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Bond-Slip Effects on the Behaviour of RC Beam under
Monotonic Loading – An Integrated 3D Computational

Model using EAS Approach
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Abstract: This paper presents a formulation of hypo-elasticity based RC beam
model with bond-slip. Details of the constitutive model and analysis method used
are provided. A procedure has been described to carry out three-dimensional anal-
ysis considering both geometrical as well as material nonlinearity for a simply sup-
ported RC beam employing finite element technique, which uses 8-noded isopara-
metric hexahedral element HCiS18. Enhanced assumed strain (EAS) formulation
has been utilized to predict load-deformation and internal stresses both in the elas-
tic as well as nonlinear regime. It models the composite behaviour of concrete
and reinforcements in rigid /perfect bond situation and their mutual interaction in
bond-slip condition considering continuous interface elements at the material level.
An attempt has been made to reduce the gap significantly between the results found
experimentally and numerically using the proposed model and a computer code has
been developed for the purpose. The results of the analysis are presented, discussed
and compared with a few benchmark experimental results.

Keywords: Lower order elements, Finite element approach, Three-dimensional,
Enhanced assumed strain (EAS), Perfect bond, Bond-slip, RC beam.

1 Introduction

1.1 The problem

There are a variety of civil engineering structures with interface discontinuities,
where the assumption of rigid bond between the mating surfaces is not valid. The
analysis of such domain is accompanied by sliding, separation etc., which may oc-
cur along the interfaces between the adjacent blocks. In general, this phenomenon
takes place at lower level of shear than the limiting shear value. As a result, an anal-
ysis procedure of such domain, which assumes rigid bond at the interface, would
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over-predict the shear transfer and depending on the nature of the problem at hand,
this would lead to either under-estimation or over-estimation of the response of the
structure. Thus interconnection between the mating surfaces plays a major role in
predicting overall response of a structure throughout its loading history. So an ap-
propriate model is necessary to take into account of the relative movement of the
two mating surfaces, in particular to the Reinforced Concrete (RC) structures.

RC structures are highly non-homogeneous medium due to discrete presence of the
reinforcements. Till now only a few literatures have been reported, where inves-
tigator has prepared computational model of RC structures with concrete and the
reinforcing steel having different physical and mechanical properties, which needs
to be combined together through an interaction model to represent its composite
behavior. Hence when RC structures are modeled based on continuum mechan-
ics, contribution and distribution of stiffness of reinforcements should be given due
importance along with the appropriate modeling of material parameters of parent
domain, i.e. concrete. In fact, most of the commercial FE programs contain mod-
els, which are either too simple or too complex for design calculations. Hence
there is a need for integrated system for nonlinear analysis with refinement at dif-
ferent levels. A major emphasis on modeling /establishing a proper interconnection
has been given in this presentation in addition to different mechanical and physical
properties of the parent material i.e. concrete and reinforcement.

1.2 Literature survey

The finite element technique, as a very important tool, has received a considerable
interest of various authors for the purpose of analysis of discontinuous systems in
particular the RC structures. The earliest work on such an application was done by
Ngo and Scordelis (1967), where simple beam models were developed with con-
stant strain triangles and a special bond link was used to describe the bond-slip
effect. It was a case of linear analysis with predefined cracks to evaluate principal
stresses both in concrete and reinforcement along with bond stresses. Nilson (1972)
introduced nonlinear material properties for concrete and steel as well as nonlinear
bond-slip relationship into the analysis to perform nonlinear analysis with the help
of incremental load method. Attention was also given to introduce new crack di-
rection in subsequent iterations. In line with the above, plane stress elements were
also used by numerous investigators such as Nayak and Zienkiewicz (1972) etc.,
among others, for the same with an emphasis on constitutive relationships of the
materials, cracking and elasto-plastic behavior, the effect of temperature, creep and
shrinkage, tension stiffening. The concept of smeared crack approach introduced
by Kollegger and Mehlhorn (1990) was preferred by the investigators to model the
cracking phenomena in nonlinear analysis of RC structures, as its implementation
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in finite element analysis is very straight forward than that of the discrete crack
model. In this context, two different methods emerged viz. the fixed crack and the
rotating crack model. In fixed crack model, cracks are supposed to form in a direc-
tion perpendicular to the principal stress direction when it exceeds concrete tensile
strength and the crack direction remains unchanged in course of subsequent load-
ing. In fact, it was well accepted by the researcher at the very early stages due to
its easy formulation. Subsequent studies, however, showed that it causes numerical
instability as a result of singularity in stiffness matrix and later on this difficulty
was overcome by introducing variable cracked shear modulus by Balakrishnon and
Murray (1988). In rotating crack model, crack direction changes with subsequent
loading path depending on the current principal strain direction. Also the assump-
tion of no shear strain in the crack plane eliminates the requirement of cracked
shear modulus. This model is particularly useful in analytical studies of global
behaviour of RC structures rather than the local effects in the vicinity of a crack.
Ferretti et al. (2008) has recently also thrown some light in this context particularly
in explaining the motion of crack propagation while evaluating the deformation of
the RC structures.

As far as finite element analysis is concerned, a lot of works mainly based on two-
dimensional (2D) modeling of RC structure without reinforcements and based on
various integral methods has been reported in different reputed journals in last few
decades. Attempts were made to improve performance of 2D isoparametric el-
ement based formulation using reduced and selective integration schemes, B-bar
method, additional incompatible modes, but to a few specific problems and also
under certain conditions of mixed formulation. Cazzani et al.(2005) developed a
four-node hybrid assumed-strain finite element derived within the framework of
first order deformation theory, particularly for the analysis of laminated compos-
ite plates. All these attempts were made aiming at removing inherent difficulties
(locking etc.) particularly in thin structures. Even these methods can only analyze
certain specific problems where it is possible to study the behaviour of the struc-
ture with necessary simplification by adopting the assumptions of 2D analysis. In
applications of 3D analysis, the standard quadratic 20-noded hexahedral element
has been used, though it has high number of nodes involving a large number of de-
grees of freedom and necessitates large computational time. Since comparatively
lower order elements have the advantages for 3D analysis due to easy mesh gener-
ation, data interpretation and lower computational time, improvement of such type
of element performance has drawn attention of the investigators.

Among the lower order elements, the linear isoparametric elements are the simplest
constant strain elements. However it has got some well-known deficiencies as far
as the finite element analysis is concerned. It cannot represent the state of stress
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in pure bending accurately due to inherent volumetric and transverse shear lock-
ing phenomenon. Earlier in this regard, methods were described to improve the
performance of the standard linear quadrilateral and hexahedral elements with the
introduction of additional imaginary incompatible degrees of freedom to represent
different modes of deformation, of course those are condensed prior to the assembly
of elements. Nowadays this difficulty with the associated locking phenomena has
been overcome using a different concept of Enhanced Assumed Strain Approach
(EAS) by Simo and Rifai (1990) in near incompressible and bending situations,
where the strain field is enhanced with inclusion of additional variables. Numerous
growth in this line have been reported in the literature by Simo and Armero (1992),
Andelfinger and Ramn (1993), Souza et al. (1990), Cesar et al. (1999), (2002), Va-
lente et al. (2002) and Murthy et al. (2007). Kim et al. (2004) developed a simple
triangular solid element using an assumed strain field to alleviate the locking effect
for the analysis of plates and shells. A remarkable progress and accuracy has been
obtained by the EAS element HCiS18 introduced by Sousa et al. (2002), (2003)
even with the coarser meshes and also successfully implemented in Samanta and
Ghosh (2008a & b), (2009). In the present case, this element has been used to
model the parent material i.e. concrete of the reinforced concrete structures as an
extension in nonlinear regime to the previous work done by Samanta and Ghosh
(2008a & b), (2009).

