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Abstract: A modified Pagano method is developed for the three-dimensional
(3D) coupled analysis of simply-supported, doubly curved functionally graded (FG)
piezo-thermo-elastic shells under thermal loads. Four different loading conditions,
applied on the lateral surfaces of the shells, are considered. The material prop-
erties of FG shells are regarded as heterogeneous through the thickness coordi-
nate, and then specified to obey an exponent-law dependent on this. The Pagano
method, conventionally used for the analysis of multilayered composite elastic
plates/shells, is modified to be feasible for the present analysis of FG piezo-thermo-
elastic plates/shells. The modifications include that a displacement-based formula-
tion is replaced by a mixed formulation, a set of the complex-valued solutions of
the system equations is transferred to the corresponding set of real-valued solutions,
a successive approximation (SA) method is adopted and introduced in the present
analysis, and the propagator matrix method is developed for the heat conduction
analysis and the coupled piezo-thermo-elastic analysis of the FG shells. The influ-
ence of the material-property gradient index on the field variables, induced in the
FG piezo-thermo-elastic shells and plates under the thermal load, is studied.

Keywords: The Pagano method, 3D solutions, Coupled piezo-thermo-elastic ef-
fects, FG material, Heat conduction, Shells, Plates

1 Introduction

In recent decades, a class of multilayered piezoelectric structures has been de-
veloped as so-called intelligent (or smart) structures, for use in engineering ap-
plications, such as sensors for monitoring and actuators for controlling structural
responses. Because this class of intelligent structures is commonly utilized in a
changing thermal environment, some problems may occur due to sudden changes
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in the material properties at the interfaces between the adjacent layers, such as
large thermal stresses (Crawley and Luis, 1987). Consequently, an emerging class
of functionally graded (FG) piezoelectric structures has been developed in recent
years. Unlike the layer-wise constant distribution of material properties through the
thickness coordinate of multilayered structures, the distribution of material proper-
ties in FG structures gradually and continuously varies. However, this feature also
increases the complexity and difficulty of analyzing such FG structures, especially
when they operate in a changing temperature environment.

Some research into the three-dimensional (3D) analysis of multilayered piezo-
thermo-elastic structures has been undertaken, building on a pioneering work (Im
and Atluri, 1989) in which the effects of a piezo-actuator on a finitely deformed
beam under general loads was studied. Based on a state space approach, Xu, Noor
and Tang (1995) presented the 3D solutions for the static behaviors of simply-
supported, multilayered plates consisting of a combination of fiber-reinforced cross-
ply and piezo-thermo-elastic layers. Later, Dube, Kapuria and Dumir (1996a, b)
and Zhang, Di and Zhang (2002) investigated the cylindrical bending type of defor-
mation and stress analysis of infinitely long, simply-supported, orthotropic single-
layer flat, circular cylindrical panels, and multilayered flat panels under thermo-
electro-mechanical loads, respectively. Ashida and Tauchert (2001) presented a
general plane-stress solution in cylindrical coordinates for a piezo-thermo-elastic
plate. Literature surveys of the developments, ideas, and applications of a variety
of theoretical methodologies and numerical models for the analysis of the multi-
layered smart structures have been undertaken by Tauchert et al. (2000) and Tang,
Noor and Xu (1996), which included most of the then-published 2D theories of
piezo-thermo-elastic plates/shells.

After a close literature survey, we found that to date there are few 3D coupled
thermo-electro-mechanical analyses of FG structures in comparison with those of
multilayered structures. Zhong and Shang (2005) presented the exact solution of
FG piezo-thermo-elastic plates, where the material properties were assumed to
obey an exponent-law distribution through the thickness coordinate. Wu, Shen and
Chen (2003) presented an analytical study of the piezo-thermo-elastic behavior of
a FG piezoelectric cylindrical shell subject to the axisymmetric thermal or me-
chanical loading, where the material properties were assumed to obey a power-law
dependent on the thickness coordinate. Moreover, a 3D analysis of FG magneto-
electro-thermo-elastic plates using a state space approach in conjunction with the
potential theory method can also be found in the literature (Chen and Lee, 2003).
However, to the best knowledge of the author, the present subject, the 3D piezo-
thermo-elastic analysis of simply supported, doubly curved FG shells in a changing
temperature environment, can not be found in the current literature.
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A review of the 3D analytical methods for multilayered and functionally graded
structures made up of smart materials was undertaken by Wu, Chiu and Wang
(2008), where they classified them as the Pagano (Heyliger and Brooks, 1995,1996),
state space (Chen, Ding and Xu, 2001; Wu and Liu, 2007), series expansion (ka-
puria, Dumir and Sengupta, 1997; Kapuria, Sengupta and Dumir, 1997) and asymp-
totic approaches (Wu and Syu, 2006, 2007; Wu, Syu and Lo, 2007; Wu and Tsai,
2007, 2009; Tsai and Wu, 2008). Among these, the Pagano method is the most
commonly applied for multilayered smart structures. However, there are some limi-
tations when the Pagano method is applied to the analysis of FG smart plates/shells,
as follows. (a) Because the material properties of FG piezoelectric plates/shells
gradually vary in the thickness direction, the governing equations of FG plates/shells
are a system of differential equations with variable, rather than constant, coeffi-
cients. This may mean that the Pagano method fails to directly analyze the me-
chanical problems of FG plates. (b) Using the Pagano method for the 3D analysis
of piezoelectric plates/shells may yield a set of linearly independent solutions of
system equations involving complex-valued solutions, resulting in inefficient com-
putation for the 3D analysis. (c) A displacement-based formulation is used in the
Pagano method, in which the primary displacement variables can not totally include
the field variables involved in the lateral boundary conditions on the lateral sur-
faces and the continuity conditions at the interfaces between adjacent layers. These
boundary conditions and continuity conditions can thus not be directly imposed in
the solution process. (d) Using the Pagano method may turn the basic 3D equa-
tions into a system of simultaneously nonhomogeneous algebraic equations, and
the computation for determining the unknowns thus becomes very time-consuming
as the total number of layers constituting the plate increases.

