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A Direct Forcing Immersed Boundary Method Based
Lattice Boltzmann Method to Simulate Flows with

Complex Geometry

Cheng-Hsiu Yang1, Cheng Chang1 and Chao-An Lin1,2

Abstract: In the present study, a lattice Boltzmann method based new immersed
boundary technique is proposed for simulating two-dimensional viscous incom-
pressible flows interacting with stationary and moving solid boundaries. The lattice
Boltzmann method with known force field is used to simulate the flow where the
complex geometry is immersed inside the computational domain. This is achieved
via direct-momentum forcing on a Cartesian grid by combining “solid-body forc-
ing” at solid nodes and interpolation on neighboring fluid nodes. The proposed
method is examined by simulating decaying vortex, 2D flow over an asymmetri-
cally placed cylinder, and in-line oscillating cylinder in a fluid at rest. Numerical
simulations indicate that this method is second order accurate, and all the numerical
results are compatible with the benchmark solutions.
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1 Introduction

Lattice Boltzmann method (LBM) [Qian, d’Humieres, and Lallemand (1992); Chen
and Doolen (1998); Yu, Mei, Luo, and Shyy (2003); Shih-Kai Chien and Chen
(2008)] has been successfully applied to various hydrodynamic problems and the
major advantages of the LBM are explicit, easy to implement, and natural to paral-
lelize. However, the capability of the lattice Boltzmann method to model complex
geometry may not be trivial due to the Cartesian grid adopted and the complex
boundary implementation along the curved boundary. The major difficulty encoun-
tered is the representation of the complex geometry, since the Cartesian grid does
not conform with the curved boundary.

Various methodologies have been put forward to tackle the LBM simulation of
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complex geometry flows. The simplest approach is to employ bounce back scheme.
Because the bounce-back on the node (BBN) has been shown to be first order ac-
curate, the bounce-back on the link (BBL) is proposed by Ladd (1994). However,
in order to preserve the geometric integrity, it is necessary to use a large number
of lattice grids. On the other hand, Chen, Martinez, and Mei (1996) extended the
“extrapolation scheme” to curved boundary, where the boundary is represented by
the lattice nodes closest to the curved surface using castellated approach. Filippova
and Hänel (1998) proposed a method using a simple linear interpolation between
a fictitious equilibrium distribution function and a well-chosen near-boundary dis-
tribution function. The weighting factor of the interpolation is determined by the
distance between the boundary and the near-boundary lattice. Mei, Luo, and Shyy
(1999) further improved its numerical stability. Lallemand and Luo (2003) com-
bined the bounce-back scheme and interpolation scheme to treat a moving curved
boundary by the lattice Boltzmann method. The bounce-back scheme simulates
a stationary boundary, and an additional term is added to implement a moving
boundary. This treatment is an extension of that proposed by Bouzidi, Firdaouss,
and Lallemand (2001). An alternative proposed by Chang, Liu, and Lin (2009) is
to impose the boundary condition along the complex geometry based on the linear
interpolation of the primitive variables.

The immersed boundary method (IBM) is another convenient approach to treat fluid
flows involving complex boundary by generating external force field to mimic the
immersed boundary. IBM can be categorized as feedback forcing [Peskin (1972);
Saiki and Biringen (1996); Mittal and Iaccarino (2005)] and direct forcing [Mohd-
Yusof (1997); Fadlun, Verzicco, Orlandi, and Mohd-Yusof (2000); Mittal and Iac-
carino (2005)] approaches. However, the major drawback of the existing feedback
forcing is the restriction of small CFL number. Aiming at improving the CFL
number restriction, Su, Lai, and Lin (2007) proposed a new immersed boundary
technique for the simulation of flows interacting with solid boundary within the
Navier-Stokes framework. In Chen, Lin, and Lin (2007), the lattice Boltzmann
method is combined with the immersed boundary technique of Su, Lai, and Lin
(2007) to simulate flows with complex boundary. In Su, Lai, and Lin (2007) and
Chen, Lin, and Lin (2007), dirac delta function was employed to link the force be-
tween the Lagrangian marker and the computational grid, and this may potentially
smear the solution across the interface.

