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A Phenomenological Theory and Numerical Procedure for
Chemo-Mechanical Coupling Behavior of Hydrogel

Q. S. Yang', B. S. Liu and L. T. Meng

Abstract: Coupling and interaction of multi-physical fields exist in hydrogel con-
sisting of a fluid and a solid under external stimulus. In this paper, a phenomenolog-
ical theory for chemo-mechanical coupling behavior and finite element formulation
are developed, based on the thermodynamic laws. The free energy function is con-
structed and used to derive the constitutive equations and governing equations for
a linear coupling system including a chemical effect. Equivalent integral forms
of the governing equations and coupled finite element equations are obtained by a
variational principle. Numerical examples demonstrate the interaction of chemi-
cal and mechanical effects of hydrogel under external force loadings and chemical
stimuli. It is shown that the chemo-mechanical coupling behavior of hydrogel can
be described by the theory and numerical method presented in this paper.

Keywords: hydrogel, chemo-mechanical coupling, constitutive equations, varia-
tional principle, coupled FE method

1 Introduction

Several materials used in industry and engineering, e.g. electrical active polymer,
responsive hydrogel,make response to external environment stimuli. The chemical
energy and mechanical energy exchange with each other in this process which leads
to a chemo-mechanical coupling effect.

To characterize multi-field coupling behavior in a medium, many approaches have
been proposed. In early works, the porous medium theory based on the Darcy’s
law was developed in Boer de (2003) to investigate the interaction of a solid and
a liquid. In order to take into account a chemical effect which induces the mass
diffusion or energy transformation in a medium, the liquid diffusion caused by
electrochemistry effect as well as chemo-mechanical coupling effect was consid-
ered. Lai, Hou and Mow (1991) developed a triphasic model to describe the chem-
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ical effect of ionic diffusion in articular cartilage. Gu, Lai and Mow (1997) pre-
sented an electro-chemo-mechanical coupling constitutive equation based on that
triphasic model. Gajo, Loret and Hueckel (2002) presented the electro-chemo-
mechanical coupling model of a porous medium by a conception of chemical con-
solidation. They developed electro-chemo-mechanical constitutive equations under
elastic-plastic framework. Loret and Simoes (2004) developed a triphasic model of
articular cartilage, taking into account balance equations of momentum and en-
ergy. And electro-chemo-mechanical coupling constitutive relation was discussed
in their paper. Huyghe and Janssen (1997, 1999) presented an electro-chemo-
thermo-mechanical coupling theory for an incompressible porous medium. In their
model, each constituent satisfies the momentum equation, energy equation and
entropy inequality. Frijns, Huyghe and Janssen (1997), Meerveld, Molenaar and
Huyghe (2003) established equilibrium equations, diffusion equations and mass
transfer equations using porous medium theory developed in Boer de. Wallmersperger,
Kroplin and Gulch (2004) presented chemo-electro-mechanical coupling govern-
ing equations. These formulations consisted of a diffusion equation for describ-
ing the chemical field, a Poisson equation for the electric field and an equilibrium
equation for mechanical field. An ionic concentration is considered as an inde-
pendent variable in mechanical equations through Donnan’s osmotic pressure[Qin
and Yang(2008)]. De and Aluru (2004), De, Aluru and Johnson (2002) developed
steady-state and instantaneous governing equations of hydrogels. Nernst-Planck’s
flux equation was applied to describe the transfer of ions. Then chemo-electro-
mechanical coupling equations were solved using finite element method. Li, Ng
and Yew (2005), Li, Yew and Lam (2004) presented the governing equation of
chemo-electro-mechanical model for the finite deformation case. Lin and Yang
(2008) introduced the pressure gradient into chemical diffusion in order to de-
scribe the chemo-mechanical coupling behavior of a hydrogel. Moreover, the dif-
fusion phenomena can be found in alternative porous media, for instance, plant
tissue[Mebatsion, Verboven, Jancsok, et al (2008)] and soft clay[Selvadurai, Ghi-
abi,(2008)]. An iterative homogenization approach is proposed in order to predict
the nonlinear hydro-mechanical behaviour of porous media [Smaoui, Ben Hamida,
Djeran-Maigre, et al (2006)].