In order to utilize the Pagano method for the analysis of FG piezoelectric plates/shells,
Wu, Chen and Chiu (2009) and Wu and Lu (2009) developed a modified Pagano
method for the analysis of the static and dynamic responses of simply supported,
FG magneto-electro-elastic plates, respectively. The modifications to the origi-
nal Pagano method are as follows. (a) A successive approximation (SA) method
(Soldatos and Hadjigeorgiou, 1990) was adopted, where the FG plate is artificially
divided into a certain number of individual layers with an equal and small thickness,
compared with the curvature radius, for each layer. By the refinement manipulation,
one may reasonably approximate the variable material coefficients of each individ-
ual layer to the constant material coefficients in an average thickness sense, so that
the system of thickness-varying differential equations for each individual layer can
be reduced to a system of thickness-invariant differential equations. (b) The sets of
complex-valued solutions of system equations were transferred to the correspond-
ing sets of real-valued solutions by means of Euler’s formula for the purpose of
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computational efficiency. (c) A mixed formulation, not the displacement-based for-
mulation, was developed, so that both the lateral boundary conditions on the outer
surfaces and the continuity conditions at the interface between adjacent layers can
be directly applied. (d) A propagator matrix method was developed, so that the
general solutions of system equations can be obtained layer-by-layer. These mod-
ifications made the Pagano method feasible for the 3D analysis of FG plates, and
implementations showed that the computation thus became less time-consuming
and independent of the total number of layers constituting the plate.

Due to the benefits of the modified Pagano method noted above, in this paper we ex-
tensively applied it to the 3D coupled analysis of simply-supported, doubly curved
FG piezo-thermo-elastic shells under thermal loads. It is known that the coupling
thermo-mechanical and piezoelectric effects slightly affect the distributions of ther-
mal field variables in the spatial domain, but significantly affect the distributions of
elastic and electric field variables in the spatial domain. Hence, a one-way cou-
pled analysis of FG piezo-thermo-elastic shells is used in this work, where a heat
conduction problem of FG shells under thermal loads is first analyzed, then the
determined temperature distributions of the domain are used for the coupled piezo-
thermo-elastic analysis of FG shells. This one-way coupled approach has been
commonly used in the literature (Xu, Noor and Tang, 1995; Dube, Kapuria and
Dumir, 1996a, b; Zhang, Di and Zhang, 2002; Zhong and Shang, 2005). The
material properties of the shells are assumed to obey an exponent-law distribution
through the thickness coordinate of the shell. Four different loading conditions on
the lateral surfaces of the shell are considered. A parametric study of the influence
of the material-property gradient index on the through-thickness distributions of
various variables in the thermal, electric, and mechanical fields is thus undertaken.

2 Basic equations of 3D piezo-thermo-elasticity

A simply-supported, doubly curved FG piezo-thermo-elastic shell with heteroge-
neous material properties through the thickness coordinate is considered, as shown
in Fig. 1. A set of the orthogonal curvilinear coordinates (ξ , η , ζ ) is located on the
middle surface of the shell. The total thickness of the shell is 2h; aξ and aη denote
the curvilinear dimensions in the ξ and η directions, respectively; and Rξ and Rη

denote the curvature radii to the middle surface of the shell.

The linear constitutive equations, valid for the nature of the symmetry class of the
piezo-thermo-elastic material considered, are given by

σi = ci jε j− ekiEk−αiT, (1)

Dl = el jε j +ηlkEk +βlT, (2)
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Figure 1: (a) The geometry and coordinates of a doubly curved shell; (b) The
dimensionless thickness coordinates of the bottom and top surfaces of each layer
constituting the FG shell

where σi and ε j (i, j=1–6) are the contracted notation for the stress and strain com-
ponents, respectively; Dl (l=1–3) and Ek (k=1–3) denote the electric displacement
and electric field components, respectively; T denotes the temperature change; ci j

and ηlk are the elastic and dielectric permeability coefficients, respectively; and eki,
αi and βl are the piezoelectric, stress-temperature and pyroelectric coefficients, re-
spectively. These material properties are considered as heterogeneous through the
thickness and as temperature independent (i.e., ci j(ζ ), ηlk(ζ ), eki(ζ ), αi(ζ ) and
βl(ζ )).
For an orthotropic solid, the previous material coefficients are given by

c =



c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

 , e =



0 0 e31
0 0 e32
0 0 e33
0 e24 0

e15 0 0
0 0 0

 , ααα =



α1
α2
α3
0
0
0
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ηηη =

η11 0 0
0 η22 0
0 0 η33

 , β =

 0
0
β3

 .

The strain-displacement relationships are

εξ

εη

εζ

γηζ

γξ ζ

γξ η


=



(
1/γξ

)
∂ξ 0

(
1/γξ Rξ

)
0 (1/γη)∂η (1/γηRη)
0 0 ∂ζ

0 ∂ζ − (1/γηRη) (1/γη)∂η

∂ζ −
(
1/γξ Rξ

)
0

(
1/γξ

)
∂ξ

(1/γη)∂η

(
1/γξ

)
∂ξ 0




uξ

uη

uζ

 , (3)

in which γk = 1 + ζ/Rk (k = ξ ,η); ∂i = ∂/∂ i (i = ξ ,η ,ζ ); uξ , uη and uζ are the
displacement components.

The stress equilibrium equations without body forces are given by

γησxi,xi + γξ τξ η ,η + γξ γητξ ζ ,ζ +
(
2/Rξ +1/Rη +3ζ/Rξ Rη

)
τξ ζ = 0 (4)

γητξ η ,ξ +γξ ση ,η +γξ γητηζ ,ζ +
(
1/Rξ +2/Rη +3ζ/Rξ Rη

)
τηζ = 0, (5)

γητξ ζ ,ξ +γξ τηζ ,η +γξ γησζ ,ζ +
(
1/Rξ +1/Rη +2ζ/Rξ Rη

)
σζ − γησξ /Rξ

− γξ ση/Rη = 0. (6)

The equations of electrostatics for the piezo-thermo-elastic material without the
electric charge density are

γηDξ ,ξ +γξ Dη ,η +γξ γηDζ ,ζ +(γη/Rξ + γξ /Rη)Dζ = 0. (7)

The relations between the electric field and electric potential are

Ek =−Φ,k /γk, (8)

where Φ denotes the electric potential; k=ξ ,η ,ζ and γζ = 1.