In contrast to the feedback forcing approach, the direct forcing approach seems to
be more efficient in simulating flows with rigid immersed boundary. This scheme
was originally proposed by Mohd-Yusof (1997), and the direct momentum forcing
is applied to a set of points adjacent to the immersed surface. It is equivalent to the
direct imposition of the velocity boundary conditions on the Eulerian grids. There-
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fore, information regarding these grids (forcing nodes) either external or internal to
the immersed boundary must be determined [Kim, Kim, and Choi (2001); Balaras
(2004); Liao, Chang, Lin, and McDonough (2010)].

Although the direct forcing concept has been applied within the immersed bound-
ary method, it is mostly implemented within the Navier-stokes equation[Kim, Kim,
and Choi (2001); Liao, Chang, Lin, and McDonough (2010)]. In this paper, a com-
bination of the lattice Boltzmann method and the direct forcing based immersed
boundary method is proposed to simulate flows with complex geometry. Here, the
curved boundary is represented by a series of Lagrangian markers. The fluid ve-
locity of node adjacent to the solid boundary is obtained by linear interpolation be-
tween the Lagrangian marker and the second fluid node further away. To improve
the capability to model flow with moving object, a solid-body-forcing procedure
is also employed within the solid region. The validity and accuracy of the new
method are scrutinized by simulating decaying vortex, 2D flow over an asymmet-
rically placed cylinder, and in-line oscillating cylinder in a fluid at rest. All the
numerical results are compatible with the benchmark solutions.

2 The lattice Boltzmann method

2.1 The lattice Boltzmann equation

The lattice Boltzmann equation adopting a uniform lattice with Bhatnagar-Gross-
Krook collision model [Chen, Chen, Martinez, and Matthaeus (1991); Qian, d’Humieres,
and Lallemand (1992); Chen and Doolen (1998)] can be expressed as,

fi(~x+~eidt, t +dt)− fi(~x, t) =−1
τ
[ fi(~x, t)− f eq

i (~x, t)] (1)

where fi is the particle distribution function along the particle speed direction ~ei

at position ~x and time t. f eq
i is the equilibrium distribution function and τ is the

single relaxation time that controls the rate approaching equilibrium. Based on the
particle distribution function, the macroscopic density ρ and velocity~u are defined
as,

∑
i

fi = ρ, ∑
i

fi~ei = ρ~u (2)

The equilibrium distribution functions, which depend on the local density and ve-
locity, are given by the form [Qian, d’Humieres, and Lallemand (1992)],

f eq
i = ωiρ[1+

3
c2~ei ·~u+

9
2c4 (~ei ·~u)2− 3

2c2~u ·~u] (3)

where c = dx/dt is the lattice speed, and dx and dt are the lattice width and time
step, respectively. ωi is a weighting factor. For the present 2D applications, D2Q9
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model are adopted (see Fig. 1). The particle speed ~ei adopting D2Q9 model are
defined as,

~e0 = 0 (4)

~ei = (cos[π(i−1)/2],sin[π(i−1)/2])c
i = 1,2,3,4 (5)

~ei = (cos[π(i−4−1/2)/2],sin[π(i−4−1/2)/2])
√

2c

i = 5,6,7,8 (6)

and the weighting factors are ω0 = 4/9, ωi=1,2,3,4 = 1/9, and ωi=5,6,7,8 = 1/36.
Moreover, the speed of sound is Cs = c/

√
3 and the corresponding kinematic vis-

cosity is ν = (τ−0.5)C2
s dt in the simulation.
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Figure 1: 2D (d2q9) model.