Another aspect of RC structure is that it is highly non-homogeneous due to dis-
crete presence of the reinforcements. In general there are three methods available
for modeling of reinforcement, e.g. the discrete, the smeared and the embedded
approach. The first one represents reinforcements by truss elements those are con-
nected to the mesh at the concrete/parent element nodes and hence finite element
mesh generation becomes dependent on reinforcement layout. The second one
(smeared) is more suitable for homogeneous or uniformly distributed reinforce-
ments, such as wall panels. So they cannot be generally applied to 3D structures.
Within embedded approach, proposed by Elwi and Hrudey (1989), Barzegar and
Madipuddi (1994), these restrictions were removed and even the reinforcements
are superimposed as one dimensional uni-axial element with the same displace-
ment field as parent/concrete element without any additional node /DOF. They are
allowed to intersect the parent element at any location and hence mesh design be-
comes independent of reinforcement layout. Here the author has used the same
method proposed by Cheng and Fan (1993), Gomes and Awruch (2001) due to its
simplicity to handle problems of 3D analysis of RC structures to model the rein-
forcement.

Accounting for interaction between parent material/concrete and the reinforce-
ments are done to make RC structure to behave in a more realistic way because con-
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crete is a strong, relatively durable in compression and reinforcements are strong,
ductile in tension. This composite action requires transfer of load between con-
crete and steel. This load transfer mechanism is referred as bond-slip, which is
depicted as continuous stress field in the vicinity of steel-concrete interface. As
the loading on RC structures is gradually increased, this bond-slip effect increases
and as a result equilibrium is set up in the domain with more relaxation of steel
stress. To account for this phenomenon, two different approaches are very com-
mon. The first approach makes use of the bond-link element as proposed by Ngo
and Scordelis (1967). This bond-link element has got no physical dimension and
it connects a node of a concrete /parent material with that of a steel node having
the same coordinate. It has been observed by the various authors that the bond-link
element cannot adequately represent the stiffness of the steel concrete interface.
The second approach makes use of bond-zone element described by a material law
to model the contact surface between steel and concrete. Even though many stud-
ies of the bond-slip relationship between the mating surfaces have been conducted,
a considerable uncertainty about this complex phenomenon still exists because of
many parameters involved.

This phenomenon of interaction between the materials are modeled within the em-
bedded approach where nodal D.O.F.s are increased by the slip D.O.F.s for each
element and as a result global stiffness matrix size is increased dramatically. In
bond behaviour, slip takes place due to damage in concrete adjacent to the bars
exhibited by cracking /crushing. Lundgren (1999) developed an interface model
based on plasticity theory with fully three-dimensional features. For all practical
analysis of engineering problem, this approach is not very appealing, as it requires
extremely large computational time. Another approach was initially introduced by
Beer G. (1985) using isoparametric joint /interface element and was later on used
by Hartl et al. (2000), Hartl and Elgamal (2000), Hartl and Beer (2000), where bond
slip situations are being considered introducing supplementary interface elements
of zero thickness. Within this approach, global displacement field is calculated at
first considering perfect bond between reinforcements and concrete and then the
slip is calculated by relaxing the perfect bond at the material level. Considering
that many of the previous models and methods have not been fully verified so far, it
is the intent of this study to address some of the model selection issues, in particular
to the effect of bond-slip.

1.3 Scope and objective

In most of the earlier works of finite element analysis of reinforced concrete struc-
tures, emphasis has been given to predict load deformation characteristics either
in terms of simplified 2D analysis in most of the cases or in terms of 3D analysis
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using higher order elements. With the developments of science and technology in
different areas individually, this paper simulates the elastic response of reinforced
concrete beam considering (1) lower order solid elements which reduces time and
associated cost in terms of easy and simple mesh generation together with data
interpretation, (2) reinforcements as 1D truss elements considering only the axial
deformation in its exact spatial position without affecting the parent element mesh
in perfect bond situation following embedded approach, (3) mutual interaction be-
tween concrete and reinforcements for entire load history in terms of bond-slip
phenomenon using continuous interface elements without affecting size of global
stiffness matrix and (4) modeling of concrete considering both geometrical and
material nonlinearity.

With the rapid growth in infrastructure throughout the world, it’s very difficult to
use and update the commercial softwares to cope up with new developments in
technologies. Also they are not directly suitable to solve a problem in hand. There-
fore, a substantial effort has been made to write simple finite element programs
in the form of FORTRAN subroutines. The main emphasis has been given to un-
derstand the mechanics of concrete structures by considering both material as well
as geometric non-linearity with appropriate failure criteria in an elegant way so as
to minimize the gap between numerical solutions and experimental results. The
proposed material model is based on orthotropic hypoelastic model developed by
Balan et al. (2001). The directions of orthotropy are assumed to coincide with cur-
rent principal stress directions according to the rotating smeared crack approach.
The hypoelastic model is dissipative by nature and it doesn’t consider any flow rule
as such. Instead it is based on a fictitious equivalent uniaxial strain to take care of
the entire deformation path during loading.

It is shown that the accuracy of the formulation in interpreting the response in this
highlighted area is highly comparable to that of the existing analytical models. The
present paper is an initial attempt on a continuing investigation of the finite element
analysis of reinforced concrete members utilizing lower order solid hexahedral ele-
ments including assessment of the effect of reinforcement together with bond slip.
Ultimate purpose of this research is to make feasible the detailed numerical study
of the behaviour of the reinforced concrete members through their entire elastic
and inelastic ranges using non linear material properties as well as failure criteria
of concrete, of course incorporating tension stiffening and cracking phenomenon.
Further, the utility of the analytical model may be verified from the extensive ex-
perimental investigations to establish its true potentiality.
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2 Formulation

2.1 Concrete

Concrete consisting of hardened cement paste with aggregates embedded in it, is
highly heterogeneous. As a result, its behaviour is very complex. In general, con-
crete is assumed to behave linearly elastic and orthotropic even in multi-axial stress
states for all engineering purpose. The proposed model includes the effect of tri-
axial nonlinear stress-strain law, tensile cracking, compression crushing and strain
softening under monotonic loading condition. As plain cement concrete undergoes
large relative displacements, only small deformation has been accounted for along
with rigid body rotations. Hence a total Lagrangian formulation has been followed
although with engineering stress and strain in the finite element implementation.
The total secant stiffness has been used for the incremental stress-strain relations to
account for strain softening at higher stress levels.