The equations of steady state heat conduction of the piezo-thermo-elastic material
without the heat generations are

γηPξ ,ξ +γξ Pη ,η +γξ γηPζ ,ζ +(γη/Rξ + γξ /Rη)Pζ = 0. (9)

The relations between the heat flux and temperature change are

Pk =−λkT,k /γk, (10)
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where Pk and λk (k = ξ , η , ζ ) denote the heat flux and thermal conductivity, re-
spectively.

Four different lateral surface conditions are considered, and their corresponding
boundary conditions are specified, as follows:

Case 1. In the cases of closed-circuit and convection surface conditions,

τξ ζ = τηζ = σζ = Φ = 0 on ζ =±h; (11a)

and

−T,ζ +h1T = h1T̄− (ξ ,η) on ζ =−h;

T,ζ +h2T = h2T̄ + (ξ ,η) on ζ = h; (11b)

where h1 and h2 denote the surface heat transfer coefficients at the bottom and
top surfaces of the shell, respectively, and T̄− and T̄ + are the applied temperature
change at the bottom and top surfaces of the shell, respectively.

Case 2. In the cases of closed-circuit and prescribed temperature surface condi-
tions,

τξ ζ = τηζ = σζ = Φ = 0 on ζ =±h; (12a)

and

T = T̄∓(ζ ,η) on ζ =∓h. (12b)

Case 3. In the cases of open-circuit and convection surface conditions,

τξ ζ = τηζ = σζ = Dζ = 0 on ζ =±h; (13a)

and

−T,ζ +h1T = h1T̄− (ξ ,η) on ζ =−h;

T,ζ +h2T = h2T̄ + (ξ ,η) on ζ = h. (13b)

Case 4. In the case of open-circuit and prescribed temperature surface conditions,

τξ ζ = τηζ = σζ = Dζ = 0 on ζ =±h; (14a)

and

T = T̄∓ (ξ ,η) on ζ =∓h. (14b)
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The edge boundary conditions of the shell are considered as fully simple supports,
suitably grounded and isothermal, and are given as

σξ = uη = uζ = Φ = T = 0, at ξ = 0 and ξ = aξ ; (15a)

ση = uξ = uζ = Φ = T = 0, at η = 0 and η = aη . (15b)

There are twenty-six basic equations in the 3D piezo-thermo-elasticity, as listed in
(1)–(10); and these are essentially a system of simultaneously partial differential
equations with variable coefficients. In the later work of this paper, a modified
Pagano method will be developed for this coupled analysis of doubly curved FG
shells under thermal loads.

3 Nondimensionalization

In order to scale all the field variables within a close order of magnitude and prevent
unexpected numerical instability in the computation process, we define a set of
dimensionless coordinates and variables, as follows:

x =
ξ√
Rh

, y =
η√
Rh

, z =
ζ

h
, Rx = Rξ /R, Ry = Rη/R,

u =
uξ√
Rh

, v =
uη√
Rh

, w =
uζ

R
,

σx =
σξ

Q
, σy =

ση

Q
, τxy =

τξ η

Q
,

τxz =
τξ η

Q
√

h/R
, τyz =

τηζ

Q
√

h/R
, σz =

σζ R
Qh

,

Dx = Dξ /(e
√

h/R), Dy = Dη/(e
√

h/R), Dz = Dζ /e,

Px = Pξ

√
Rhαt/(Qλt), Py = Pη

√
Rhαt/(Qλt), Pz = Pζ hαt/(Qλt),

φ = Φe/Qh, Tt = αtT/Q, (16)

where R, Q, e, αt , and λt stand for the characteristic length, reference elastic, piezo-
electric, stress-temperature, and thermal conductivity coefficients, respectively.

In the formulation, the elastic displacements (uξ , uη , uζ ), the transverse shear and
normal stresses (τξ ζ , τηζ , σζ ), the electric flux and potential components (Dζ ,
Φ) and the temperature change (T ) are selected as the primary field variables.
The other field variables are the secondary ones, and can be expressed in terms
of the primary ones. Introducing the set of dimensionless coordinates and variables
(16) and using the method of direct elimination, we obtain two sets of state space
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equations, one is for the heat conduction analysis, and the other is for the coupled
piezo-thermo-elastic analysis of FG shells, in terms of the primary field variables,
as follows:

The set of state space equations, related to the heat conduction analysis of a FG
piezo-thermo-elastic material shell, is given as

∂

∂ z

[
Tt

Pz

]
=
[

0 l12
l21 l22

][
Tt

Pz

]
, (17)

where

l12 =−1/λz, l21 =
(

λxh/γ
2
ξ
R
)

∂xx +
(
λyh/γ

2
ηR
)

∂yy,

l22 =−
[(

h/RxRγξ

)
+(h/RyRγη)

]
;

and λx = λξ /λt , λy = λη/λt , λz = λζ /λt .