2.2 The forcing strategies

In the proposed simulation, the lattice Boltzmann method is combined with the
direct forcing based immersed boundary method. Therefore, a force term should
be added to the lattice Boltzmann equation. Then Eq. (1) becomes,

fi(~x+~eidt, t +dt)− fi(~x, t) =−1
τ
[ fi(~x, t)− f eq

i (~x, t)]+∆tFi (7)
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The issue of computing the forcing function Fi of Eq. 7, when the interface does
not coincide with grid nodes is discussed here. A combination of two strategies is
adopted for calculations to be reported herein: viz., interpolation (at forcing points
in the fluid domain) and a solid-body-forcing procedure within the solid region,
the latter of which leads to improved accuracy (in particular, significant reduction
of non-physical temporal oscillations of dependent variables) when treating mov-
ing boundaries. This has been investigated by Liao, Chang, Lin, and McDonough
(2010) using the Navier-Stokes equation approach.

Thus, two issues should be addressed here. First is the forcing location in the fluid
region, and the second is specific details of solid-body-forcing. A typical solid-fluid
boundary within the computational domain is shown in Fig. 2, where the closest
nodes adjacent to the boundary in the fluid domain are termed the forcing nodes (C)
as represented by the filled triangles. The open squares are the Lagrangian mark-
ers (B) used to mimic the solid-fluid boundary, and the filled circles represent the
second fluid nodes (A) beyond the forcing nodes. In the present curved boundary
approach, the forcing nodes are used to impose the momentum condition due to the
presence of the solid-fluid boundary.
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S
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Figure 2: Distribution functions along the boundary nodes. N: forcing node, �:
Lagrangian marker, •: second fluid node.

The correct macroscopic velocity of the forcing nodes are obtained by linear inter-
polation between the velocities of the Lagrangian marker (B) and the second fluid
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node (A), as shown in Fig 3.

Solid domain

Fluid domain

B

A

C

B’

C’

A’

Figure 3: Geometry of flows with an immersed boundary. N: forcing node, �:
Lagrangian marker, •: second fluid node.

~VC =~VA +(~VA−~VB)
AC
AB

(8)

The determination of the location of the Lagrangian marker is addressed here. If the
forcing node one vertical or horizontal edge connected with the solid-fluid bound-
ary, for example at node C, the Lagrangian marker is determined as the intersection
of the line

−→
AC with the solid-fluid boundary, i.e. marker point B. However, for

node C′ there are one vertical and one horizontal edges connected to the solid-fluid
boundary. Therefore, the interpolation is not unique. In order to avoid this ambigu-
ity, the method proposed by Liao, Chang, Lin, and McDonough (2010) (using the
Navier-Stokes solver) is adopted, that the Lagrangian marker is determined as the
intersection of the line

−−→
A′C′ with the solid-fluid boundary, i.e. marker point B′.

After the flow variables at each forcing node is obtained, the force required to
modify the momentum is expressed as,

ρVC = ∑
i

fi~ei +
∆t
2

~F (9)
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where VC is the correct velocity at forcing nodes, and the first term in the right
represents the macroscopic velocity computed by LBM. By Eq. (9), ~F can be
obtained for each time step and substituted into the equation [Guo, Zheng, and Shi
(2002)],

Fi = (1− 1
2τ

)ωi[
ei−VC

C2
s

+
(ei ·VC)

C4
s

ei] ·~F (10)

to determine the force term Fi in the lattice Boltzmann equation with a force term,
i.e. Eq. (7). It should be noted that in Eq. (7), the velocity in the equilibrium
distribution function should be updated by VC in Eq. (9).

As indicated earlier, complications for moving-boundary problems arise from the
fact that positions of the forcing points near the interface between fluid and solid
change from time step to time step. This is alleviated by adopting a solid-body-
forcing strategy within the solid domain, wherein the velocity of the point S within
the solid is forced to equal the velocity of the moving object. In particular, the
solid-body forcing strategy is imposed within the solid region through the solid-
body force calculated as

ρ~Vmove = ∑
i

fi~ei +
∆t
2

~F (11)

where ~Vmove represents the velocity of the moving object. Note that the solid-body-
forcing procedure must be carried out at every time step for moving-boundary prob-
lems.