2.1.1 FE Formulation

A classical isometric formulation is followed with three translational degrees of
freedom at each node of 8-noded solid hexahedral elements to model the parent
material (concrete) of the reinforced concrete. Using the standard elasticity matrix
for the parent material DP, strain displacement matrix BP, 3D transformation matrix
Tσ ,gl , volume considered VP, p being the subscript to denote the parent material
and their usual interrelationships for the continuum in 3D stress state, the element
stiffness is derived in a very straightforward way as ;

Ke
P = ∑

P
BT

P .
[
T T

σ ,gl

]
.DP.

[
Tσ ,gl

]
.BP.dVP. (1)

The element stiffness matrix formulated thus can not infer about the internal stresses
set up due to it’s inability to represent the state of pure bending strains and due to
fictitious inclusion of large shear strains. As a result, structural response (deflec-
tion) is grossly underestimated as well as become dependent on mesh design. An
enhanced strain formulation proposed by Sousa et al (2003) is incorporated based
on extra compatible modes of deformation which don’t have physical meaning and
are eliminated at the element level by static condensation method. In particular
element is designated as HCiS18, where 18 nos. of new extra variables (α) are as-
sociated in addition to the usual strain displacement vector (εP) and the augmented
strain displacement vector (ε ′P) becomes (with ‘w′ being the displacement field);

{
ε
′
P
}

= {εP}+{εα}=
[
BP Bα

]
.

{
wP

wα

}
(2)
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With Nα = 1
2(1−ξ 2).(1−η2).(1−ς2) as the bubble function, the enhanced strain

matrix, Bα becomes

Bα =
|J0|
|J|

.T0.B18
α (3)

Where J0 and J is the Jacobian determinant evaluated respectively at ξ = η = ς = 0
and at each Gauss points, T is the transformation matrix and

[
B18

α

]
is obtained from

the Sousa et al. (2002, 2003). It is well established and has also proved its worth
in evaluating the performance of the reinforced concrete structures in the present
investigation.

The geometric nonlinearity is considered by modifying the usual strain-displacement
matrix such that B = B0 +BL, where B0 is the infinitesimal linear part and BL is due
to large deformation. The stiffness matrix is also modified such that K = K̄ + Kσ ,
where K is calculated using BL and Kσ =

∫
GT .σ .G.dv such that

σ =

S 0 0
0 S 0
0 0 S


with

S =

σx τxy τxz

τxy σy τyz

τxz τyz σz


The strain-displacement matrix BL due to large deformation is evaluated, as usual,
in three dimension such that BL = A.G with [A] as the matrix of displacement
derivatives and [G] as the geometric matrix using Crisfield (1997)

2.1.2 Material model

Concrete is considered as an isotropic material initially and then it becomes anisotropic
during subsequent phases of loading. Accordingly the stress at each point is defined
by three principal stresses and the concrete is considered as a nonlinear orthotropic
medium with the direction orthotropy coinciding with the principal stress directions
(Elwi and Murray (1979), Balan et al. (2001). In this approach, the incremental
stress-strain relations of concrete in multiaxial stress state can be written as

{dσ}= [DP] .{dε} (4)

where {dσ} and {dε} are the vectors stress and strain increments respectively and
[DP] is the incremental concrete constitutive matrix with respect to the local or-
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thotropic axes (1, 2, 3). By employing symmetry condition of the compliance ten-
sor, the incremental stress-strain relationship of concrete in local coordinate system
is expressed as

dσ1
dσ2
dσ3
dτ12
dτ23
dτ31


=

1
Ω



E1 (1−µ23µ32) E1 (µ21 + µ23µ32) E1 (µ31 + µ21µ32) 0 0 0
E2 (µ12 + µ13µ32) E2 (1−µ13µ31) E2 (µ32 + µ12µ31) 0 0 0
E3 (µ13 + µ12µ23) E3 (µ23 + µ13µ21) E3 (1−µ12µ21) 0 0 0

0 0 0 G12Ω 0 0
0 0 0 0 G23Ω 0
0 0 0 0 0 G31Ω

 .



dε1
dε2
dε3
dγ12
dγ23
dγ31


(5)

where i =1, 2 and 3 stands for axis of orthotropy; dε i = normal strain increment
in ith direction and dγ i j = shear strain increment in plane i-j; dσ i = normal stress
increment in ith direction; dτ i j = shear stress increment in plane i-j; µ i j = Pois-
son’s ratio in ith direction due to stress in jth direction; Ω = 1−µ21µ12−µ31µ13−
µ23µ32− µ12µ23µ31− µ21µ32µ13; Ei = total secant modulus in the ith direction of
orthotropy; Gi j = total secant shear modulus in plane i-j assumed as invariant under
the transformation of coordinates, expressed as

Gi j =
Ei.E j

Ei (1+ µi j)+E j (1+ µ ji)
(6)

Since [DP], the incremental concrete constitutive matrix is defined w.r.t. the local
orthotropic axes, the same has to be transformed to the global coordinate system
before element stiffness matrix is formed using the standard 3D transformation ma-
trix. For the incremental concrete constitutive matrix defined in Eq. (5), the eval-
uation of nine incremental modulli uses the concept of equivalent uniaxial strain
(εui).
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Uniaxial Stress-Equivalent Strain Relation

A uniaxial concrete law is required to obtain the stress corresponding to εui.Kwon
and Spacone (2002), Balan et al. (2001) propose to use the Popovics’ curve upto
the peak compressive stress under monotonic loading. It assumes that the actual
stresses are the functions of the current equivalent uniaxial strains, which are calcu-
lated based on the actual strain increments. For (ε/εc)<1 i.e. compressive ascending
region of concrete, the law (for i = 1, 2, 3) is defined by

σi = Rci.
Ki.
(

εui
εci

)
1+Ai.

(
εui
εci

)
+Bi.

(
εui
εci

)2
+Ci.

(
εui
εci

)3 (7)

where Rci = Concrete strength in ith direction at current principal stress ratio; εci =
Corresponding equivalent uniaxial strain and the remaining constants (Ki,Ai,Bi,Ci)
are found in Balan et al. (2001).

For (ε/εc)>1 i.e. compressive descending region of concrete, the stress is reduced
linearly and concrete is assumed to crush if any point reaches at ultimate stress
R f i(= k.Rci)as shown in Fig.-1. The ultimate stress of concrete was assumed to
be R f i = 0.75Rciand the corresponding ultimatestrain was .00399. The required
incremental secant modulus (for i = 1, 2, 3) could be determined directly dividing
Eq. (7) by εui according to Balan et al. (2001) as;

Ei =
E0

1+Ai.
(

εui
εci

)
+Bi.

(
εui
εci

)2
+Ci.

(
εui
εci

)3 (8)

For descending branch of the proposed curve in Fig.-1, Eso f t has been evaluated
based on Rabezuk et al. (2005) to account for strain softening during compressive
loading.