The set of state space equations, related to the coupled static behavior of a FG
piezo-thermo-elastic material shell, is given as

∂

∂ z



u
v

Dz

σz

τxz

τyz

ϕ

w


=



k11 0 0 0 k15 0 k17 k18
0 k22 0 0 0 k26 k27 k28
0 0 k33 0 k17 k27 k37 0

k41 k42 k43 k44 k18 k28 0 k48
k51 k52 k53 k54 k55 0 0 k58
k61 k62 k63 k64 0 k66 0 k68
k53 k63 k73 k74 0 0 0 k78
k54 k64 k74 k84 0 0 0 k88





u
v

Dz

σz

τxz

τyz

ϕ

w


−



0
0
0

k49
k59
k69
k79
k89


Tt , (18)

where k11 = h/(γξ RRx), k15 = h/c̃55R, k17 =−
(
ẽ15h/c̃55γξ R

)
∂x, k18 =−

(
1/γξ

)
∂x,

k22 = h/(γηRRy), k26 = h/c̃44R, k27 =−(ẽ24h/c̃44γηR)∂y, k28 =−(1/γη)∂y,

k33 =−
[(

h/γξ RRx
)
+(h/γηRRy)

]
,

k37 =
[(

ẽ2
15/c̃55 + η̃11

)
h/γ

2
ξ
R
]

∂xx +
[(

ẽ2
24/c̃44 + η̃22

)
h/γ

2
ηR
]

∂yy,

k41 =
[(

Q̃11/γ
2
ξ
Rx

)
+
(
Q̃21/γξ γηRy

)]
∂x, k42 =

[(
Q̃12/γξ γηRx

)
+
(
Q̃22/γ

2
ηRy
)]

∂y,

k43 =
(
a21e/Qγξ Rx

)
+(a22e/QγηRy) ,

k44 =
(
a11h/γξ RRx

)
+(a12h/γηRRy)− (1/Rx +1/Ry +2hz/RRxRy)

(
h/Rγξ γη

)
,

k48 =
(

Q̃11/γ
2
ξ
R2

x

)
+
(
Q̃12 + Q̃21

)
/γξ γηRxRy +

(
Q̃22/γ

2
ηR2

y
)
,
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k49 =−
[(

a31/γξ Rxαt
)
+(a32/γηRyαt)

]
,

k51 =−
[(

Q̃11/γ
2
ξ

)
∂xx +

(
Q̃66/γ

2
η

)
∂yy

]
, k52 =−

[(
Q̃12 + Q̃66

)
/γξ γη

]
∂xy,

k53 =−
(
a21e/Qγξ

)
∂x, k54 =−

(
a11h/Rγξ

)
∂x,

k55 =−
(
h/Rγξ γη

)
(2/Rx +1/Ry +3hz/RRxRy) ,

k58 =−
[(

Q̃11/γ
2
ξ
Rx

)
+
(
Q̃12/γξ γηRy

)]
∂x,

k59 =
(
a31/γξ αt

)
∂x,

k61 =−
[(

Q̃21 + Q̃66
)
/γξ γη

]
∂xy, k62 =−

[(
Q̃66/γ

2
ξ

)
∂xx +

(
Q̃22/γ

2
η

)
∂yy

]
,

k63 =−(a22e/Qγη)∂y,

k64 =−(a12h/Rγη)∂y, k66 =−
(
h/Rγξ γη

)
(1/Rx +2/Ry +3hz/RRxRy) ,

k68 =−
[(

Q̃21/γξ γηRx
)
+
(
Q̃22/γ

2
ηRy
)]

∂y, k69 = (a32/γηαt)∂y,

k73 = e2b2/Q, k74 = ehb1/R, k78 =−
[(

a21e/Qγξ Rx
)
+(a22e/QγηRy)

]
,

k79 =−b3e/αt ,

k84 = a1Qh2/R2, k88 =−
[(

a11h/γξ RRx
)
+(a12h/γηRRy)

]
,

k89 =−a3Qh/(αtR) ;

the relevant coefficients in the previous terms of li j and ki j are given in Appendix
A.

The in-surface stresses, electric displacements and heat flux are dependent field
variables, that can be expressed in terms of the primary variables, as follows:

σσσ1 = B1u+B2w+B3σz +B4Dz +B5Tt , (19)

d = B6σs +B7ϕ, (20)

p = B8Tt , (21)

where

σp =


σx

σy

τxy

 , u =
{

u
v

}
, σs =

{
τxz

τyz

}
, d =

{
Dx

Dy

}
, p =

{
Px

Py

}
,

B1 =

(Q̃11/γξ

)
∂x

(
Q̃12/γη

)
∂y(

Q̃21/γξ

)
∂x

(
Q̃22/γη

)
∂y(

Q̃66/γη

)
∂y

(
Q̃66/γξ

)
∂x

 , B2 =

(Q̃11/γξ Rx
)
+
(
Q̃12/γηRy

)(
Q̃21/γξ Rx

)
+
(
Q̃22/γηRy

)
0

 ,
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B3 =

a11h/R
a12h/R

0

 , B4 =

a21e/Q
a22e/Q

0

 , B5 =

a31/αt

a32/αt

0

 ,

B6 =
[
(ẽ15/c̃55) 0

0 (ẽ24/c̃44)

]
, B7 =

[
−
(
ẽ2

15/c̃55 + η̃11
)

∂x/γξ

−
(
ẽ2

24/c̃44 + η̃22
)

∂y/γξ

]
,

B8 =
[
−λx∂x/γξ

−λy∂y/γη

]
.

The dimensionless form of the boundary conditions of the problem are specified as
follows:

Case 1.

τxz = τyz = σz = ϕ = 0 on z =±1; (22a)

and

−Tt ,z +hh1Tt = hh1T̄−t (x,y) on z =−1;

Tt ,z +hh2Tt = hh2T̄ +
t (x,y) on z = 1; (22b)

where T̄∓t = αt T̄∓(ζ ,η)/Q.

Case 2.

τxz = τyz = σz = ϕ = 0 on z =±1; (23a)

and

Tt = T̄∓t on z =∓1. (23b)

Case 3.

τxz = τyz = σz = Dz = 0 on z =±1; (24a)

and

−Tt ,z +hh1Tt = hh1T̄−t (x,y) on z =−1;

Tt ,z +hh2Tt = hh2T̄ +
t (x,y) on z = 1. (24b)

Case 4.

