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A Three-Dimensional Meshless Scheme with Background
Grid for Electrostatic-Structural Analysis
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Abstract: On the analysis of electrostatic-structural coupled problems as encoun-
tered in many electrostatic driven MEMS devices, the electrostatic analysis domain
is often extremely distorted due to the deflection of the structure. This kind of prob-
lem is difficult to be dealt with by almost all kinds of available numerical methods.
A new three-dimensional meshless scheme with background grid is thus proposed
herein. By this scheme, a three-dimensional fixed background grid with regularly-
distributed nodes is utilized. Another set of discretized boundary grid is employed
to describe the boundary surfaces of both the structure and the electrostatic field.
The analysis electrostatic/structural domains are modeled by the nodes which are
from the boundary grid and the background grid enclosed by the boundary sur-
faces. During the solution process, when the boundary surfaces of the structure
move, those boundary nodes remain the same, while the internal nodes may be
re-selected from the fixed background grid according to the new positions of the
boundary surfaces. Hence, no matter how large the boundary surfaces deflect, reg-
ularly distributed internal nodes from the fixed background grid are obtained and
the distortion of the analysis model is minimized. Therefore, the whole solution
process can be automatically handled by the scheme proposed without the need of
intervening, e.g. remeshing or rezoning. Several cases of electrostatic-structural
coupled problems are tackled in this work to demonstrate the effectiveness and
advantages of the novel meshless scheme.

Keywords: Electrostatic-structural analysis, background grid, meshless method,
coupled-field analysis.

1 Introduction

One of the main disadvantages of the finite element method (FEM) to solve a prob-
lem is that it requires a mesh, including elements and nodes, and building the mesh
is usually tedious and time-consuming. Although three-dimensional automatic
mesh generators gradually become mature, they still are not popularly adopted
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by the academia and industry since most of them can only generate tetrahedral
elements instead of preferable hexahedral elements and create a large amount of
elements, which become difficult to handle by computers and analysts.

In addition, the FEM usually gets troubles with the distortion of elements in dealing
with large deformation problems. To overcome the distortion of elements, there
exists a main idea which can partly solve the problems, i.e. to revise and improve
the mesh quality adaptively during the solution process. The h-method, p-method
and rezoning (remeshing the analysis domain) are some of the main tactics. But
there are limits for the improvement by the h-method and p-method due to topology
limitation, because the mesh adaptivity is based on the original mesh which may
not suit the large deformation cases. As for rezoning, it still lacks an effective
three-dimensional auto-rezoning program.

The meshless method has an inherent advantage that it doesn’t require a mesh but a
grid only, i.e. nodes’ combination, and has become one of the most promising nu-
merical methods. Based on the similar idea, there have been emerging some various
meshless methods, such as, the element-free Galerkin method (EFGM)[Belytschko,
Lu, and Gu (1994)], the reproducing kernel particle method (RKPM)[Liu, Jun,
and Zhang (1995)], the h− p clouds [Duarte and Oden (1996)], the node-by-
node meshless method (NBNM)[Nagashima (2000)] and the meshless local Petrov-
Galerkin method (MLPG)[Atluri and Zhu (1998); Atluri and Shen(2002); Atluri
(2004); Atluri, Han, and Rajendran (2004); Atluri, Liu, and Han (2006)] etc. Al-
though there were the pioneering successes by above works, in the early research
works, most of the cases were two-dimensional problems. Till recent years, three-
dimensional problems have also been successfully tackled [Chen and Guo (2001);
Han and Atluri (2003); Li, Shen, Han and Atluri (2003); Han and Atluri (2004);
Chen and Chen (2005); Chen and Lee (2005)]. Among these methods, the MLPG
and EFGM are two of the most adopted ones. But, in solving large deformation
problems, the severe change of the positions of nodes will cause an irregular grid
and also induce serious numerical interpolation and integration problems with the
meshless methods. That is, the quality of interpolation degrades when the grid is
too coarse and the accuracy of integration deteriorates when the grid is too dense
[Mukherejee, and Mukherjee, (1997)]. There are some proposed ways to handle
these kinds of problems. Liu and Jun (1998), and, Hussler-Combe and Korn (1998)
used the adaptivity of refining the region, similar to the h-method in the FEM, to
improve the quality of the interpolation when the density of nodes is not dense
enough. Jun and Im (2000) took the adaptivity of the density of background cells
to improve the accuracy of the integration when the density of nodes is too dense.
Duarte and Oden (1996), and, Liszka, Duarte, and Tworzydlo (1996) adopted the
adaptivity of the degree of polynomials, similar to the p-method in the FEM, to
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modify the accuracy of the interpolation. Combination of both above h- and p-
methods also has been adopted.