2.3 Boundary condition

Along the computational boundary, fi(~x, t) due to the inward streaming operations
may originate from the undefined nodes external to the computational domain,
therefore measures have to be taken to prescribe these unknown particle distribution
functions.

The unknown particle distribution functions at the plane boundary are expressed
as a combination of the local known value and a corrector [Chang, Liu, and Lin
(2009); Ho, Chang, Lin, and Lin (2009)],

fp(~x, t) = f ∗p(~x, t)+
αp

c
~ep · ~Q (12)

where ~Q is the corrector to enforce the required momentum.

Consider a typical point PCB along the computational boundary shown in Fig. 2,
where the unknown distribution functions are f4, f7 and f8, i.e. f4 = f ∗4 −α4Qy,
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f7 = f ∗7 −α7(Qx + Qy) and f8 = f ∗8 + α8(Qx−Qy). Therefore, the macroscopic
velocity and density at the point PCB using equation 2, in conjunction with equation
12, can be expressed as,

ρ = f0 + f1 + f2 + f3 +( f ∗4 −α4Qy)+ f5 + f6

+( f ∗7 −α7(Qx +Qy))+( f ∗8 +α8(Qx−Qy))
ρu = f1 + f5 +( f ∗8 +α8(Qx−Qy))− f3− f6− ( f ∗7 −α7(Qx +Qy))
ρv = f2 + f5 + f6− ( f ∗4 −α4Qy)

−( f ∗7 −α7(Qx +Qy))− ( f ∗8 +α8(Qx−Qy)) (13)

These equations can be used to solve for ρ , Qx and Qy, and hence f4, f7 and f8.
For simplicity, αp = ωp. This coefficient produces a more compact form of the
distribution functions and the boundary condition of Zou and He (1997) can be
recovered. The explicit forms of the unknown particle distribution functions as
shown below.

ρ =
f0 + f1 + f3 +2( f2 + f5 + f6)

1+ v
(14)

f4 = f ∗4 −
2
3

ρv+
2
3
( f2− f ∗4 + f5− f ∗7 + f6− f ∗8 ) (15)

f7 = f ∗7 −
1
2

ρu− 1
6

ρv+
1
2
( f1− f3)

+
1
6
( f2− f ∗4 )+

2
3
( f5− f ∗7 )− 1

3
( f6− f ∗8 ) (16)

f8 = f ∗8 +
1
2

ρu− 1
6

ρv− 1
2
( f1− f3)

+
1
6
( f2− f ∗4 )− 1

3
( f5− f ∗7 )+

2
3
( f6− f ∗8 ) (17)

For simplicity, formulation f ∗p(~x, t)= f (~x,~ep, t−dt) is adopted. However, if f ∗p(~x, t)=
f (~x,−~ep, t), the present form recovers the form by Zou and He (1997).
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Table 1: The maximum relative errors of the decaying vortex simulated with IBM-
LBM method.

Lattice size Maximum relative error Order
41×41 2.0016847688226687E-003 -
81×81 6.0194496776706092E-004 1.824

161×161 1.7075582952682731E-004 1.878
321×321 4.6410782536254747E-005 1.918

3 Numerical Results

3.1 Decaying vortex

The decaying vortex problem is frequently used to examine the accuracy of the
simulation since the analytic solution is available, which is shown below,

u(x,y, t) =−Ucos(πx/L)sin(πy/L)e−2π2Ut/(ReL), (18)

v(x,y, t) = Usin(πx/L)cos(πy/L)e−2π2Ut/(ReL), (19)

ρ(x,y, t) = ρo−
ρoU2

4C2
s

[cos(2πx/L)+ sin(2πy/L)]e−4π2Ut/(ReL). (20)

The computational domain is set up as [−L,L]× [−L,L] where L = 1. The dimen-
sionless relaxation time is τ = 0.65, the Reynolds number is Re = UL/ν = 10,
and the average density is ρ0 =

∫ L
−L

∫ L
−L ρ0dxdy/2L/2L. Since the simulation is

time varying, so the computations are all up to dimensionless time Ut/L = 1. Four
different uniform grids (41,81,161,321) are used in the simulations.