τxz = τyz = σz = Dz = 0 on z =±1; (25a)
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and

Tt = T̄∓t on z =∓1. (25b)

At the edges, the following quantities are satisfied:

σx = v = w = ϕ = Tt = 0, at x = 0 and x = aξ /
√

Rh; (26a)

σy = u = w = ϕ = Tt = 0, at y = 0 and y = aη/
√

Rh. (26b)

4 The modified Pagano method

4.1 The method of double Fourier series expansion

The method of double Fourier series expansion is applied to reduce the system
of partial differential equations (17)–(18) to a system of ordinary differential equa-
tions. By satisfying the edge boundary conditions, we express the primary variables
in the following form

(u,τxz) =
∞

∑
m̂=1

∞

∑
n̂=1

(um̂n̂(z), τxzm̂n̂(z))cos m̃xsin ñy, (27)

(v,τyz) =
∞

∑
m̂=1

∞

∑
n̂=1

(vm̂n̂(z), τyzm̂n̂(z))sin m̃xcos ñy, (28)

(w,σz,ϕ,Dz,Tt ,Pz)

=
∞

∑
m̂=1

∞

∑
n̂=1

(wm̂n̂(z),σzm̂n̂(z),ϕm̂n̂(z),Dzm̂n̂(z),Ttm̂n̂(z),Pzm̂n̂(z))sin m̃xsin ñy, (29)

where m̃ = m̂π
√

Rh/aξ , ñ = n̂π
√

Rh/aη , and m̂ and n̂ are the positive integers.

For brevity, the symbols of summation are omitted in the following derivation.
Using the set of dimensionless coordinates and field variables (16) and substituting
(27)–(29) in (17)–(18), we have the resulting equations, as follows:

dFt(z)/dz = L̄Ft(z), (30)

dFe(z)/dz = K̄Fe(z)+ Ḡ, (31)

where Ft = {Ttm̂n̂ Pzm̂n̂}T , Fe = {um̂n̂ vm̂n̂ Dzm̂n̂ σzm̂n̂ τxzm̂n̂ τyzm̂n̂ ϕm̂n̂ wm̂n̂}T ,

Ḡ is the nonhomogeneous term calculated from the known temperature function,
and is given by

Ḡ = (Ttm̂n̂)
{

0 0 0 k̄49 k̄59 k̄69 k̄79 k̄89
}T

,
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L̄ =
[

0 l̄12
l̄21 l̄22

]
,

K̄ =



k̄11 0 0 0 k̄15 0 k̄17 k̄18
0 k̄22 0 0 0 k̄26 k̄27 k̄28
0 0 k̄33 0 −k̄17 −k̄27 k̄37 0

k̄41 k̄42 k̄43 k̄44 −k̄18 k̄28 0 k̄48
k̄51 k̄52 k̄53 k̄54 k̄55 0 0 k̄58
k̄61 k̄62 k̄63 k̄64 0 k̄66 0 k̄68
−k̄53 −k̄63 k̄73 k̄74 0 0 0 k̄78

−~k54 −k̄64 k̄74 k̄84 0 0 0 k̄88


,

where l̄i j and k̄i j are given in Appendix B.

4.2 Theories of the homogeneous and nonhomogeneous linear systems

4.2.1 Theory of the homogeneous linear systems dFt(z)/dz = L̄Ft(z)

Equation (30) represents the state space equations for the problem of steady state
heat conduction of a simply-supported, FG shell under thermal loads, which is
a system of two simultaneously homogeneous ordinary differential equations in
terms of two primary variables. For a certain fixed value of thickness coordinate,
the coefficients of the system equations of (30) are constants. The general solution
of (30) is

Ft = ΩtLt , (32)

where Lt is a 2x1 matrix of arbitrary constants; Ωt is a fundamental matrix of
(30) and is formed by two linearly independent solutions in the form of Ωt =
[Ω1t , Ω2t ], Ωit = Λieλiz (i=1, 2); and λi and Λi are the eigenvalues and their cor-
responding eigenvectors of the coefficient matrix L̄ in (30).

If the coefficient matrix L̄ has a complex eigenvalue λ1 (i.e., λ1 = Re(λ1)+iIm(λ1)),
then its complex conjugate λ2 (i.e., λ2 = Re(λ1)− iIm(λ1)) is also an eigenvalue
of L̄ due to the fact that all of the coefficients of L̄ are real. In addition, Λ1,2 =
Re(Λ1)± iIm(Λ1) are the corresponding eigenvectors of the complex conjugate
pair λ1,2. Although there is nothing wrong with these two complex-valued solu-
tions in (30), we replace them with two linearly independent solutions involving
only real-valued quantities in order to achieve more efficient computational perfor-
mance. Using Euler’s formula these complex-valued solutions are replaced with
the real-valued solutions, and are given by

Ω1 = eRe(λ1)z [Re(Λ1)cos(Im(λ1)z)− Im(Λ1)sin(Im(λ1)z)] , (33)
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Ω2 = eRe(λ1)z [Re(Λ1)sin(Im(λ1)z)+ Im(Λ1)cos(Im(λ1)z)] . (34)

On the basis of the previous set of linearly independent real-valued solutions, a
propagator matrix method can be developed for the present analysis of multilay-
ered shells, and it can be extended to the analysis of FG shells using a successive
approximation method (Soldatos and Hadjigeorgiou, 1990), where the shell is ar-
tificially divided into a finite number (NL) of individual layers with an equal and
small thickness for each layer, compared with the curvature radius, as well as with
constant material properties, determined in an average thickness sense. The exact
3D solutions of the temperature change in the FG shell can thus be gradually ap-
proached by increasing the number of individual layers. It is noted that the present
solution process can be performed layer-by-layer, and the computational perfor-
mance is independent of the total number of individual layers. Consequently, the
implementation of the present approach is much less time-consuming than usual.