In this paper constitutive equations and governing equations of the chemo-mechanical
coupling are developed based on the definition of chemical potential and the basic
laws of thermodynamics. The functional of chemo-mechanical coupling system
is established in terms of free energy density, kinetic energy density and diffu-
sion energy density. The equivalent integral form and finite element formulation
of chemo-mechanical governing equations are obtained through discretization and
variational methods[Qin and Yang (2008)]. The deformation and concentration dis-
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tribution of the hydrogel under mechanical and chemical loading are got through a
numerical examples.

2 Chemo-mechanical coupling equations

A chemo-mechanical coupling problem involves an interaction between ionic dif-
fusion and mechanical field. When a hydrogel is bathed in a solution or subjected
to a mechanical load, the change of the ionic concentration in hydrogel causes the
swelling or shrinking of the medium.

A chemo-mechanical coupling constitutive equation would be established here.
The elastic energy of the hydrogel can be written in the form[Gajo, Loret and
Hueckel (2002)]

dW/ = Gijdgij (1)

Where o;; is stress, g; denotes strain. In this formulation Einstein summation
convention is used, namely it implies that we are summing over all of its possible
values when an index variable appears twice in a single term. When a porous
medium under consideration, such as a hydrogel, has more than one constituent,
the property of this porous medium is a function of thermodynamical variables,
e.g. the mole number, pressure, temperature and entropy. The chemical potential is
defined by [Levine (2002)]

H=3a

@)

For the deformation of the hydrogel, it is an isochoric process, so the change of
volume is ignored in this paper. The contribution of a chemical potential to internal
energy is written in this form,

dw” =Y p'dc’ 3)
i=1

where ¢ denotes the concentration of the constituent i. For a reversible process
the second law of thermodynamics is dQ = 7'dS. Because the electrostatic field of
the constituents is ignored as the electrostatic effect is relating small, the differen-
tial form of the total internal energy which is composed of the elastic energy, the
chemical energy and thermal energy, is formulated as[Yang and Liu (2008)]

dU = TdS+ o;;de;; + Y p'dé )
i=1
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Thus the Helmholtz free energy is defined by[Yang and Liu (2008)]

A=U-TS (5)

For a reversible process, the incremental form of Helmholtz free energy can be
obtained from Eq. (5).
dA =dU —TdS — SdT

= —-8dT + Gl-.,-del-j + Z ,Llidc_’i ©)

i=1

When an infinitesimal increments d7', dg;; and dé are defined in balance state 7 =
To, € =0, & = ch, the Helmholtz free energy is expanded by Taylor series in which
dT, dg;; and dé’ are adopted as independent variables[ Yang and Liu (2008)],

0A 0A
A~ Ao+<aT)dT+( ) ,ﬁZ(ac,) (7
&ij

It is assumed that the entropy, the stress and the chemical potential in the balance
state are zero, so we have

A .
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With Eq. (7), the Eq. (8) can be expressed as

9°A 9%A AN
—ds— (w) ar+ <aTae,-j) e+ ), (ama) ae ®)
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" d%A d°A d°A .
= (8T86’"> a7+ (88,»1-86”1) deij+ ) <8E’”85‘”> ae (D

The above thermo-chemo-mechanical coupled constitutive equations are suitable
to a linear and nonlinear coupling system while the variables in the brackets are
material parameters.

Considering an isothermal process, namely the temperature increment d7° = 0, con-
stitutive equations for a linear chemo-mechanical coupled system can be obtained

0ij = Cijugn+ Y, Hl}" (12)
m=1
I,Ln = H,?lgkl+ Z STC‘m (13)
m=1

where Cjji; = 5 g, 06 1S elastic stiffness coefficient, Hj 7= Je,90 18 chemo-mechanical

coupling coefficient, s}’ = % is chemical stiffness coefficient. & = 6‘6 +c, ¢
being the increment of concentration. It is noted that ¢ is replaced by ¢’ in Eq. (13)
and (14) because of the condition at balance state (equation (8)).

For the medium bathed in a solution, only one of ions plays a dominant role, Eq.
(12) and (13) can be specified to this form,

0ij = Ciji&a + Hijc (14)

W = Hy &y +sc (15)

In classical physical chemistry [Levine (2002)], the chemical potential is defined
by 4 = o+ RT In C"C—;’c, where ¢y is ionic concentration in a reference state, c is
increment of the ionic concentration. The partial derivative of this chemical po-
tential leads to %—C = RT_ For small change of the ionic concentration, we have

co+c”
co + ¢ = cp. Thus the second Fick’s law is expressed by

. RT
.u‘l‘g-]i,i:() (16)

where R is the universal gas constant, J; is a flux defined by J; = —D;jc ;, D;j is a
ionic diffusion coefficient. Eq. (16) is a differential equation in terms of the ionic
concentration increment.