The immersed boundary technique is applied on a circle inside the computational
domain, where the radius is 0.5. The exact time varying velocity conditions are im-
posed along the circular immersed boundary. The definition of maximum relative
error is denoted as,

Errmax =
|u−uexact |max

U
(21)

The rate of convergence is computed by taking logarithmic for the ratio of the two
successive errors as Rate = log2

ErrN
ErrN/2

, where ErrN denotes the error of the grid
resolution N. As shown in Table 1 and Fig. 4, the present method is approximately
second-order accurate.
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Figure 4: Maximum relative error of decaying vortex.

3.2 Flow over an asymmetrically placed cylinder in a channel

The flow past a stationary circular cylinder is a typical problem and has been widely
investigated [Schafer and Turek (1996); Mei, Yu, Shyy, and Luo (2002); Chen, Lin,
and Lin (2007)]. For Reynolds number below 47, the flow structure remains steady
with stationary recirculating vortices behind the cylinder. As the Reynolds number
is elevated, the steadiness breaks down and the vortex starts to shed up and down
alternatively. This shedding frequency and the intensity of the vortex also increase
in tandem with the elevated level of the Reynolds number.

Schafer and Turek (1996) reported a set of 2D and 3D benchmark results for lami-
nar flows over a circular cylinder of radius r that is asymmetrically placed inside a
channel. The distances from the center of the cylinder to the upper wall and lower
wall are 4.2r and 4.0r, respectively. The 2D geometric layout is shown in Fig. 5.
The inlet boundary is placed at 4 radii upstream of the cylinder center, l+ = 4.0r,
and the exit boundary is located 40 radii downstream of the cylinder center. In the
present study, r = 30∆x is used. The grid resolutions in the x and y directions are
1321 and 247, respectively. The Eulerian grid spacing is ∆x = ∆y = 1/40, and the
time step size is ∆t = ∆x. The Reynolds numbers are Re = 2rUave/ν = 20 and 100.
At Re = 100, the flow becomes unsteady and periodic vortex shedding is observed.

A parabolic velocity profile of maximum speed Umax is applied at the inlet bound-
ary, and the maximum Mach number is Mc = Umax/Cs = 0.1. No-slip boundary
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Figure 5: Configuration of flow over an asymmetrically placed cylinder in a chan-
nel.

condition is applied along the upper and lower wall. At the exit, linear extrapola-
tion is applied for the unknown distribution functions.

The Reynolds number based on the average inlet velocity Uave = 2Umax/3 is Re =
2rUave/ν . The drag and lift coefficient over the cylinder are defined as,

CD =
FD

ρinU2
aver

, CL =
FL

ρinU2
aver

(22)

where the drag force FD and the lift force FL are obtained from the following equa-
tions [Chen, Lin, and Lin (2007); Su, Lai, and Lin (2007)],

FD =−∑
m

Fx,m∆x2, FL =−∑
m

Fy,m∆x2 (23)

Flows at Re = 20 and Re = 100 are simulated. The flow is steady when the
Reynolds number is equal to 20, and the drag and lift coefficient remain constant
after sufficient time steps, as shown in Table 2. At Re = 100, periodic vortex shed-
ding is observed. The drag and lift coefficient have a periodic fluctuation, as shown
in Fig. 6 and 7. Two peaks in the drag coefficient correspond to the existence of
a weaker vortex and a stronger vortex alternately shed behind the cylinder. This
phenomenon is due to that the cylinder is asymmetry placed in the channel. In-
stantaneous vorticity contours at Re = 100 for a single period are shown in Fig. 8.
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Table 2: CD and CL for the flow over a cylinder asymmetrically placed in a channel
at Re=20.

Re=20 Present method Chen et al. (2007) Schäfer and Turek (1996)
CD 5.633 5.679 5.57-5.59
CL 0.0109 0.0114 0.0104-0.0110

The Strouhal number, St = 2r/UaveT , can also be evaluated, where T is the period
of the flow. Table 3 lists the maximum of CD, CL and the Strouhal number of the
simulation. The present results compare favorably with previous findings [Schafer
and Turek (1996); Mei, Yu, Shyy, and Luo (2002); Chen, Lin, and Lin (2007)].