4.2.2 Theory of the nonhomogeneous linear system dFe(z)/dz = K̄Fe(z)+ Ḡ

Equation (31) represents the state space equations for the static behaviors of a
simply-supported, FG piezo-thermo-elastic shell under thermal loads, applied on
the lateral surfaces. That is a system of eight simultaneously nonhomogeneous
ordinary differential equations in terms of eight primary variables. The general
solution of (31) is

Fe = ΩeLe + F̄e, (35)

where Le is a 8x1 matrix of arbitrary constants; Ωe is a fundamental matrix of
(31), and is formed by eight linearly independent solutions in the form of Ωe =
[Ω1e, Ω2e, · · · , Ω8e], Ωie = Λieλiz (i=1, 2, . . . , 8); λi and Λi are the eigenvalues
and their corresponding eigenvectors of the coefficient matrix K̄ in (31), respec-
tively; and F̄e is the particular solution of (31) and F̄e = −K̄−1Ḡ. Again, if the
coefficient matrix K̄ has a certain pair of complex conjugate eigenvalues, their cor-
responding complex-valued eigenvectors will be transferred to a pair of real-valued
eigenvectors using (33)–(34). Subsequently, an SA method in conjunction with the
propagator matrix method will be developed in the following sections, and applied
to the coupled piezo-thermo-elastic analysis of FG shells.

4.3 The successive approximation method

In this paper, the material properties of FG piezo-electro-elastic shells are assumed
to obey an exponent-law distribution through the thickness coordinate, and are
given by

gi j (z) = g(b)
i j eκp[(z+1)/2], (36)



Three-Dimensional Solutions of Functionally Graded Piezo-Thermo-Elastic Shells 265

where the superscript b in the parentheses denotes the bottom surface of the shell;
and κp denotes the material-property gradient index, which represents the degree
of the material gradient along the thickness coordinate. It is noted that κp = 0
corresponds to the homogeneous material, κp < 0 to the graded soft material, and
κp > 0 to the graded stiff material. Because the material properties of FG plates
vary along the thickness coordinate, resulting in a variant coefficient matrix in the
system equations (30)–(31), the conventional Pagano method can not be directly
applied to this coupled analysis of FG shells. A successive approximation method
is thus adopted to make the present approach feasible. In the SA method, the FG
shell was artificially divided into an NL-layered shell with a small thickness and ho-
mogeneous material properties for each layer. For a typical mth-layer, the material
properties g(m)

i j are regarded as constants, and determined in an average thickness
sense, as follows:

g(m)
i j =

1
∆zm

∫ zm

zm−1

gi j (z)dz

=
2g(b)

i j e0.5κp

∆zmκp

[
e(0.5κpzm)− e(0.5κpzm−1)

]
,

(37)

where ∆zm = zm− zm−1.

By means of (37), the present modified Pagano method can be extensively applied
to the coupled analysis of FG shells. Increasing the number of artificial layers
(NL), we can approximate the exact solutions of the present coupled analysis of FG
piezo-thermo-electric shells to any desired accuracy.

4.4 The propagator matrix method

As we noted above, the modified Pagano method can be applied to the heat con-
duction and the coupled piezo-thermo-elastic analysis of FG shells under thermal
loads using (37). The through-thickness distribution of material properties of the
FG shell are modified as the layerwise Heaviside functions, and these are given by

gi j (z) =
NL

∑
m=1

g(m)
i j [H (z− zm−1)−H (z− zm)] , (38)

where NL denotes the total number of the artificial layers constituting the shell; g(m)
i j

refers to the coefficients of ci j, ei j, qi j, ηi j, di j and µi j of the mth-layer in general;
H (z) is the Heaviside function; and zm−1 and zm are the dimensionless distances,
measured from the middle surface of the shell to the bottom and top surfaces of the
mth-layer, respectively.
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A propagator matrix method for the heat conduction and coupled piezo-thermo-
elastic analyses of the NL-layered shells is then developed, as follows.

4.4.1 Heat conduction analysis

According to (32), we can write the general solution for the heat conduction equa-
tions of the mth-layer in the form of

F(m)
t (z) = Ω

(m)
t (z)L(m)

t . (39)

As z = zm−1, according to (39) we obtain

L(m)
t =

[
Ω

(m)
t (zm−1)

]−1
Ft(m−1), (40)

where Ft(m−1) denotes the vector of primary variables in the thermal field at the

interface between the (m-1)th and mth-layers, and Ft(m−1) = F(m)
t (z = zm−1).

As z = zm, using (39) and (40), we obtain

Ft(m) = Rt(m)Ft(m−1), (41)

where Rt(m) = Ω
(m)
t (zm)

[
Ω

(m)
t (zm−1)

]−1
.

By analogy, the vectors of primary variables in the thermal field between the top
and bottom surfaces of the shell (i.e., Ft(NL) and Ft(0)) are linked by

Ft(NL) = Rt(NL)Ft(NL−1)

=

(
NL

∏
m=1

Rt(m)

)
Ft(0)

, (42)

where ∏
NL
m=1 Rt(m) = Rt(NL)Rt(NL−1) · · ·Rt(2)Rt(1).

Equation (42) represents a set of two simultaneous algebraic equations. Imposing
the thermal boundary conditions on the lateral surfaces, we may determine the
other unknown primary variables on the lateral surfaces. Afterwards, the primary
variables through the thickness coordinate of the shell can be obtained by

F(m)
t (z) = Ω

(m)
t (z)

[
Ω

(m)
t (zm−1)

]−1
Ft(m−1)

= Ω
(m)
t (z)

[
Ω

(m)
t (zm−1)

]−1
(

m−1
Π

i=1
Rt(i)

)
Ft(0)

. (43)

Once the primary variables in the thermal field, which vary through the thickness
of the plate, are determined, the corresponding set of dependent variables in the
thermal field can then be obtained using (21).
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4.4.2 Coupled piezo-thermo-elastic analysis

According to (35), we obtain the general solution for the coupled piezo-thermo-
elastic equations of the mth-layer in the form of

F(m)
e (z) = Ω

(m)
e (z)L(m)

e + F̄(m)
e , (44)

where F̄(m)
e =−

(
K(m)

)−1 Ḡ(m).

