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Limit Load of Soil-Root Composites
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Abstract: This paper studies the influence of root reinforcement on shallow soil
protection by using Finite Element (FE) method. Taking the root-soil composite as
a periodic material, the homogenization method is used to construct a Representa-
tive Volume Element (RVE) that consists of roots and soil. This RVE is discretized
by a two-dimensional (2-D) FE mesh, while special formulation is established so
that this model is capable of describing three-dimensional (3-D) deformations when
the strain is invariant along the fiber axis. The important effect of debonding on the
interface between the fiber and the matrix is also considered by using a special
interface element. To verify the validity of the proposed computational model, tri-
axial tests were conducted, where the root-soil composite was subjected to axial
and lateral pressures. Good agreement of limit loads has been achieved between
the numerical and the experimental results.

Keywords: limit load, soil-root composites, soil-root interaction, periodic com-
posites.

1 Introduction

In recent years, there has been increased awareness of the possibility of using veg-
etation to resist shallow landslide. This is especially important in Qinghai-Tibet
Plateau, China, which is well-known by its adverse climatic conditions and the
fragile ecological environment. In this region, the vegetation roots perform a very
important role in improving shallow slope stability and reducing geological dis-
asters. To improve the protection effect, it is important to study the mechanical
properties of root-reinforced soil, especially the limit loads of soil-root composites.

Roots provide a reinforcing effect on the soil through their tensile resistance and
pull-out resistance. The tensile strength of roots was measured to obtain the re-
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lationship between root diameter and failure load [Wu et al. (1979); Nilaweera
and Nutalaya (1999); Operstein and Frydman (2000)]. The pull-out tests were
performed to measure friction between vertical roots and the soil [Nilaweera and
Nutalaya(1999); Operstein and Frydman(2000)]. Direct shear tests of soils perme-
ated by roots of vegetation have shown that roots can increase the strength of soil
significantly. Laboratory shear tests of soil with roots [Waldon (1977)] and in situ
shear tests on soil blocks with roots [Wu, Beal and Lan (1988)] were also con-
ducted. These studies confirms that the shear strength can be increased by roots.
In addition, a sort of analytical model of soil-root system was developed to ana-
lyze the soil-root interaction [Waldon (1977); Waldon and Dakessian (1981); Gray
and Ohashi (1983); Wu, McOmber, Erb and Beal (1988)]. This kind of model was
based on the Mohr-Coulomb equation and the soil shearing resistance was modified
by a factor relating with root diameters.

The soil-root model can be considered as a kind of fiber-reinforced composite.
Tremendous work has been devoted to the mathematical and numerical modeling
of the behavior of composite materials in recent years. Early researches on com-
posite materials were mainly based on the linear elastic model [Hashin and Rosen
(1962); Hill(1965); Mori and Tanaka(1973)] and focused on the macroscopic de-
scriptions according to empirical data. Most of these researches were later ex-
tended to predict the non-linear macroscopic behavior of composites. Pindera and
Aboudi (1988) applied the method of cells to predict the initial yield surfaces of
metal-matrix composites. Teply and Dvorak (1988) predicted the elastic-plastic
response of composites reinforced by a periodic hexagonal array. Litewka (1980)
presented experimental results of the overall plastic behavior of the perforated ma-
terials. With the rapid development of mathematical theory of homogenization in
1970s [Sahchez-Palencia (1980)], Suquet (1987) introduced the homogenization
technique into classical elastic-plastic models for the study of composites at micro-
scopic scale. Some valuable theoretical formulations were presented. Thereafter,
the homogenization technique has been widely used in the study of composites.
Based on this technique, the effective properties of composite materials with peri-
odical microstructure were obtained by FE method [Michel, Moulinec and Suquet
(1999)] and Fourier Transforms method [Michel, Moulinec and Suquet (2000)].
Okada, Fukui and Kumazawa (2004) also obtained the effective mechanical proper-
ties of particulate composite material by boundary element method. Carvelli, Maier
and Taliercio (2000) applied the kinematic limit analysis to the RVE and obtained
the limit loads of periodic materials. Buhan and Taliercio (1991) theoretically de-
rived the macroscopic yield strength of a periodical composite. The prediction of
the non-linear behavior of elastic-plastic composites subjected to a general state of
stress has mostly been performed by using 3-D model, which leads to burdensome
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numerical analyses. To solve this problem, Taliercio (2005) proposed an FE model
to convert the 3-D analysis to the generalized plane strain analysis on any cross
section of the composite.

One of the most significant characteristics of fiber-reinforced composites is the low
strength of the interface between fibers and matrix [Benveniste (1985); Aboudi
(1988)]. Aghdam, Smith and Pavier (2000) proposed initial yield and collapse load
in fiber reinforced metal matrix composites with perfectly bonded or debonded in-
terface on the basis of RVE. Han et al. (2006) studied the failure progression at
the fiber-matrix interfaces in fiber-reinforced composite materials using a softening
decohesion model. For the soil-structure interaction, a joint element was proposed
on the basis of relative nodal displacement of solid elements surrounding the inter-
face [Goodman, Taylor and Brekke (1968)]. A thin-layer element was proposed in
soil-structure interaction and rock joints with a special constitutive model [Desai,
Zaman, Lightner, Siriwardane (1984)].