3.3 In-line oscillating cylinder in a fluid at rest

To extend the present curved boundary technique to moving boundary problem,
an in-line oscillating cylinder within a fluid at rest is simulated. The two key pa-
rameters in this flow are the Reynolds number, Re = UmaxD/ν , and the Keulegan-
Carpenter number, KC= Umax/ f D, where Umax is the maximum velocity of the
cylinder, D is the diameter of the cylinder, ν is the kinematic viscosity of the fluid,
and f is the characteristic frequency of the oscillation.

Based on the work of Dütsch, Durst, Becker, and Lienhart (1998), the Reynolds
and Keulegan-Carpenter numbers in the present simulation are set to be 100 and 5,
respectively. The cylinder’s translational motion is described by a simple harmonic
oscillation, x(t) = −Asin(2π f t), where A is the amplitude of the oscillation. The
cylinder is initially located at the center of the computational domain, which is
15D×8D in the x and y directions, as shown in Fig. 9. The grid resolution of
the domain is 901× 481, and 60 grid spacings correspond to the diameter of the
cylinder. All computations are started from a quiescent field and the integration in
time is performed until periodic vortex shedding is established.

Fig. 10 shows vorticity contours at four different phase-angles, which can be com-
pared directly with the work of Dütsch, Durst, Becker, and Lienhart (1998). When
the cylinder moves to the left, upper and lower boundary layers develop on the lead-
ing face the cylinder and separate at symmetric (top and bottom) positions down-
stream. Two counter-rotating vortices are produced by the separating flow. These
vortices persist until the cylinder reaches the left-maximum position and starts its
rightward motion; then the same vortex structure is created on the opposite side of
the cylinder. It is interesting to note that this reversed motion carries the cylinder
back through already-stirred fluid, resulting in splitting of vortex pairs produced
during the preceding leftward motion. These results are consistent with the corre-
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Figure 6: The time evolution of drag and lift coefficients at Re=100.
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Figure 7: The time evolution of drag coefficients at Re=100.
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2T/4

3T/4

T

Figure 8: The instantaneous vorticity contours for a single period at Re=100, dotted
and solid lines denote negative and positive contours.

sponding laboratory experiments reported in Dütsch, Durst, Becker, and Lienhart
(1998), implying that qualitative features of the vorticity field dynamics can be
properly captured by the present method.

To further compare the present numerical results with experimental data, veloc-
ity profiles at four x locations at 180o phase angle are plotted in Fig. 11 along
with corresponding experimental results from Dütsch, Durst, Becker, and Lienhart
(1998). It is expected that the velocity distributions should be symmetric and anti-
symmetric for the u and v velocities, respectively, along the y direction. There
is generally good agreement, although measurements show slightly nonsymmetric
velocity distribution in the y direction, indicating the level of measurement uncer-
tainty.
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Figure 9: Configuration of In-line oscillating cylinder in a fluid at rest.

4 Conclusion

In this paper, a combination of the lattice Boltzmann method and the direct forc-
ing based immersed boundary method is proposed to simulate flows with complex
geometry. Here, the curved boundary is represented by a series of Lagrangian
markers. The fluid velocity of node adjacent to the solid boundary is obtained
by linear interpolation between the Lagrangian marker and the second fluid node
further away. To improve the capability to model flow with moving object, a solid-
body-forcing procedure is also employed within the solid region. The validity and
accuracy of the new method are scrutinized by simulating decaying vortex, 2D flow
over an asymmetrically placed cylinder, and in-line oscillating cylinder in a fluid
at rest. The decaying vortex simulation indicates that the present method is second
order accurate and all the results are compatible with the benchmark solutions.
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Figure 10: Vorticity contours at four different phase-angles. (a) 0◦, (b) 96◦, (c)
192◦, and (d) 288◦.
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