As z = zm−1, according to (44) we obtain

L(m)
e =

[
Ω

(m)
e (zm−1)

]−1(
Fe(m−1)− F̄(m)

e

)
, (45)

where Fe(m−1) denotes the vector of primary field variables at the interface between

the (m-1)th and mth-layers; Fe(m−1) = F(m)
e (z = zm−1).

As z = zm, using (44) and (45), we obtain

Fe(m) = Re(m)Fe(m−1) + F̄(m)
p , (46)

where Re(m) = Ω
(m)
e (zm)

[
Ω

(m)
e (zm−1)

]−1
and F̄(m)

p =
(
1−Re(m)

)
F̄(m)

e .

By analogy, the vectors of primary variables in the elastic and electric fields be-
tween the top and bottom surfaces of the plate (i.e., Fe(NL) and Fe(0)) are linked
by

Fe(NL) = Re(NL)Fe(NL−1) + F̄(NL)
p

=

(
NL

∏
m=1

Re(m)

)
Fe(0) + P̄.

(47)

where

P̄ = F̄(NL)
p +Re(NL)F̄

(NL−1)
p +Re(NL)Re(NL−1)F̄

(NL−2)
p + · · ·+

(
NL

∏
m=2

Re(m)

)
F̄(1)

p ,

NL

∏
m=1

Re(m) = Re(NL)Re(NL−1) · · ·Re(2)Re(1).

Equation (47) represents a set of eight simultaneous algebraic equations. Impos-
ing the prescribed conditions on the lateral surfaces, we may determine the other
unknown primary variables in the elastic and electric fields on the lateral surfaces.
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Afterwards, these primary variables through the thickness coordinate of the shell
can be obtained by

F(m)
e (z) = Ω

(m)
e (z)

[
Ω

(m)
e (zm−1)

]−1(
Fe(m−1)− F̄(m)

e

)
+ F̄(m)

e . (48)

Once the primary variables, varied through the thickness of the plate, are deter-
mined, the corresponding set of dependent variables in the elastic and electric fields
can then be obtained using (19)–(20).

5 Illustrative examples

5.1 Single-layer homogeneous piezo-thermo-elastic shells

The present formulation for the coupled piezo-thermo-elastic analysis of FG shells
can be reduced to that of FG plates by letting 1/Rξ = 1/Rη = 0. For compar-
ison purposes, the exact 3D solutions, obtained by Dube et al. (1996a) for the
coupled piezo-thermo-elastic analysis of simply-supported, single-layer homoge-
neous plates with closed-circuit surface conditions and under a cylindrical bending
type of thermal load, are used to validate the accuracy of the present modified
Pagano method, where κp = 0. The plate is considered to be composed of cad-
mium selenide polarized perpendicular to its mid-plane. The material properties
of this crystal are given in Table 1. The lateral surface conditions of the plates
are considered as Cases 1 and 3 (i.e., (11) and (13)) in Tables 2 and 3, respec-
tively. The thermal load applied on the lateral surfaces are given as T̄− = 0 and
T̄ + = T0 sin

(
πξ/aξ

)
. The dimensionless variables are denoted as the same forms

used in Dube et al. (1996a), and given as follows:

(ū, w̄) =
100

2hS2αξ T0

(
Suξ ,uζ

)
,

(σ̄x, σ̄y, σ̄z, τ̄xz) =
(
S2

σξ ,ση ,S4
σζ ,S3

τξ ζ

)
/Yξ αξ T0,

D̄z = Dζ / |d1|Yξ αξ T0, ϕ̄ = |d1|ϕ/2hαξ T0, T̄ = T/T0, (49)

where S = aξ /2h; and Yξ αξ and d1 are the Young’s modulus, thermal expansion
coefficient and piezoelectric coefficient in direction ξ , respectively.

Tables 2 and 3 show that the present solutions of elastic, electric and thermal field
variables, induced in the single-layer homogeneous piezo-thermo-elastic plates with
the surface conditions of Cases 1 and 3, respectively. The accuracy of the present
modified Pagano method is validated by comparing the present solutions with the
available 3D solutions (Dube et al., 1996a). It is seen in Tables 2 and 3 that the
present solutions are in excellent agreement with these earlier 3D solutions through
a wide range, from S=2 (thick plates) to S=20 (thin plates).
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Table 1: Material properties of the cadmium selenide material

c11 (Gpa) 74.1 η11 (C2/Nm2) 82.5e-12
c22 74.1 η22 82.5e-12
c33 83.6 η33 90.2e-12
c12 45.2 α1 (N/Km2) 0.621e+06
c13 39.3 α2 0.621e+06
c23 39.3 α3 0.551e+06
c44 13.17 β3 (C/Km2) -2.94e-06
c55 13.17 αξ 4.396e-06
c66 14.45 d1 (C/N) -3.9238e-12

e31 (C/m2) -0.160 2hh1 (1/m) 0.2
e32 -0.160 2hh2 (1/m) 2.0
e33 0.347 Yξ (Gpa) 42.785
e24 0.0 λζ /λξ 1.5
e15 -0.138

5.2 Functionally graded piezo-thermo-elastic plates

A coupled analysis of FG piezo-thermo-elastic plates with closed- and open-circuit
surface conditions subjected to a sinusoidally distributed temperature change on
the top surface of the plate is considered in Table 4. The exact 3D solutions of this
problem, obtained by Zhong and Shang (2005) using the state space method, were
used to validate the accuracy and convergence rate of this method. The geometric
parameters are taken as aξ = aη = 1m and 2h = 0.1m. The material properties of the
plates are assumed to obey an exponent-law dependent on the thickness coordinate,
and are given as (36) with κp = 1, where the reference material properties on the
bottom surface are identical to those used in Example 5.1, and given in Table 1.
The applied sinusoidally distributed temperature change in Table 4 is given as

T̄ + = T0 sin
m̂πξ

aξ

sin
n̂πη

aη

, (50)

where m̂ = n̂=1, T0=1◦K.