Here, a more straightforward and easy-to-implement new meshless scheme is pro-
posed for the analysis of three-dimensional large deformation coupled-field prob-
lems. By this scheme, a fixed regular background grid is devised [Chen, Chi, and
Lee (2009)], of which the distribution and locations of nodes remain unchanged
to cover the analysis domains during the solution process. The boundary surfaces
of the analyzed domains are discretized as the boundary grid which is used to rep-
resent the deformable shape and positions of the analyzed domains. Namely, the
analysis domain is modeled by the nodes of the deformable boundary grid and the
nodes from the fixed background grid enclosed by the boundary surfaces, as the in-
ternal nodes. Actually, the contents of the internal nodes enclosed by the boundary
grid from the background grid are changing adaptively according to the updated
boundary surface’ shape and position described by the boundary grid during the
solution process. By this approach, proper nodes can be thus selected adaptively
and regular distribution of the internal nodes can be kept. An effective computa-
tional scheme can be thus implemented easily with less numerical interpolation or
integration problems.

In the EFGM and some other meshless methods, the domain integration is nec-
essary. The Gaussian quadrature, of which the integration points selected are not
uniformly distributed and weighted, is good for polynomial interpolation functions
as in the FEM. But, it may induce some deviation of accuracy in the domain in-
tegration for those meshless methods whose interpolation functions are derived by
the moving least square approximation. The main reason is that the positions of the
Gaussian quadratures are no longer the best ones to sample the interpolation func-
tions and the weighting values, which represent the volumes of the corresponding
quadrature points, may improperly estimate the importance of those points. Espe-
cially when the integration volumes of certain quadrature points are across border,
the improper estimations may induce nonignorable deviation. Hence, instead of
Gaussian quadrature, a regular quadrature scheme is proposed here. In this way,
every quadrature has the same weighting and is uniformly distributed. Moreover,
the represented volumes of those quadrature points which cross border will be sim-
ply scaled by the ratio of the part inside the borders. By this way, the accuracy for
integration can be improved. The comparison will be also demonstrated below.

To demonstrate the proposed meshless method, several electrostatic-structural anal-
ysis cases are selected and solved. They are electrostatically actuated MEMS com-
ponents which are very common in MEMS applications. This kind of coupled-field
analysis is a type of problem involving calculation of both electrostatic and struc-
tural physics. For example, a flexible electrode is attracted and largely deflected
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by the force due to the electrostatic field. At the same time, the electrostatic field
is also affected by the large deflection of the flexible electrode. It is necessary to
re-mesh the electrostatic field by the FEM to avoid the serious distortion of the
elements, which are altered seriously during the solution. Even by the meshless
methods, as mentioned above, the irregular distribution of nodes also causes nu-
merical problems. The advantage of the present meshless scheme is distinct for
solving this kind of problem. For comparison purpose, the FEM solutions are also
shown.

In addition to the cases analyzed here, since it can easily handle the interaction
between the two corresponding fields, the new scheme can also be applied to other
kinds of coupled-field large deformation problems, such as fluid-structural coupled
problems, etc. Besides, although only the EFGM is used as a meshless platform
here, the new scheme can be also implemented in other kind of meshless methods,
such as the MLPG.

2 Moving least square approximation

In the MLPG, EFGM and some other meshless methods, the shape functions are
derived by a moving least square approximation. That is, the value of field variable
at any point can be predicted with the derived shape functions and the values of the
nodes surrounding the discussed point.
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Figure 1: Meshless method
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As shown in Fig.1, consider a sub-domain Ωx, which influences the node located
at x inside the analysis domain Ω. The unknown field variable u can be expressed
by an approximation function as uh, say,

uh =
m

∑
j=1

p j(x)a j(x) = pT (x)a(x) in Ωx, (1)

where pT (x) = [p1(x), p2(x)...pm(x)]1×m is a complete monomial basis of order m.
a(x) are unknown coefficients which are functions of the spatial coordinates x. The
coefficients a(x) can be determined by minimizing a weighted discrete L2 norm,
which is defined as

J(x) =
n

∑
i=1

wi(x)[pT (xi)a(x)−ui]2, (2)

where wi(x) = w(x−xi), ui, xi are the weight functions, nodal values, and coordi-
nates associated with node i, respectively. n is the number of nodes in the influence
domain of the discussed point in the sub-domain Ωx. In this work, the following
quartic spline function is adopted as the weight function [Belytschko, Lu, and Gu
(1994)]:

wi(x) =

{
1−6(di

ri
)2 +8(di

ri
)3−3(di

ri
)4 0≤ di ≤ ri

0 di ≥ ri
, (3)

where di = |x−xi| denotes the distance between the discussed point and node i. ri

is the radius of the influence domain.