Poisson’s ratio

It is necessary to define the variation of Poisson’s ratio for implementation of the
model. As suggested by Chen (1982), the variation of Poisson’s ratio is negligi-
ble until the stress level reaches almost 80 percent of the compressive peak stress
(Rci) in the ascending branch of the stress-strain curve. As the stress level further
increases till it reaches Rci, a subsequent volumetric expansion of concrete takes
place due higher value of strain. For this region, the following expression is used
to describe the variation of the Poisson’s ratio, as given by Balan et al. (2001);

µi j =

√
µui.µu j.

Ei

E j
(i = 1,2,3) (9)
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 Figure 1: Monotonic Stress-Equivalent Uniaxial Strain Curve of Concrete

where µ i j = Poisson’s ratio (for i = 1, 2, 3) defined as function of cubic function of
equivalent uniaxial strain as

µui = µ0

[
1+Ai.

(
εui

εci

)
+Bi.

(
εui

εci

)2

+Ci.

(
εui

εci

)3
]

(10)

where µ0 = initial Poison’s ratio and other parameters are the same as defined earlier
except Ki = 1/2µ0. For the stress level Rci, µ reaches almost a constant value of
0.36 and remains constant till concrete reaches the breaking stress due to dilatancy
phenomenon.

The proposed model is based on the concept of equivalent uniaxial strain and are de-
fined on material axis of orthotropy, which is assumed to coincide with the direction
of principal stress at each load step. For three-dimensional problems, the principal
stresses and the associated directions are evaluated mathematically as eigenvalues
and eigenvectors of σ in a way also shown in Boresi and Sidebottom (1985).

Ultimate Surface

The evaluation of the incremental secant moduli in Eq. (8) also requires the deter-
mination of the parameters involved in it. These parameters vary with the principal
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stress ratio and hence are determined by defining a surface in the principal stress
space. Such a surface, which defines ultimate values of strength or strain for a
particular stress ratio is termed as ‘failure surface’. This failure surface is more
appropriately called as ‘ultimate strength surface’ in this case as it also takes care
of strain softening of the material. Choosing ‘ultimate strength surface’ for ma-
terial like concrete is very crucial for prediction of its behaviour under complex
multiaxial stress state. The ultimate strength surface of concrete due to multiaxial
stress state is described in this presentation by considering the five parameter sur-
face originally proposed by Argyris, later on modified by Willam and Warnke for
high compression zone [Chen (1985)]. In connection with three-dimensional incre-
mental model for describing the nonlinear behavior of concrete, this five-parameter
model considers the curved meridians using second order parabolic expressions
and non-circular trace in the deviatoric plane using an elliptical curve. As a result,
it has a smooth surface with unique gradient and continuous derivative everywhere
and becomes valid for all stress combinations in the range of most practical appli-
cations including tensile stresses .The surface is defined by the following equation
;

F
fcu
−S≥ 0 (11)

where, F is a function of the principal stress state (σxp, σyp, σzp).

F =
1√
15

[
(σ1−σ2)

2 +(σ2−σ3)
2 +(σ3−σ1)

2
]1/2

(12)

S = failure surface expressed in terms of principal stresses

=
2r2
(
r2

2− r2
1
)
.Cosθ + r2 (2r1− r2) .

[
4
(
r2

2− r2
1
)

Cos2θ +5r2
1−4r1r2

]1/2

4
(
r2

2− r2
1

)
.Cos2θ +(r2−2r1)

2

(13)

and five input parameters ft , fcu, fcb, f1 and f2. ft= ultimate uniaxial tensile stress,
fcu= ultimate uniaxial compressive stress, fcb = ultimate biaxial compressive stress,
being f1 = the ultimate compressive stress point for a state of biaxial compression on
tensile meridian and f2 = the ultimate compressive stress point for a state of biaxial
compression on compressive meridian. However this failure surface is defined in
terms of two parameters viz. ft , fcu and the rest three parameters are expressed in
terms of f cu.

Both the function ‘F’ and failure surface ‘S’ are expressed in terms of the principal
stresses denoted as σ1, σ2 and σ3 where, σ1 = max (σxp, σyp,σzp), σ3 = min (σxp,
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 Figure 2: Concrete Failure Surface and Current Material Strength

σyp,σzp) and σ1 ≥ σ2 ≥ σ3. The terms used to define ‘S’ are

Cosθ =
(2σ1−σ2−σ3)

√
2
[
(σ1−σ2)

2 +(σ2−σ3)
2 +(σ3−σ1)

2
]1/2

r1 = a0 +a1ξ +a2ξ 2 and r2 = b0 +b1ξ +b2ξ 2 with ξ = σh/ fcu and σh =(σ1 +σ2 +σ3)/3.
The values of the undetermined coefficient a0,a1,a2,b0,b1,b2 may be found from
the reference Elwi and Murray (1979) using the nondimensional values of the ten-
sile and biaxial compression strength as αt = ft/ fcu and αc = fcb/ fcu. Similarly,
for the evaluation of the ultimate equivalent uniaxial strains εci corresponding to
ultimate strength Rci, there exists a surface in the equivalent uniaxial strain space
that has the same form as the ultimate strength surface defined earlier. This surface
is defined by replacing σ1, σ2, σ3, ft and fcu in Eq. (11) by εu1, εu2, εu3, εt and
εcurespectively.

The current concrete strength values Rci (i=1 to 3) are determined from the ultimate
strength surface. For the current stress level, first the corresponding principal stress
values σi (i=1 to 3) are calculated. A point Mc (σ1, σ2, σ3) is considered in the
principal stress space and then a line that extends from origin through Mc intersects
the ultimate strength surface at Mr(Rc1,Rc2,Rc3), where Rci is the required current
concrete strength of concrete in the i-direction. Here this concept has been utilized
to find Rci, but with reference to the rendulic plane as proposed by Elwi and Murray
(1979), Bouzaiene and Massicote (1997). Also the parameters σ f i and ε f i, on the
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descending branch of the stress-equivalent strain curve in Fig.-1 are to be supplied
in order to calculate incremental moduli defined in Eq. (8). Since these two param-
eters controls the nature of descending branch and vary from case to case indicating
thereby highly test dependent, it is assumed as proposed by Balan et al. (2001) ;

For compression loading: σ f i = 0.85.Rci and ε f i = 1.41.εci.

For tension loading: σ f i = 0.25.Rci and ε f i = 4.0.εci.

Concrete in tension

Nonlinear behaviour of concrete is characterized by formation and propagation of
tensile cracks. To model the cracking behaviour of concrete under tensile stress,
smeared crack approach is considered. According to the smeared crack approach,
cracking of concrete is assumed to form at the integration points of the finite ele-
ment in a plane perpendicular to the direction of maximum principal tensile stress
as soon as this tensile stress reaches the specified tensile strength. Once a crack is
formed, the behaviour of concrete at that integration point becomes orthotropic and
it continues to remain for that load step. New crack directions are considered to be
initiated at a different load step.
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f 

ε ε ε 

E E 

ε 

E

 
Figure 3: Linear strain softening model of concrete in tension

After concrete cracking, tensile stress is not immediately set to zero but is gradually
released by a linear strain softening behaviour as in Cho and Hotta (2002). The total
strain increment consists of two parts: the concrete strain increment and the crack
strain increment. The strain softening modulus Et is derived as fracture energy of
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concrete as follows.

