. In general,
more nodes will result in more accurate results. Needless to say, a large number of
random nodes will require a longer CPU time.
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3.3 Example 3: A composite beam under thermal conditions

Figure 8 shows the cross-section of a rectangular composite concrete column mod-
elling using fibre model. It can be seen that an I-section steel is embedded in the
concrete interior. The dimensions and the thermal boundary conditions are illus-
trated in the figure. In the analysis, it is assumed that the temperatures on the top
and bottom boundaries are T1 = 1000C and T2 = 5000C, respectively. It is also
defined that kC/kS = 1/50 where kC and kS denote the thermal conductivities of
concrete and steel, respectively.

 

Figure 8: The cross-section of a composite concrete column

As shown by the temperature contour in Figure 9, the temperature distribution on
the cross-section is symmetric about the column centroid x = 0. Along the y direc-
tion, between y = b/2 and y = −b/2, the temperature increases gradually from T1
to T2. More details can be seen in Figures 10 and 11. However, it is noteworthy
that the temperature on the column cross-section is not linearly distributed.
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Figure 9: Temperature distribution on the cross-section of a composite concrete
column
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Figure 10: Temperatures along x = 0

4 The relationship between differential equation and cellular automaton

The three examples illustrate that the proposed CA model can be used as a nu-
merical tool to analyze steady-state heat conduction, although the local rules in-
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Figure 11: Temperatures along y =±2.5a

corporated into the CA model are deduced without the consideration of differential
equation. However, it should be realized that differential equation is an analytical
tool applied to the same problem. Hence, it is believed that there exists a relation-
ship between the present CA model and classical differential equation since they
both describe the problem correctly. It is well-known that one-dimensional heat
conduction is governed by:

d(kdT/dx)/dx = 0 (7)

Based on this, one infers that kdT/dx = C1 where C1 is a constant. Applying
classical limit theorem to Eq. (7), one obtains:

lim
x j→xi

(k jTj− kiTi)/(x j− xi) = C1 (8)

Let spatial distance ∆ ji = x j−xi and thermal conductivityk j = ki = (k j +ki)/2 = η ji

arbitrarily. By applying Eq. (8) to all points within the neighbouring domain of
point Pi, one obtains Eq. (9).
Ni

∑
j=1

η ji (Tj−Ti) = C1

Ni

∑
j=1

∆ ji (9)

Thus,
Ni

∑
j=1

(η jiTj)−

(
Ni

∑
j=1

η ji

)
Ti = C1

Ni

∑
j=1

∆ ji (10)
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It should be noted that Pj is a random point in the neighbourhood of Pi. Therefore,

according to statistics, the term C1
Ni

∑
j=1

∆ ji → 0 when Ni is large enough. For this

situation, one obtains:

Ti =
Ni

∑
j=1

(η jiTj)/
Ni

∑
l=1

ηli =
Ni

∑
j=1

ωi jTj (11)

5 Conclusion

Based on the concept of cellular automata, a new numerical approach is devel-
oped without the consideration of differential equation for analyses of heat con-
duction in anisotropic domain. Numerical examples show that this approach can
be applied to steady-state heat conduction. Since CA is a mesh-free method, the
proposed approach is convenient to be used when it is incorporated into the fibre
model in structural analyses for composite concrete beams or columns. Addition-
ally, no complicated mathematical derivation is required during the development
of the proposed approach. The numerical implementation of this model is simple
because it is based on one local rule (Eq. (1)). After necessary improvement, such a
methodology can be used in other fields, for instance, columns subjected to torsion
since this kind of problems is governed by Poisson equation. In this study, only
steady-state heat conduction is discussed. In the future, the authors would extend
the CA model for transient problems.
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