The equilibrium equation of a mechanical field is

Cijj+fi—pii=0 (17)
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where 0;;, uj, p are stress, displacement and mass density, respectively. f; is a
external body force of the porous medium. Eq. (16) and Eq. (17) compose the gov-
erning equations of the present problem where the displacement «; and concentra-
tion increment c¢ are independent variables. The corresponding gradient equations
of the mechanical and chemical fields are

1
&j= E(uj,mLui,j), Ji = —Djjc (18)

All equations of this chemo-mechanical coupling problem are composed of the
constitutive equation (14) and (15), the divergence equations (16) and (17), and the
gradient equation (18).

From Eqgs. (14) to (18), basic equations of this chemo-mechanical coupling prob-
lem are obtained

G,'j_’j—i-RTCV,‘—i-fl‘—leii =0 (19)
Jde, dc
co 8; +5; ~Dijeij=0 (20)

where g, is the volume strain of the medium. Eq. (19) is viewed as a mechanical
equilibrium equation with the chemical effect and Eq. (20) is a continuity equation
including a mechanical deformation. They are coupled with each other. We can
solve these equations for the given initial-boundary condition by a finite element
method.

3 Finite element formulations

The functional of the chemo-mechanical coupling system based on governing equa-
tions of a hydrogel is established by using the kinetic energy density, free energy
density and diffusion energy density[Mindlin (1974)]. Then the equivalent integral
weak form and the finite element formulation are obtained through the discretiza-
tion of the equivalent integral equations.

Using energy principle, the functional of this chemo-mechanical coupling process
is obtained

. _ RT
n:/(K+(p+F—f,~u,~)dV—/<t,~u,~—cjc) ds 21)

1% S co
where g and 7; is a concentration flux and a traction on the surface, respectively. The

boundary conditions are in the forms o;;n; = #;, Jin; = g. The physical meanings
of every term in Eq. (21) are interpreted as follows: K is a kinetic energy density,
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F is a chemical diffusion energy and ¢ is a generalized free energy density which
satisfied the following conditions

9¢ _ 99

5o M3 (22)

Gij:

The second integration on the right hand side of Eq. (21) stands for the work done
by the boundary force and the chemical transformation. Using variational principle
for Eq. (21), the following formulation is obtained

:/ (8K + 8¢ + F — fd1) dV—/ <t‘,~5u,~— RT q&) ds
S

= (pu,5u,—|—6,,58,j—|—,u36+ —Djjcibcj— f,5u,> dv
1%

/ (t,5u, - q50> ds
s

Eq. (23) can be divided into two parts, namely 0 = 67y + 87>, and 87 only de-
pends on du; and 87, only on dc. Because du; and dc are arbitrary, two equations
can be obtained

(23)

67171 :/ (58,JG,Jf5u,f,+5u,pul)dV7/5u,t_,dS
Vv S

(24)
=0
. RT RT . _
om :/V (SC,I.L + Coac’iDijc’J) dV—I—/S (CO 56‘q> ds (25)
=0

By Eq. (24) and (25), the basic equations and the boundary conditions of the chemo-
mechanical system can be obtained [Qin and Yang (2008)]. Using the constitutive
equation Eqgs. (14) and (15) and the time integration from O to ¢, Eq. (24) and (25)
are written as

/ (6€i;Cijuign +RT e, — Su;f;)dV — / Suit;dS =0 (26)
Vv I's

de, dc e
/v < P v 567,~D,~jc7j> dv + /l“q 0cgdS =0 27

These are the equivalent integral weak form of the chemo-mechanical coupling
system. These equations will be used to generate finite element formulations.
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The volume V is discretized into several finite domains V. The displacement and
concentration of per element is defined by its corresponding values at nodes. N,
and N, are shape functions of the displacement and concentration of the element
and the interpolation forms are

d! =N,u’, dS=N.* (28)

e

T T

where ¢ =(c; -+ ¢n)' isavector of nodal concentrations, u® = (u; vy -+ u, v,)
is a vector of nodal displacements. The corresponding strain of an element is

€° = B,u® and the volume part of the strain is €5 = B,u®. By substituting the
interpolation function and the corresponding strain into Eqs. (26) and (27), we can

obtain equations

Z / (SuETBZCeBuue + 8u"BTRTN ¢ — 5u6TNuf) dav

e=17V¢

E (29)