Table 4 shows the present results of a variety of variables in the mechanical, electric
and thermal fields induced at a particular point (ξ = aξ /4,η = aη/4,ζ = −h/2)
in the FG plates with closed-circuit (Case 2) and open-circuit (Case 4) surface
conditions, respectively. It is shown that the present solutions converge rapidly,
and these are in excellent agreement with the 3D solutions available in the literature
(Zhong and Shang, 2005). The relative errors of the present 32-layered solutions
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are less than 1% in comparison with the 3D available solutions.

5.3 Functionally graded piezo-thermo-elastic shells

A coupled analysis of FG piezo-thermo-elastic shells with surface conditions of
Cases 1–3 is considered in Figs. 2–4, respectively, where the applied temperature
change on the top surface of the shell is taken as T̄ + = T0 sin

(
πξ/aξ

)
sin(πη/aη).

The geometric parameters of the plates are aξ /2h = aη/2h = 10 and Rξ /aξ =
Rη/aη = 5. The dimensionless variables are identical to those used in Example
5.1, and the material-property gradient index κp is taken as κp=-3.0, -1.5, 0.0, 1.5,
3.0. The present 32-layered solutions for the through-thickness distributions of
various variables in the electric, elastic and thermal fields, induced in the shells
with three different surface conditions (i.e., Cases 1–3), are presented in Figs. 2–
4, respectively. Figs. 2(a)–4(a) show that the through-thickness distributions of
the temperature change appear to be linear in the cases of homogeneous shells
(i.e., κp=0). However, the distributions become higher-degree polynomials when
the homogeneous shells become graded stiff shells (κp>0) or graded soft shells
(κp<0). It is observed from Figs. 2 and 4 that the through-thickness distributions of
temperature change and mechanical variables for the shells with closed-circuit and
convection surface conditions (Case 1) are very similar to those of the shells with
open-circuit and convection surface conditions (Case 3); whereas the distributions
of electric potential and normal electric displacement are quite different for the
shells with surface conditions of Cases 1 and 3. Figs. 2–4 show that the influence
of the material-property gradient index κp on the field variables is significant. It is
also seen from Figs. 2(d, e, f)–5(d, e, f) that the prescribed boundary conditions on
the lateral surfaces of the shell are exactly satisfied.

Fig. 5 shows the variations of the through-thickness distributions of various field
variables, induced in the shells with the span-thickness ratio (S). The shells with
the surface conditions of Case 4 and under a sinusoidally distributed temperature
change are considered, where the values of various parameters are taken as S =
aξ /2h = aη/2h=5, 10, 20; Rξ /aξ = Rη/aη = 5; and κp = 1. It is shown that the
variations of the through-thickness distributions of the temperature change with
the span-thickness ratio, unlike those of other variables in the elastic and electric
fields, are insignificant. The magnitudes of the temperature change and the in-
surface elastic displacement induced in the shells get larger as the shells become
thinner; whereas those of transverse stress, electric potential and electric normal
displacement get larger as the shells become thicker.
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Figure 2: The through-thickness distributions of various field variables in an FG
shell with the surface conditions of Case 1
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Figure 3: The through-thickness distributions of various field variables in an FG
shell with the surface conditions of Case 2
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Figure 4: The through-thickness distributions of various field variables in an FG
shell with the surface conditions of Case 3
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Figure 5: The variations of the through-thickness distributions of various field vari-
ables in an FG shell with the span-thickness ratio



278 Copyright © 2009 Tech Science Press CMC, vol.12, no.3, pp.251-281, 2009

6 Concluding remarks

In this paper we have developed a modified Pagano method for the three-dimensional
coupled analysis of simply-supported, doubly curved FG piezo-thermo-elastic shells
under thermal loads. Four different lateral surface conditions of the shells, namely
closed-circuit and convection, closed-circuit and prescribed temperature, open-circuit
and convection, as well as open-circuit and prescribed temperature surface condi-
tions, are considered. The present formulation of the shells can be reduced to that
of plates by letting the value of 1/curvature radius equal zero. In conjunction with
a successive approximation method, an FG shell is modified as an NL-layered shell
with an equal and small thickness, compared with the curvature radius, as well as
the constant material properties in an average thickness sense for each layer. The
accuracy and convergence rate of the present method are evaluated in compari-
son with the available 3D solutions, with which the present solutions are shown to
converge rapidly and be in excellent agreement. In addition, the influence of the
material-property gradient index on the variables in various fields, induced in the
FG shells under the thermal load, is shown to be significant.
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Appendix A

The relevant coefficients of li j and ki j in (17) and (18), respectively, are given by

c̃i j = ci j/Q, ẽi j = ei j/e, η̃i j = ηi jQ/e2;

Qi j = ci j− ci3a1 j− e3ia2 j (i, j = 1,2,6), Q̃i j = Qi j/Q;

a1k = ck3a1 +e3ka2, a2k = ck3b1 +e3kb2, a3k =−αk +a1kα3−a2kβ3 (k = 1,2);
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a1 = η33/∆, a2 = e33/∆, a3 = (η33α3− e33β3)/∆,

b1 = a2, b2 =−c33/∆, b3 = (e33α3 + c33β3)/∆, ∆ = c33η33 + e2
33. (A.1)

Appendix B

The coefficients l̄i j and k̄i j in (30) and (31), respectively, are given by

l̄12 = l12, l̄21 =−m̃2
(

λxh/γ
2
ξ
R
)
− ñ2 (

λyh/γ
2
ηR
)
, l̄22 = l22,
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(
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)
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(
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)
,

k̄22 = k22, k̄26 = k26, k̄27 =−ñ(ẽ24h/c̃44γηR) , k̄28 =−ñ/γη ,

k̄33 = k33, k̄37 =−m̃2
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,

k̄43 = k43, k̄44 = k44, k̄48 = k48, k̄49 = k49,

k̄51 = m̃2
(

Q̃11/γ
2
ξ

)
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k̄84 = k84, k̄88 = k88, k̄89 = k89. (B.1)