1
Et

=
1

E0
+

1
Ccr

(14)

where, cracking modulus Ccr = − f 2
t .w f
2.G f

, w f = crack band width and G f = fracture
energy of concrete required to produce one unit of area of a continuous crack.

It has been observed from various experimental data that after formation of a crack,
sufficient shear stress could be transferred across the rough surfaces of cracked
concrete due to aggregate interlocking and reinforcement ratio. A common practice
to consider this phenomenon in a smeared crack model is to attribute an appropriate
value to cracked shear modulus Gc in terms of uncracked shear modulus G with an
appropriate shear retention factor, which has been followed by many researchers.
In present study, an approach similar to Cho and Hotta (2002) has been adopted,
where cracked shear modulus is assumed to reduce linearly as a function of current
tensile strain (εp when it exceeds tensile strain (εt).

Gc = αc.G
(

1− ε

εm

)
, for εt ≤ ε ≤ εm (15)

Where αc is used as 0.5 for one crack, 0.25 for more than one crack and εm is used
as 0.004.

When a crack is formed, the material stiffness is reduced in the failure plane in
the direction normal and parallel to the crack and the Poisson’s ratios (µ12 and
µ31) become equal to zero in the crack plane and the stress normal to the crack
is equal to zero. Thus the material starts to strain soften in the principal stress
direction. Gradually σ1 reduces to zero and the material looses stiffness in that
direction. In this light, the generalized stress-strain relation defined in Eq. (3)
needs to be modified for cracked concrete with the value of µ12 and µ31 equal to
zero. When σ1 becomes equal to zero, the corresponding diagonal term is actually
equal to zero. However to avoid the numerical difficulty, the same element in the
constitutive matrix is provided with a small value equal to unity.

Compression crushing

The above procedure is set to identify the failure due to the cracking phenomenon
in the tensile regime. However under multi-axial stress condition, compression
crushing may also take place, which is identified with the help of ultimate strength
envelope as the current stress level reaches ultimate compressive strength Rci. With
reference to the Fig.-1, the descending branch of the curve during strain softening
is considered as linear. As the material reaches the peak value of stress level at the
onset compression crushing, strain softening in all direction start until minimum
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stress reaches a value equal to σ f i. With the assumption that Poisson’s ratio µ i j is
equal to zero after compression crushing, the constitutive relation takes the form
with only diagonal terms. In this situation, Ei the total secant modulus at the de-
scending branch of the stress strain curve as shown in Fig.-1, may be calculated as
proposed by Rabczuk (2005) ;

Ei =
σci

εui
+Eso f t .

(
εui− εci

εui

)
(16)

where, Eso f t is the softening modulus of concrete in the descending portion of the
curve, which in again may be calculated based on the ultimate values of stress and
strain parameters.

2.1.3 Reinforcements

The reinforcement represents a discontinuity of the stiffness distribution within a
reinforced concrete member. When such a domain is discretised by finite elements,
only in a few situations the domain is subdivided to take care of the stiffness of the
reinforcements in position appropriately. Hence a formulation is needed to account
both concrete and reinforcement in an implicit manner.

2.1.4 FE Formulation

In this study, the straight reinforcement bars are modeled utilizing classical em-
bedded approach proposed by Elwi and Hrudey (1989), Cheng and Fan (1993) and
Hartl et al. (2000), where the same displacement field of the parent element is
assigned. It allows discrete presentation of reinforcements at their exact spatial po-
sition without increasing the size of the global stiffness matrix if the perfect bond is
assumed. In fact this approach may also be extended in bond-slip situations without
increasing the parent element nodes as well as element stiffness matrix.

The reinforcements are embedded into the parent concrete element. Hence in the
structural domain, the reinforcement layout remains independent of element mesh.
The only requirement is to identify the elements with reinforcement(s) and their
sectional properties together with its orientation, which may be taken care of by a
preprocessing subroutine. The reinforcement nodes are generated independently of
the element nodes within the respective element. The obtained strain field applies
to the parent elements and to the reinforcement elements. Once it is identified it
becomes very simple to handle problems of three-dimensional RC structures in
perfect bond situations. Since the reinforcement nodes do not introduce additional
degrees of freedom to the vector of nodal parent element displacements, size of the
stiffness matrix remains unaltered.
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 Figure 4: Parent element embedded with reinforcements

The stiffness of the reinforcements is calculated as one-dimensional elements em-
bedded in the space of parent element and is then super-imposed on the stiffness
of the parent element. The same strain displacement matrix BP (used for the par-
ent element) is utilized to evaluate the stiffness of the reinforcements. Since the
reinforcement is considered as one-dimensional, the stiffness (integration) is to be
evaluated along the path of the reinforcement(s). In order to integrate the stiffness
contribution of the reinforcement(s) the strain displacement matrix has been com-
puted at the respective gauss point(s) of the reinforcements expressed in terms of
the intrinsic coordinates of the parent element. A Newton root finding algorithm in
3D is used for this purpose, where the known integration points of reinforcement
in global coordinates are computed in local coordinates using an inverse mapping
procedure based on iterative method by Barzegar and Madipuddi (1994). Thus the
stiffness contribution of reinforcement towards the element becomes

Ke
R = ∑

RB
BT

P .T T
ε,gl.DR.Tε,gl.BP.dVR, (17)

Where RB is the number of reinforcement elements within the parent element and
R is the subscript used to denote reinforcement. DR is the elasticity matrix for the
reinforcement due to uniaxial tension /compression in local coordinates with Es as
the initial modulus of elasticity of reinforcement = 5000

√
fcu in MPa. Once the

integration points within the local coordinates are known, the composite element
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stiffness matrix may be computed simply by adding Eq. (1) and Eq. (15) in perfect
bond situation.

2.1.5 Material model

Unlike concrete, the properties of reinforcing steel are generally not dependent
on environmental conditions and hence are considered as much durable than the
concrete. Hence a single stress-strain diagram is adequate to define the material
properties required for the sake of analysis of reinforced concrete structures in all
possible load ranges [Kwak et at. (1997)]. For all practical engineering purposes,
steel exhibits the same stress-strain curve both in tension and compression. In gen-
eral, it shows linear elastic portion, a yield plateau and a strain hardening range in
which stress again increases with strain and finally, the stress drops at the breaking
point as shown in Fig.-5.
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 Figure 5: Steel stress-strain relation

The first idealization neglects the strength increase due to strain hardening and it is
modeled as a linear material till the yield point as per various codes of national and
international codes of practice. The second idealization of linear strain hardening
is particularly useful for achieving numerical convergence /stability. Thus it is
particularly useful for computational convenience and also the behaviour of RC
members are not greatly affected by when the structure is loaded monotonically.
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The following equations are being utilized here to determine secant modulus for
the corresponding strain ranges ; Es = E0, for ε ≤ εyp and Es = fy

εu
+ (εu−εyp).Esh

εu
, for

εyp ≤ ε ≤ εy f .