-y / Su‘"N,Tds =0
e=1 I's

due et
y / <c05ceTNZBva'; + aceTNZNCa—ct - aceTBZKng.&) v
+Y [ 8¢"Ngds=0

e=171%

The vectors of the nodal displacements and concentrations are denoted by u and ¢
respectively, the matrix forms of finite element equations are written as

K,u+ RTMc =F; (31)
Jdu de
M= +X— +K.c=F. 32

where K; and K, are the elastic stiffness matrix and the diffusion matrix, respec-
tively,

E

K=Y [BICB.av
e=1

v (33)

E
Kc=-) / B/DB.dV
e=1"V¢
The mass transport matrix M and the coupling coefficient matrix X are

E E
M=) / BNV, X=) / NIN.dv (34)
e:l"/e e=17V¢
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On the right hand side of Eq. (31) and (32), F; and F, are a vector of equivalent
nodal force and a vector of equivalent nodal flux, respectively,

E E
F=Y) / Ny fdv + Y / N» tdS
e=17V* e=1"Ts

. (35)
— T~
F.=-) | Neqds
e=1""q

Eq. (31) and (32) are the finite element formulation including chemo-mechanical
coupling effect. It can be discretized in the time domain using a linear difference

Jdu U1 — Uy de Cnt1 —Cp

ot A ot At (36)
and then

=0 ntl+ 1-6 n
u W1+ ( Ju 37)

c=0c, 1+ (1-0)c,

where 0 is a constant and 0 < 6 < 1. Substituting Eq. (37) into Eq. (31) and (32)
yields

QKS ORTM || PER|
coM? X+ 0K AL, | | €ut1
~ [(6-1)K; (6 — 1)RTM wl [ F
T coMT =X+ (60 - 1)K AL | ¢ At,F,

In above equations, the stiffness matrixes are K;, K., M and X. Solving of Eq. (28)
can be implemented by extending the general finite element program.

(38)

4 Application examples

The chemo-chemical coupling behavior of a hydrogel plate under an external load-
ing and a concentration stimulus is modeled and the deformation of the hydrogel
plate is analyzed. The constants of the material involved in the hydrogel plate are
shown in Tab. 1.

Example 1: A hydrogel plate with 22 x 4mm? is considered to examine the swelling
of the model, as shown in Figure 1. The bottom boundary of this plate is con-
strained, and the other boundaries are free. A uniform chemical load is applied
on the boundaries of the hydrodel plate except the bottom line. The concentration
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Table 1: Material constants

Young’s modulus E 1.08MPa
Poisson’s ratio v 0.1
Diffusivity D" 4.9 x 10~ Om?/s

Initial concentration car 0.159kmol / m?
Universal gas constant R | 8.314 J/ mol-K
Absolute temperature 7' 298 K

Figure 1: FE Mesh

i =3000s
]
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Figure 2: Swelling of hydrogel under chemical loading

of external solution is 0.159kmol / m*. And this chemical load is applied on the
boundaries with a concentration increment 0.02kmol / m? at each time step.

When the concentration of the hydrogel plate continuously increases on the bound-
ary, the osmotic pressure induced by the concentration difference between the ex-
ternal solution and plate makes some small molecules to diffuse into the hydrogel
plate. This leads to the swelling of the hydrogel plate, as shown in Figure 2. The
swelling of the hydrogel plate develops with increase of the time.

From Figure 2 we can see that the hydrogel plate has a great deformation in left
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and right ends , but small change at the center of the hydrogel plate This indicates
that the concentration diffusion is a process from the boundaries to the center of the
hydrogel plate and can reach a new balance state.

Example 2: A swelling of a hydrogel plate with displacement constrains in left and
right ends is studied, as shown in Figure 3. A chemical load is applied on bottom
and top boundaries of the hydrogel plate, which leads to a symmetrical boundary
condition. The swelling deformation and the contour of the displacement u, are
shown in Figures. 4 and 5, respectively. It is shown that the swelling deformation
of the hydrogel plate is symmetrical under present boundary conditions. Due to the
displacement constraints on the left and right boundaries, there only exits swelling
displacement in vertical direction.

NANN N
/77777

Figure 3: Boundary conditions

[
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l
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Figure 4: Swelling of plate under chemical loading

Example 3: A coupling behavior of a hydrogel plate under a traction loading is
taken into account in this example, to verify the interaction of chemical and me-
chanical effect. The deformation and concentration distribution of the hydrogel
plate subjected to a distributed loading are considered. The external load and con-
straint conditions are shown in Figure 6 where g = 3.37N / mm is assumed.