The stationary condition of weighted discrete L2 norm J(x) with respect to the
coefficients a(x) leads to the relation

A(x)a(x) = C(x)û, (4)

where

A(x) = PT WP, (5)

and

C(x) = PT W. (6)

In Eq. (4), û is the nodal values and P is the matrix of the above pT (x) with
the nodal coordinates of those nodes in the subdomain Ωx, and W is the diagonal
weighting matrix of wi(x). Then, the coefficients a(x) of Eq. (1) can be derived as

a(x) = A(x)−1C(x) û . (7)
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As in the FEM, uh can also be expressed by the form with shape functions as

uh =
n

∑
j=1

N j(x)u j = NT û, (8)

Comparing with Eq. (1), the nodal shape functions N can thus be derived as

NT (x) = pT (x)A(x)−1C(x). (9)

After the shape functions N have been derived, the equilibrium equations for anal-
ysis problems can then be formed by either the variational formulation or the
Galerkin method as used in the FEM. The detailed derivation of the shape func-
tions N by the moving least square approximation can also be referred to Atluri
and Zhu (1998), Chen and Guo (2001).

3 The new meshless scheme with background grid

As mentioned above, the proposed new scheme is mainly for handling large defor-
mation problems. For a large deformation problem, the entire solution process is
divided into a certain number of solution steps. At each solution step, the deforma-
tion of the analyzed object is small enough to capture the complex nonlinear be-
havior for reaching good accuracy of the solution. During the solution process, the
analyzed object is deflecting, i.e. deformed and displaced, step by step. Namely,
the analysis domain representing the analyzed object is changing and moving in
space during the solution process.

With this scheme, a regular background grid which covers the entire analysis do-
main is paved first, as shown in Fig. 2. Inside this, a set of boundary nodes, i.e.
the boundary grid on Γ, are employed to represent the boundary of the analysis
domain Ω, i.e. the surface of the analyzed object. That is, the analysis model is a
combination of the boundary grid and the background grid during the step-by-step
solution.

For each step, the nodes of the boundary grid and those nodes from the background
grid enclosed by the boundary form an analysis domain Ω temporarily for the so-
lution. When the boundary grid moves due to the deformation and displacement
from previous solution step, it will enclose new nodes from the background grid.
Those new enclosed nodes with the nodes of the boundary grid form an updated
analysis domain for next step solution. The solution will move on in the same way.

For example, as shown in Fig. 2(a), the nodes of boundary grid representing the
boundary Γ and the dark nodes enclosed by the boundary grid are considered as
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Figure 2: Model with background grid

active nodes and form the current analysis domain Ω for the first step solution. The
nodes outside Γ are inactive and play no role at this solution step. The solution of
this step is supposed to result in some deformation and displacement of the object,
represented by the displaced boundary grid Γ′, as shown in Fig. 2(b). At the next
solution step, some originally-inside nodes will be left out of the Γ′ and become
ones of the inactive nodes, but some originally-outside inactive nodes will be newly
enclosed by the boundary Γ′ and become active as shown by dark nodes. All the
active internal nodes with the nodes of the boundary grid form the new analysis
domain, Ω′. After the new analysis domain has been determined, the solution for
the new step is then being carried out accordingly. The process keeps going this
way during the step-by-step solution.
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Figure 3: Flow chart of the new scheme with background grid for the meshless
method

In this process, the active nodes of each solution step normally are different and
adaptively coincide with the deformed and displaced objects. Because the back-
ground grid is fixed, although the active nodes are different, the regular nodal dis-
tribution of the analysis domain can be obviously kept. This is a distinct advantage
of this scheme for numerical solution.