2.2 Modeling of Interface and Bond-Slip

Forces of interaction between concrete and reinforcement are transferred by bond
due to chemical adhesion, friction and mechanical interaction at the interface. De-
formed bars have better bond than plain bars due better mechanical interlocking
with the rough surface. Since bond stresses in reinforced concrete structures vary
greatly due to change in the value of steel stresses along the length, it becomes very
pronounced at the end anchorages as well as in the vicinity of cracks and hence con-
trols the behaviour of RC members particularly subjected to higher stress levels.
Most interestingly perfect bonding is not true throughout the loading history of a
reinforced concrete structures. At the interfaces of high stress transfer, bond stress
is related to the relative movement between the mating surfaces due to the pres-
ence of the cracks. Practically, strain compatibility remains no longer valid at such
situations. This incompatibility and associated crack propagation gives rise to rel-
ative displacement between steel and concrete which is better known as bond-slip.
However, at lower stress levels when it behaves elastically, a simplified analysis of
RC structures may suffice assuming a rigid /perfect bond in between the two. In
fact, perfect bonding of the reinforcements with the concrete over-predicts the shear
transfer and this lead to an over or under estimation of the response of the structure
depending on specific situation. Since it is the objective of the study to investigate
the bond-slip behaviour of reinforcing steel in more detail, a more sophisticated
bond-slip model RC structure is used in the formulation under monotonic loading.

2.2.1 FE Formulation

In finite element method, bond-slip is modeled in a conventional way by means of
interface elements. In this respect, bond-link element was introduced by Ngo &
Scordelis (1967) at first, later on bond-zone element was introduced by Groot and
subsequently contact elements by Mehlhorn. The literature review recommends
to modify the constitutive law of either concrete or reinforcements. Hardly any
bond-slip model is available in the literature assigning same displacement field to
both concrete as well as reinforcement and without increasing the size of the global
stiffness matrix within the embedded approach.

Beer G. (1985) introduced an elegant way of continuous interface element and sub-
sequently by Hartl et al. (2000), where bond-slip is accounted for at the material
level by introducing supplementary interface elements between reinforcement and
concrete after the displacement field has been computed based on rigid bond con-
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Figure 6: Supplementary Interface model

dition. Then the steel stress is relaxed due to bond-slip. The basic concept of
supplementary slip algorithm is similar to that of a truss analogy as shown in Fig.-
6, when the reinforcements are embedded in a classical way in the parent element
without slip D.O.F. The truss members are the reinforcements and the supports are
the concrete. The end points of the reinforcements are connected to the pseudo
node on the concrete treated as support by bond spring, which are considered as
continuous interface elements. Once the global displacement field is known, the
strains along the reinforcement may be integrated and the same are referred as pre-
scribed displacement of the supports. These support displacements get transferred
to the end points of the reinforcements depending on the characteristic property of
the bond spring. Thus the relative displacement of the reinforcement support node
and the adjacent reinforcement end node is referred as bond-slip. The difference of
the reinforcement force computed thus with respect to the same considering perfect
bond are mapped back as residual nodal forces to the parent element.

In order to calculate slip, truss model is analyzed considering the stiffness of the
reinforcement;

K=
R AR ∑

l
BT

R .ES..BR.dlR, (18)

where, ES is the secant modulus of reinforcements, BR is the strain displacement
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matrix for 1D reinforcement along its length =
[

δN1
δS , δN2

δS

]
= 1
|J| .
[

δN1
δξ

, δN2
δξ

]
and AR

is the cross sectional area of each reinforcements. The stiffness of the continuous
interface element may be expressed as;

K=
j ∑

S
BT

j .k..B j.dS (19)

where, B j =
[
N1, N2, −N1, −N2

]
is the strain-displacement matrix and k is the

tangent modulus of interface element derived from bond-slip diagram depending on
magnitude of slip. Once the stiffness of the reinforcement and the interface element
is derived, they may be suitably placed in a matrix form as{

Ff

Fs

}
=
[

K f f K f s

Ks f Kss

]
.

{
u f

us

}
where, u f =

[
u1r u2r

]
with ‘ f ’ as free node or reinforcement end node and us =[

u1p u2p
]

with ‘s’ as support node or concrete node. It is to be noted that here an
iteration is a must to obtain a convergent value of tangent stiffness as reinforcement-
concrete interface behaviour is non-linear from the beginning of loading even when
both concrete and steel remains in the elastic range. The end conditions are spec-
ified in terms of prescribed displacements (us) as Dirichlet boundary condition.
Once these displacements at the free nodes (u f ) are calculated, the same set of
equations are again solved for the revised slip until a good convergence is obtained
with sufficient accuracy and then the relative displacements(uslip = Ne

j .u
e
j) of the

nodes along with the steel stress due to bond slip are calculated. Finally this stress
is mapped back as residual nodal forces of the respective parent element. Within
this supplementary interface model, incremental strain update is inevitable. It is
implemented by assuming linearly elastic behaviour of the reinforcements within
the iterative scheme of the supplementary algorithm. As the slip converges to a
stable solution, the stress in reinforcement is updated by the constitutive relation of
the same.

2.2.2 Material model

The above supplementary slip algorithm may be effectively applied to incorporate
the effect of bond-slip provided the value of the tangent modulus of interface ele-
ment ‘k’ is available. Thus a bond stress versus slip relation is needed to implement
the bond-slip algorithm. Various experimental investigations viz. ASTM pullout
test among others suggest that the bond-slip relation depends on the position of re-
inforcements, the surface condition of bar, the loading state, the boundary condition
i.e. the surrounding concrete, the confinement level and the anchorage length of the
bar. In this study, a simple bond stress-slip model as per Modelcode-90 [MC90] is
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adopted shown in Fig.-7, as it shows good approximation of the actual behaviour
in cases of monotonic loading.

 

τ 

M25  
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τ  

 Figure 7: Bond-slip Relation

The monotonic envelope consists of an initial nonlinear relation due to adhesion
stage in which the ribs of the deformed bars penetrate into the mortar matrix result-
ing in local crushing and microcracking. This ascending branch is given by

τ = τmax.

(
s
s1

)α

for 0≤ s≤ s1 = s2 (20)

where, α is parameter controls the curvature of the curve depending on the value of
slip(s) and reflects reinforcement-concrete interface properties depending on bond
condition and confined /unconfined concrete. The tangent modulus of the interface
stiffness may be calculated by taking first derivative of the above equation as ;

k =
τmax

sα
1

.α.sα−1 (21)

The second part of the curve τ decreases linearly to the ultimate value of fric-
tional bond resistance (τ f ) due to reduction in bond resistance because of splitting
cracks along the reinforcement upto s3, i.e. residual bond capacity. In the present
study, for deformed ribbed reinforcement in good bond condition for confined con-
crete the following values have been assumed ; s1= s2= 0.6mm, s3=1.0mm, α=0.4,
τmax=2.0

√
fcu and τ f =0.3

√
fcu.
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3 Solution algorithm

Although most of the finite element software, which are commercially available,
have wide range of application, they do not offer adequate material models, also
suitably integrated for response /stress analysis. In this part of the presentation, a
brief description has been given mainly about the integration of the model eluci-
dated previously. Here the initial stiffness approach is followed all along, during
which the current stiffness matrix is formed only once at the beginning of each
load step and also the crack direction remains unaltered during the entire load step.
New crack direction are only assumed to form at subsequent load steps. It has also
been assumed that since initially concrete does not show prominent nonlinearity
during its uncracked elastic stage of loading approximately upto 25 percent of fail-
ure stress, no iterative solution is sought for two load steps at the very beginning
of solution. For each problem, solutions are started with initial control parame-
ters E0, µ0, fcu and the material constants /parameters of the failure surface. In
absence of any data modulus of elasticity of concrete is calculated by default as
E0 = 5000.