Figure 7 illustrates the deformation of the plate under a traction loading. It can
be found that the deformation of the plate with chemo-mechanical coupling effect
is quit different from a pure elastic deformation. Here the deformation induces a
concentration redistribution of ions. The deformation and the concentration dis-
tribution vary with time. Figure 8 shows the concentration contours at t=100000s
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Figure 5: Contour of displacement u,
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Figure 6: Distributed force and constraint condition
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Figure 7: Deformation of coupling model under distributed force (t=100000s)

which stands for a near balance state. An inhomogeneous deformation and con-
centration distribution can be found in Figure 7 and Fig 8. The variation of the
concentration versus time in different sample positions are shown in Figure 9. Al-
though the inhomogeneity of concentration distribution leads to that concentration
levels are different in the plate, a new balance state would be reached gradually
with increase of time.

Example 4: A symmetric concentration load is considered here. The initial con-
centration in hydrogel is 0.159kmol / m® and the concentration load in the left and
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Figure 8: Contour of concentration under distributed force (t=100000s)
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Figure 9: Concentration versus time under distributed force

right ends is 0.6kmol / m* as shown in Figure 10. According to the numerical
result, ions can diffuse from the right and left ends to the center. Finally the con-
centration of hydrogel in a balance state is 0.17kmol / m®. The ion diffusion and
deformation contours of hydrogel are shown in Figure 11 and Figure 12. It is shown
that the x-direction displacement of hydrogel is symmetrical in a balance state.

The time-varying concentration curves at the sample points are shown in Figure 13.
The concentration at point S1, which is 0.6kmol / m? in the initial state and higher
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Figure 10: Boundary condition for concentration loading
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Figure 13: Concentration variation ver-  Figure 14: Variation of displacement i,
sus time

than 0.17kmol / m?, gradually decreases to the concentration at the balance state.
While the concentration at point S, increases to 0.275kmol / m® at first and then
decreases to 0.17kmol / m®. The concentration at point S3 slowly increases from
0.159kmol / m? up to the value at the balance state.

The deformation induced by an external chemical stimulus is shown in Figure 14
where curves of displacement at points S; and S, are ploted. We can see that the
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displacement u, at S; gradually decreases and the displacement u, at S, increases
with time. Then they tend to the balance state. It is shown that the mechanical
energy and chemical energy exchange with each other in the chemo-mechanical
coupling process.

5 Concluding remarks

The governing equations of this chemo-mechanical coupling problem have been
established based on the thermodynamical laws. The equivalent integral form
and finite element formulations of this chemo-mechanical coupling problem have
been developed through a energy functional and variational principle. The physical
meaning of the chemo-mechanical coupling problem has been interpreted as a en-
ergy transformation. The coupled stiffness matrix in present finite element method
reflects the interactions of the chemical and mechanical system. The chemo-mechanical
coupling behavior of a hydrogel under external loadings has been simulated by us-
ing the present finite element procedure. The numerical examples demonstrate that
a mechanical load can induce redistribution of ionic concentration, while a chemi-
cal stimulus lead to swelling or shrinking of the hydrogel. The detailed discussions
on the numerical results validate the rationality and effectiveness of the present
theory and method. The experimental validation of the present results is expected.

Acknowledgement:  The supports of the Natural Science Foundation of China
under grant No 10872011 and Natural Science Foundation of Beijing under grant
No 3092006 are gratefully acknowledged.

References

Boerde, R. (2003): Reflections on the Development of the Theory of Porous Me-
dia. Appl. Mech. Rev., vol. 56, no.6, pp. 27-42.

De, S. K.; Aluru, N. R. (2004): A chemo-electro-mechanical mathematical model
for simulation of pH sensitive hydrogels. Mechanics of Materials, vol. 36, pp.
395-410.

De, S. K.; Aluru, N. R.; Johnson, B. (2002): Equilibrium Swelling and Kinetics
of pH-Responsive Hydrogels: Models, Experiments, and Simulations. Journal of
Micro-electro- mechanical systems, vol.11, no.5, pp. 544-555.

Frijns, A. J. H.; Huyghe, J. M.; Janssen, J. D. (1997): A Validation of the
Quadraphonic Mixture Theory for Intervertebral Disc Tissue. Int J Engng Sci, vol.
35, no. 15, pp. 1419-1429.