If the field variable results of the analysis are path independent, such as electric
field in electrostatic problems which involves no time and history effect, no solution
mapping, i.e. mapping the values of the old nodes onto the new nodes, is required.
On the other hand, if the field variable results of the analysis are path dependent,
such as stresses and strains of a material in nonlinear structural problems, variable
value mapping is required. The procedure of the new scheme is illustrated in Fig.
3.
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For coupled-field problems, e.g. electrostatic-structural cases, two analysis domain
are needed for electrostatic and structural analysis respectively. When doing the
structural analysis, the nodes inside the structure are to be selected for the structural
solution. However, when doing the electrostatic analysis, the nodes outside the
structure but inside the outer space boundary are to be selected for the electrostatic
solution.

4 Governing equations for structural and electrostatic analyses

For the static structural analysis, the displacements, strains and stresses in struc-
tures subjected to external loads are to be determined. As shown in Fig.1, a three-
dimensional structure Ω enclosed by a boundary is solved. The governing equation
in static equilibrium condition is:

∇ ·σσσ +b = 0 in Ω, (10)

where σσσ is the stress tensor and b is the body force vector. The corresponding
boundary conditions are:

σσσ ·n = t̄ on Γt (11)

u = ū on Γu, (12)

where t̄ is the prescribed traction acting on the traction boundary Γt and n is the
outward unit normal vector to the boundary. ū is the prescribed displacement on
the displacement boundary Γu.

For the electrostatic field analysis, the electric field and electric scalar potential
distribution caused by applied potential or charge distributions are to be determined.
The governing equation is

∇ · (ε∇φ) = ρ, (13)

where φ is the electric scalar potential and ρ is the volume charge density. ε is the
permittivity of free space. The electric field intensity E can be derived by

E =−∇φ . (14)

The attraction force calculated at certain point in the center of the corresponding
area by the electric field intensity is derived by

fn = 1/2εE2
n , (15)
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where En is the electric field intensity in the direction normal to the surface area
and fn is the electric attraction force per unit area, namely normal pressure. The at-
traction force will be treated as the prescribed traction in the structural analysis, i.e.
apply normal pressures which values are derived by eq. (15) on the corresponding
areas of the surfaces of the electrode structure and do the structural analysis.

In electrostatic-structural problems, the structure is attracted to deflect by the elec-
trostatic forces. At the same time, the deflected structure, which is also an electrode
in the problem, causes the change of electrostatic field domain. Namely, the analy-
sis domain of electrostatic field is changing during the solution process. Due to the
two way effects between the electrostatic and structural field, a coupled-field anal-
ysis is needed to handle this kind of problem. In the present electrostatic-structural
analysis, a sequential coupled analysis procedure is employed. That is, electrostatic
field analysis and structural analyses will be done in turn, as shown in Fig. 4.

Based on the new scheme mentioned above, both physical domains use different
portion of the same background grid and share the same boundary grid without
re-zoning the analysis model during the solution process even in large deformation
situations. Only the nodes for each solution step are adaptively selected in accor-
dance with the “moving” boundary, i.e. the surfaces of the deflected electrode. In
addition, the interaction between two physical domains can be automatically trans-
ferred through the same boundary grid shared by both sides. Thus, the whole so-
lution process can be automatically handled by a program without any intervening
modeling works, e.g. remeshing, which are required for severely distorted analysis
domain in other numerical methods. Therefore, the efficiency of the new scheme
becomes more distinct in this kind of coupled-field analysis problem.

The iterative procedure is shown in Fig. 4: (1) analyze the electrostatic field and
calculate the attraction force due to the electric field intensity, (2) apply that attrac-
tion force on the structure and do the structural analysis to determine its deflection,
and (3) the electric field is re-calculated according to the newly updated domain.
Repeat steps (1) to (3) until the deviation of the deflections between two iterations,
dn−1 and dn, is small enough, i.e. |dn−dn−1|/dn is within acceptable tolerance.