√
fcu and the same for reinforcement Es = 2.0E +06MPa. The various

default parameters assumed are as follows;

• Various Strength Parameters of concrete (MPA)
Ultimate uniaxial tensile strength ft = 0.10 fcu

Ultimate biaxial compressive strength fcb =1.15 fcu

• Various Strain Parameters (mm)
Concrete
Ultimate Uniaxial Compressive (Cracking) Strain εcu= 0.00283
Ultimate. Uniaxial Compressive (Failure) Strain εcm= 1.41 εcu

Ultimate Uniaxial Tensile (Cracking) Strain εt= 0.045 εcu

Ultimate Uniaxial Tensile (Failure) Strain εm= 4.0 εt

Ultimate Uniaxial Biaxial Compressive Strain εcb= 1.30 εcu

Reinforcements
Ultimate Uniaxial Tensile (yielding) Strain εyp = 0.0020
Ultimate Uniaxial Tensile (Failure) Strain εy f = 5.0εyp

• Various Softening Modulii (MPa)
With crack band width w f = 15mm and fracture energy G f = 180N/m,
Softening Modulus of concrete in Tension Ecrack= 822 Mpa
Softening Modulus concrete in Compression Eso f t =0.15 fcu/0.41εcu

Softening Modulus of Reinforcement Esh= 0.014E0
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Figure 8: Solution algorithm for bond-slip model
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Load steps are restricted to 10 percent of failure load in each case till crack initia-
tion and later on it is reduced to 5 percent to avoid initiation of unrealistic numer-
ical cracking. The incremental material constitutive matrix is calculated following
specified stress path, as described by the model issues discussed earlier. The in-
tegrated element stiffness of concrete including contribution of reinforcement (if
present in the parent element) is calculated at the beginning of each load step and
the equilibrium equation is solved for using banded matrix solution. The criteria
for the convergence of iterative solution within the load step is based the accuracy
to satisfy global equilibrium equation or on the accuracy of determining total dis-
placements. The failure load is assumed to occur at the load step, which requires
higher number of iterations to satisfy equilibrium for convergence i.e. when it un-
dergoes large strain under the applied load. In this study, maximum number of
iterations was set to 30 and tolerance is 1.0 %. A flow diagram has also been in-
cluded here (Fig.-8) to mention the procedure to execute the bond-slip model as
discussed.

4 Case studies and discussion

In order to establish the potentiality of the model, a few benchmark examples (sin-
gle span simply supported RC beam) have been taken from the literature and solved
using the proposed model considering both material as well geometrical nonlinear-
ity. The material nonlinearity is handled by hypoelastic formulation in three di-
mensions and the geometrical nonlinearity is taken care of by a Total Lagrangian
formulation. The accuracy of the prediction in load-deflection response using the
proposed model has also been checked different mesh density with and without
considering bond slip.

The simple beam analyzed here is subjected to only uniformly distributed load (w)
due to its own weight over the entire span along with point loads. The ordinary
ribbed reinforcing steel (Ast) is placed at the bottom, which is in tension due to
transverse loads. Provisions are not made to account for the effect of shear rein-
forcements. The concrete has the characteristic strength fck, which is assumed to
be the same as ultimate uniaxial compressive strength fcu. Both the parent mate-
rial /concrete and the reinforcement are assumed to be initially linear elastic within
first few load steps. With the supplied end points /profile of the reinforcements in
the beam, the reinforcement mesh is also generated within each element for which
stiffness contribution is added to the stiffness of the parent element. One of the
main objectives was to assess the performance of the element HCiS18 in evaluat-
ing the response in bending situations considering incompressibility. To validate
the integrated model proposed, comparisons have been made with experimental re-
sults of a few simply-supported beams from the literature. All these experiments
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were performed to obtain better understanding of load-deflection behaviour of RC
beams loaded to failure level primarily. The maximum load in the linear range has
been considered as equal to 25% of the failure load as reported by the literature.

4.1 Beam # 1 : (RC-75-1, Shegg-Decanini, 1971)

This example model of simply-supported RC beam marked as RC-75-1 subjected to
two point loads at quarter span tested by Shegg-Decanini(1971) was analyzed. The
experimental results show the failure of this beam is due to yielding of tensile re-
inforcements, which was used by Gomes and Awruch (2001) for comparison. This
beam has only two longitudinal tensile reinforcements, but has got no longitudinal
compressive and transverse shear reinforcements.

The geometry, reinforcement details and its finite element mesh are illustrated in
Fig.-9. The beam is 153mm by 246mm in cross-section, with a span between
the simple supports of 3000mm. The beam is symmetrically loaded. The other
parameters related to geometry are as follows d′′ = 25mm, ω = 0.094 ton /m-run,
Eso f t = 6700 MPa and Ecrack = 165 MPa. The magnitude of fracture energy is
derived using the expression ε0 = 2.G f

ft .w f
. With tensile fracture strain ε0 = 0.013%

and values of ftand w f as above, G f becomes equal to 210.0 N/m.

Based on experimental data, the following parameters related to geometry and ma-
terial properties of concrete and reinforcements were considered; ultimate com-
pressive strength fcu =31.1 MPa, ultimate tensile strength ft =2.15 MPa, initial
modulus of elasticity E0 =30,653 MPa, Poisson’s ratio µ0=0.15, area of reinforce-
ment in tensionAst =235 mm2, yield strength of reinforcement fy =550 Mpa, shear
modulus G f =210 MPa and point load P =3.25 ton.