Gajo, A.; Loret, B.; Hueckel, T. (2002): Electro-Chemo- Mechanical Couplings



54 Copyright © 2009 Tech Science Press CMC, vol.12, no.1, pp.39-55, 2009

in Saturated Porous Medium: Elastic- Plastic Behaviour of Heteroionic Expansive
Clays. Int. J Solids Struct., vol. 39,pp. 4327-4362.

Gu, W. Y.; Lai, W. M.; Mow, V. C. (1997): A Triphisic Analysis of Negative
Osmotic Flows Through Charged Hydrated Soft Tissues. Journal of Biomechanics,
vol.30, no. 1, pp. 71-78.

Huyghe, J. M.; Janssen, J. D. (1997): Quadriphasic Mechanics of Swelling In-
compressible Porous Medium. Int J Engng Sci., vol. 35, no. 8, pp. 793-802.
Huyghe, J. M.; Janssen, J. D. (1999): Thermo-Chemo- Electro-Mechanical For-
mulation of Saturated Charged Porous Solids. Transport in Porous Medium, vol.34,
pp- 129-141.

Lai, W. M.; Hou, J. S.; Mow, V. C. (1991): A Triphasic Theory for the Swelling
and Deformation Behaviors of Articular Cartilage. J Biomech Engng., vol. 113,
pp- 245-258.

Levine, I. N. (2002): Physical Chemistry, 5th edition, McGraw Hill.

Li, H.; Ng, T. Y.; Yew, Y. K. (2005): Modeling and Simulation of the Swelling
Behavior of pH- Stimulus- Resposive Hydrogels. Biomacromolecule, vol.6, pp.
109-120.

Li, H.; Yew, Y. K.; Lam, K. Y. (2004): Numerical Simulation of pH-stimuli Re-
sponsive, Hydrogel in Buffer Solutions. Colloids and Surfaces A: Physicochem
Eng. Aspects, vol. 249, pp. 149-154.

Lin, L.; Yang, Q. S. (2008): The Basic Equations of Chemo-Mechanical Coupling
and the Corresponding Numerical Analysis. Acta Mechanica Solida, vol. 29, no.
1, pp. 7-12.

Loret, B.; Simoes, F. M. F. (2004): Articular Cartilage with Intra- and Extrafib-
rillar Waters: A Chemo-Mechanical Model. Mechanics of Materials, vol. 36, pp.
515-541.

Mebatsion, H.K.; Verboven, P.; Jancsok, P. T.; et al (2008): Modeling 3D Fruit
Tissue Microstructure Using a Novel Ellipsoid Tessellation Algorithm, CMES:
Computer Modeling in Engineering & Sciences vol. 29, no. 3, pp. 137-149.
Meerveld, J. V.; Molenaar, M. M.; Huyghe, J. M. (2003): Analytical Solution of
Compression, Free Swelling and Electrical Loading of Saturated Charged Porous
Medium. Transport in Porous Medium, vol. 50, pp. 111-126.

Mindlin, R. D. (1974): Equations of High Frequency Vibrations of Thermopiezo-
electric Crystal Plates. Int J of Solids Struct., vol. 10, pp. 625-637.

Qin, Q. H.; Yang, Q. S. (2008): Macro-Micro Theory on Multifield Coupling Be-
havior of Heterogeneous Materials. Springer.



Theory and Procedure for Chemo-Mechanical Coupling Behavior of Hydrogel 55

Selvadurai, A.P.S.; Ghiabi, H. (2008): Consolidation of a Soft Clay Composite:
Experimental Results and Computational Estimates, CMES: Computer Modeling
in Engineering & Sciences vol. 23, no. 1, pp.53-73.

Smaoui, S.; Ben Hamida, A.; Djeran-Maigre, I.; et al (2006): Micro-macro
Approaches Coupled to An Iterative Process for Nonlinear Porous Media, CMC:
Computers, Materials, & Continua vol. 4, no. 3, pp153-162.

Wallmersperger, T.; Kroplin, B.; Gulch R. W. (2004): Coupled Chemo-Electro-
Mechanical Formulation for Ionic Polymer Gels—Numerical and Experimental In-
vestigations. Mechanics of Materials, vol. 36, pp. 411-420.

Yang, Q. S.; Liu, B. S. (2008): Constituive Law and FEM Equations of Chemo-
echanical Coupling. Journal of Beijing university of technology, vol. 34, pp.120-
125.