5 The quadrature scheme for domain integration

For the integrals in the weak forms of equilibrium, i.e. volume domain integration,
discrete analogs are adopted in numerical methods. For the EFGM, Belytschko
et al. (1994) had proposed a way based on cell integration. In this way, the do-
main integration is similar to the element integration in the finite element method.
The cells are in place of elements for the volume integration. In cell integration,
a regular cell structure was also proposed, which is independent of the nodes and
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Figure 4: Flow chart for electrostatic-structural analysis

the boundary. Therefore, some cells may cross the boundary. A three-dimensional
cell is a regular cube, in which some integration points are selected as the sample
points which represent associated portions of the cell for numerical integration to
get the integrals in the cell. If the cell is partially inside the domain, those inte-
gration points inside the domain will be taken into the integral and others will be
neglected. In the EFGM and some other meshless methods, the Gaussian quadra-
ture, which is not uniformly distributed and weighted, is used for domain integra-
tion. The Gaussian quadrature has been proved to be able to accurately represent
the polynomial function in numerical integration and it is therefore adopted for the
finite element method. But, the interpolation functions for those meshless meth-
ods, derived by the moving least square approximation as described above, are no
longer polynomials. In addition, the moving least square interpolants are moving
and randomly influenced by neighbor nodes, the values of field variable inside the
cell are so irregular such that the Gaussian quadrature cannot be considered as the
always-good sampling way. The positions of the quadrature may not be the best po-
sition to sample the interpolation functions. The weighting value which represents
the volumes of those positions may improperly estimate the importance of those
positions especially when the integration volumes of certain quadrature points are
across the boundary. Instead of Gaussian quadrature, a regular quadrature is thus
proposed here. Every quadrature has the same weighting and is uniformly dis-
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tributed. Therefore, when encountering the boundary mismatching situation, i.e.
the boundary of the analysis domain doesn’t coincide with the cells’ boundaries as
seen in Fig. 5, the deviation of accuracy will be statistically reduced due to equal
weighting. In addition, in this scheme, the represented volumes of those quadrature
points which cross the boundary will be simply scaled down by the ratio of the part
inside the domain. By this way, the accuracy for integration can be improved and
the comparison will be also demonstrated below.

6 Numerical examples

For evaluating the performance of those two different types of quadrature men-
tioned above, a cantilever beam, 1µm x 1µm x 10µm, subjected to bending and
stretching, as shown in Fig. 6, was analyzed. The Young’s modulus is 50,000 MPa
and the Poisson’s ratio is 0.17. The values of the loads are 1 µN. In this example,
analyses with different cell sizes were conducted to simulate various situations that
may be encountered during different solution processes. Sometimes the boundary
of the analysis domain coincides with the cells’ boundaries; sometimes it doesn’t,
as shown in Fig. 5 schematically. The deviation comparisons between the Gaussian
and uniform quadrature for two load types versus the cell size are shown in Fig. 7
and 8, respectively. For comparison purpose, the exact solutions of the largest dis-
placements for both two load types are normalized to unity. It is found that both
type of quadrature can obtain good results when the boundary of the analysis do-
main coincides with the cells’ boundaries. But if they don’t coincide with each
other, the inaccuracy of the results by the Gaussian quadrature is much higher than
those by the uniform quadrature, e.g. when the cell size is 0.3µm.

To demonstrate the procedure and effectiveness of the new meshless scheme, two
electrostatic-structural analysis cases are carried out then. For comparison pur-
poses, the FEM will also be employed to solve the same problems.

The structure in the first case is a pair of electrode beams as shown in Fig. 9. The
top electrode beam is cantilevered and actuated by the grounded bottom electrode
beam due to the voltage drop. A zero voltage is applied to the bottom electrode. A
nonzero voltage is applied to the top electrode. The voltage difference of 120 volts
produces electrostatic force on the top electrode and causes it to deflect toward
the bottom electrode. The attraction force and equilibrium position is going to be
determined. A moderate size of free space is adopted for electric field analysis.
The Young’s modulus of the electrode beams, a kind of Oxide, is 50,000 MPa. The
Poisson’s ratio is 0.17. The beam’s size is 0.4µm x 0.2µm x 5µm. The gap between
the two beams is 1.0 µm. The ANSYS® program was also used to solve the same
case. But, the solution always breaks down due to the severe distortion of the mesh
no matter how fine the mesh is as schematically shown in Fig. 10. It is necessary
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quadrature versus cell size for bending
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Figure 8: The deviation comparison
between the Gaussian and uniform
quadrature versus cell size for stretch-
ing case

to re-mesh the electric field domain to make the solution properly works. Because
the auto-mesher can only generate tetrahedral elements, a tetrahedral element type
for re-meshing is adopted in this work. When using the meshless method without
background grid, it is noted that the nodes for electrostatic analysis will pierce into
the structure domain when the structure deflects and won’t be able to continue the
solution process. The meshless model with background grid is shown in Fig. 11.