Four types of finite element mesh densities with 40, 48, 216, and 240 elements con-
sisting of element size 153x123x150, 153x123x125, 76.5x82x83.3 and 76.5x82x75
respectively, were considered for the proposed numerical analysis to study the con-
vergence criteria in regard to the element (HCiS18) and its behaviour considered in
the proposed model. As the load-deflection diagram (Fig. 10) indicates that there
is a large gap in predicting the response between Mesh-1, 2 and Mesh-3, 4 indicat-
ing thereby the effect of mesh density and the general applicability of coarse mesh
using HciS18. In fact the response of Mesh-1 with 40 elements is still comparable
and close to the experimental data. The contribution of bond slip is also not very
significant in predicting the load displacement response of the system. In fact, in
some of the load steps maximum deflection assuming perfect bond between con-
crete and reinforcement is similar to the same while relaxing the bond conditions.
It is also important to note that the response of the system using the in-house code
is better for coarser meshes, which uses the solid element HCiS18.
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 Figure 9: Details of RC beam (RC-75-1)
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Figure 10: Comparison of Load-deflection response (RC-75-1)
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Figure 11: Stress-strain history (RC-75-1) using 40 elements (a) For concrete (b)
For bottom reinforcement

The bending stresses (absolute values of both compressive and tensile) at the midspan
of the beam has been plotted in Fig. 11. The non-linear material behaviour of
concrete in compression may be noted. Also the tensile behaviour of concrete
shows that the level of stress in tension is much lower compared to the same in
compression and the stress value does change much beyond a very small value of
strain in tension in concrete. The variation of stress in reinforcement in tension is
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Figure 12: Effect of bond-slip (RC-75-1) using 40 elements (a) Strain in bottom
reinforcement (b) Stress in bottom reinforcement (c) Compressive strain in concrete
(d) Tensile strain in concrete

shown in Fig. 12. The yielding of reinforcement, obtained in case using the pro-
posed model with bond-slip, is also supported by the numerical study performed
by Gomes /Awruch (2001).

4.2 Beam # 2 : (Alvares, 1993)

This example model of simply-supported RC beam subjected to two point loads at
quarter span, tested by Alvares (1993) was analysed. This benchmark experimen-
tal result was used by Oiliveira et. al. (2008) to validate the developed numerical
model. This beam has three longitudinal tensile reinforcements and two longi-
tudinal compressive reinforcements, but no transverse shear reinforcements. The
geometry, boundary condition, reinforcement details and its finite element mesh
are illustrated in Fig.-13. The beam is 120mm by 300mm in cross-section, with a
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span between the simple supports of 2400mm. This study has been done to obtain
the post-yield behaviour and capability of the model developed for the purpose.

The other parameters related to geometry are as follows ω = 0.09 ton/m-run, Eso f t =
5495 MPa and Ecrack = 175 MPa. The following parameters related to geometry and
material properties of concrete and reinforcements were considered ; ultimate com-
pressive strength fcu =25.5 MPa, ultimate tensile strength ft =2.044 MPa, initial
modulus of elasticity E0 =29,200 MPa, Poisson’s ratio µ0=0.17, area of reinforce-
ment in tensionAst =236 mm2, yield strength of reinforcement fy =500 MPa, Es =
196,000 MPa and P =4.2 ton.
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 Figure 13: Details of RC beam (Alvares, 1993)

The alternatives of finite element mesh with 36 and 288 elements having element
size 120x150x133.3 and 60x75x66.7 respectively were considered for the pro-
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posed numerical analysis to study the convergence criteria in regard to the element
(HCiS18) and its behaviour considered in the proposed model.

Fig. 14 shows the correlation between the measured load-deflection response of
the beam and the proposed model. The results are presented with the above finite
element mesh densities.
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Figure 14: Comparison of Load-deflection response

The ratio of sides of the solid element may be consistently maintained close to 1.0
for better response. The response of test data shows that the sudden failure of the
beam took place and it fails to pick up the definite yield plateau. In the analytical
study, the main longitudinal reinforcements in compression were not considered.
A satisfactory agreement between analysis and experiment was observed. As Fig.
5.3.3-2 clearly indicates that although the mesh is coarse one, the yielding and the
failure of the beam fairly agrees with the experimental values.

Fig. 16(a) shows the variation of stresses both in compression fibre in the topmost
layer as well as tension fibre in bottom-most fibre. Both the stresses are limited
at perfect bond condition and less than the maximum value of stress considering
bond-slip due to redistribution /relaxation of stress. Fig. 16(b) shows only the
development of stresses in tensile reinforcements. In perfect bond condition, the
maximum value of stress at failure is again less than the same while considering
bond-slip. Of course, it is interesting to note that there is yielding of reinforcement
predicted by this model, in case the effect of bond-slip is taken into consideration
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Figure 15: Effect of bond-slip (Alvares, 1993) using 36 elements (a) Strain in bot-
tom reinforcement (b) Stress in bottom reinforcement (c) Compressive strain in
concrete (d) Tensile strain in concrete

and it is also very similar to the assumed stress-strain diagram of steel in the pro-
posed model. As noted in Fig. 15, the stress and strain of reinforcement as inferred
by this model have been redistributed /increased due to bond-slip, also the tensile
strain in concrete, but he compressive strain in concrete is not much affected by the
same.

5 Conclusion and outlook

An integrated model for the analysis of simply supported RC beam based on stan-
dard linear hexahedral element has been presented, due to its simplicity in terms
of easy mesh generation and data interpretation. Since this particular category of
element exhibits some well-known deficiencies, it has been modified with the in-
clusion of enhanced strain modes. The performance of this new enhanced strain
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 Figure 16: Stress-strain history (Alvares, 1993) using 36 elements (a) For concrete

(b) For bottom reinforcement

element is very similar to the higher order element. It has been found that the
modified lower order element is extremely efficient and effective in the analysis
of three-dimensional problems. It may be inferred that the element in particular
HCiS18 shows very good results even with coarser meshes, being almost accurate
as best as the analytical case.

This model also includes the discrete presence of the reinforcement in arbitrary di-
rection without affecting the parent element mesh. It has been shown that the con-
cept of this FEM model (for incompressible situations) which includes the presence
of the reinforcement in perfect bond condition and relaxed stress condition using
bond-slip relation as given by the modelcode90 and its mathematical derivation is
very simple and economical in terms of time consumption in terms of analysis ef-
forts compared to other generalized methods. The validity of the formulation is
verified by analyzing a few examples. It could be said that this model may work
well for such reinforced concrete systems, where stiffness contribution of reinforce-
ments are taken into account.

It has also been shown that the iterative scheme of the supplementary slip algorithm
starts with the perfect bond predictions for reinforcement strains, which is obtained
from the global solutions. Thus stresses are overestimated at the regions of the
parent element domain, which experiences the highest strain. The approach causes
no problem as long as stress in the reinforcement does not exceed the elastic limit
within the iterative scheme. Since within the embedded approach, reinforcements
are not restricted to the parent element nodes, the computational effort is reason-
able. But when bond-slip is taken into account it requires higher time consumption.
However this is becoming irrelevant with the availability of high-speed computers.
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It has also been noted that the response as presented is not affected by the bond slip
phenomenon at comparatively lower stress level, whereas the contribution of the
same is much more pronounced at peak stress level as well as failure.

The program has been initially designed for reinforcements in tension zone only.
No provision and attempt has been made to incorporate effect of reinforcement in
compressive zone as well as presence of shear reinforcements. The development of
the stresses in the stirrups may contribute well in performing gross response of the
system, in particular at higher stress levels for doubly-reinforced sections. As such
the developed program is only suitable for under-reinforced sections only. Hence an
opportunity remains open for development with deeper emphasis in this direction
also. The major limitation of the work is that it could not be implemented in a very
general sense to all categories of reinforced concrete structure, as no experimental
setup could be prepared during the span of the investigation work taken up for this
purpose.
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