The attraction force and the displacement at the tip of the top beam electrode are
shown in Table 1, respectively. It is obvious that, if the influence of the deflection
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Figure 9: Electrostatic-structural analysis for two electrodes in electric field

 

 
Figure 10: Element distortion by finite element analysis

of the top beam electrode on the attraction force is neglected and simply the attrac-
tion force computed from the original position is used, there will be a significant
inaccuracy involved in.

The second case is a silicon microphone [Miao, Lin, Chen, Zou, Lim, and Seah
(2002)] whose basic structure is shown in Fig. 12. Here, due to symmetry, it is suf-
ficient to solve a quadrant of the problem. A diaphragm and a perforated backplate
form a pair of capacitor. It is a kind of transducer that converts sound into electrical
signals. The mechanism is that the sound pressure will induce the deflection of
the diaphragm and change the gap between the diaphragm and the backplate. The
capacitance of the capacitor, which is a manipulable electrical signal, is then deter-
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Figure 11: Electrostatic-structural analysis for two electrodes in electric field by
meshless method with background grid

Table 1: The attraction force and the displacement at the tip

attraction force
in original posi-
tion
(µN)

attraction force
in deflected posi-
tion
(µN)

Displacement
(µm)

Proposed scheme
(nodes: 5,658)

0.169 0.266 0.33

ANSYS®

(elements: 3,689,
nodes: 6,176 *)

0.179 0.250 0.35

For electrostatic analysis, the ANSYS® program only has second-order ele-
ment types. For each second-order tetrahedral element, it contains 10 nodes.

mined. Thus, to know the acoustics characteristics of the silicon microphone, it is
necessary to check the displacement versus applied voltage during the design stage.
In this case, a coupled analysis was adopted to obtain the displacement over voltage
drop. As shown in Fig. 12, the radius of the ventilation holes on the backplate is
10 µm. The size of the backplate is 400 µm x 400 µm, which is fixed along the
edges. The diaphragm beneath is H-shaped. The ends of the legs of “H” are fixed.
The thicknesses of the backplate and diaphragm are 5 µm and 3 µm, respectively.

The elastic modulus of the silicon diaphragm is 120 GPa; the Poisson’s ratio is
0.22. The voltage drop is applied to the pair of capacitor electrodes, diaphragm
and backplate, from 1 to 4 volts, respectively. The voltage difference produces
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electrostatic force on the diaphragm and causes it to move toward the backplate
to reduce the gap. The equilibrium position can then be determined. A moderate
size of free space is adopted for the electric field analysis. The ANSYS® program
is also employed to solve the same case. When doing these analyses, the difficult
situations for the ANSYS® program and the meshless scheme without background
grid encountered in the previous case still remain.

 

 

electric field

backplate

diaphragm 

symmetric plane 

Figure 12: Electrostatic-structural analysis for a microphone by meshless method
with background grid

The results of the displacement at the center of the diaphragm versus different volt-
age drop are displayed in Fig. 13. The results from the ANSYS® program are
almost the same even when decreasing the element size by a half. And the results
obtained by the two methods are also rather consistent as the figure demonstrates.

7 Conclusions

In dealing with electrostatic-structural problems, extremely large deformation and
coupled effect are the two important and difficult issues to be tackled. By those two
electrostatic-structural examples demonstrated above, they show that the coupled
effect cannot be ignored. In addition, the simulation difficulties due to coupled
effect and large deformation can be easily and efficiently handled by the proposed
new meshless scheme with background grid.

This scheme is quite straightforward and efficient even for coupled-field problems
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Figure 13: Displacements at the center of the diaphragm versus voltage drop

with severe large deformation. In addition to the electrostatic-structural problems,
the way to implement the new scheme can also be applied, in the future, to other
types of coupled-field problems with large deformation, e.g. fluid-structural cou-
pled problems in which the flow pressure will induce the structure’s deflection
which may cause the change of the flow pattern.

The accuracy issue with the numerical integration over the analysis domain is fre-
quently encountered for meshless methods due to the boundaries of the analysis
domain and the integration cells may not coincide. In many cases, it requires to
increase the number of the quadrature points to obtain better accuracy at the price
of more computing time. In this works, the proposed uniform quadrature scheme
has been proved to be able to handle the numerical integration more accurately. It
means that the uniform quadrature scheme can reach the same level of solution ac-
curacy with less quadrature points. It is also mentioned that the proposed schemes
can also be implemented with most kinds of meshless methods in a similar way,
such as the MLPG, etc.
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