In this paper, a soil-root composite RVE is established after the careful investigation
of the root growth shape of vegetation in Qinghai-Tibet Plateau. The root growths
unidirectional and arranges periodically, especially in cold and droughty area, so
the homogenization technique can be introduced to analyze the soil-root compos-
ites. In Section 2 some basic concepts are briefly reviewed regarding the theory of
homogenization. To reduce computational burden, the 2-D FE model of soil-root
composites, which is capable of describing 3-D deformations, is established based
on RVE. In this new type of 2-D FE, the displacement field is subdivided into
average and fluctuation parts and the periodical boundary condition is applied to
the fluctuation part directly. Considering the low strength of the interface between
fiber and matrix, the Goodman element is introduced to the RVE and is modified
to satisfy the periodic condition. In Section 3, the soil-root composites are studied
according to experimental method. A kind of vegetation named Elymus dahuri-
cus Turcz is selected as the specimen, which is a popular vegetation to decrease
shallow landslide and protect soils in Qinghai-Tibet Plateau. The elastic properties
and yield strength of root and soil are obtained through basic material experiments.
From the in situ investigation, the root fraction is between 0.5% and 1%. Accord-
ingly, two soil-root composite specimens with the root fraction of 0.5% and 1%,
respectively, were subjected to three-axial loads. The experimental data obviously
show the reinforcement of the root and the effect of the interface. In addition, the
FE models with the same fiber fraction are established to simulate the experiments
of soil-root composites. The obtained numerical limit loads are in good agreement
with experimental results.
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2 The numerical formulation of soil-root RVE

2.1 Homogenization theory for periodical composites

Homogenization is the substitution of real heterogeneous composites with an ideal,
homogeneous continuum. The properties of this composite structure are derived
through analyses of a RVE. If the heterogeneous composites consist of a matrix
embedding uniformly distributed inclusions of the same shape, the composite struc-
ture is said to be periodical, and a single unit cell can be taken as a RVE. The model
of periodical composites is shown in Figure 1. To determine the effective proper-
ties of a composite, two well separated scales are established. A local scale (x) is
small enough to describe microstructure and an overall scale (y) is large enough to
consider the RVE as a macroscopic point of the composites.

 

Figure 1: Periodical microstructures and a RVE of a composite

To characterize the overall properties of the composite, overall stress Σ and over-
all strain E are defined as the average over any RVE of the corresponding local
quantities, σ and ε .

Σ = 〈σ〉= 1
V

∫
V

σdV

E = 〈ε〉= 1
V

∫
V

εdV
(1)

Here, V is the volume of the periodical RVE, 〈·〉 stands for the averaging operator.

In periodical composites, the local mechanical fields in the RVE can be divided
into the overall average term and the local fluctuation term and admit the following
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decomposition:

u = E · x+ ũ

ε = E + ε̃

σ = Σ+ σ̃

(2)

Here, u, ε and σ denote the local displacement, strain and stress field, respectively;
ũ, ε̃ and σ̃ are their fluctuation terms, and ũ are periodical on the boundary of the
RVE.

The overall quantities Σ and E should satisfy the Hill’s lemma:

〈σ : ε〉= Σ : E. (3)

This equation is the basis of energy approaches to evaluate bounds to the yield
strength of fiber reinforced composites.

2.2 Numerical discritization by 2-D FE for generalized plane strain problems

The appropriate kinematic assumption for the analysis of any RVE of a composite
reinforced by an array of long, parallel fibers is that the RVE is in the state of
generalized plane strain (GPS). This assumption requires the displacement and
strain to satisfy:

1. the strain is invariant along the fiber axis.

2. the displacement must be, at most, linear in fiber axis.

3. the axial strain is necessarily constant through the RVE.

A 2-D FE with n(e) nodes is constructed based on the above assumptions. Each
node has three Degrees of Freedom (DOF), corresponding to the components of

the nodal fluctuation displacement Ũ (e)
j =

{
ũ(e)

j , ṽ(e)
j , w̃(e)

j

}T
, j = 1 · · ·n(e). Each

component of the displacement field u = {u,v,w}T, is discretized in the following
form:

u(e) (x,y) = E · x(x,y)+ ũ(e) (x,y)

= E · x(x,y)+N(e) (x,y)Ũ (e) (x,y) ,
(4)

where Ũ (e) is 3× n(e) nodal DOF and E is 3× 3 overall strain matrix. N(e) is the
in-plane shape function matrix for n(e)-node 2-D element.
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The fluctuation strain ε̃ = {ε̃x, ε̃y, ε̃z, γ̃xy, γ̃xz, γ̃yz}T is discretized as:

ε̃
(e) (x,y) = B(e) (x,y)Ũ (e) (x,y) . (5)

Here, B(e) is the in-plane compatibility matrix, which can be split into 6× 3 sub-
matrices, B(e)

j , j = 1 · · ·ne. Each B(e)
j is given by

B(e)
j =



∂N(e)
j

∂x 0 0

0
∂N(e)

j
∂y 0

0 0 0
∂N(e)

j
∂y

∂N(e)
j

∂x 0

0 0
∂N(e)

j
∂x

0 0
∂N(e)

j
∂y


, j = 1 · · ·ne. (6)

The discretized form of Eq.(3) reads as [Michel, Moulinec and Suquet (1999)][
K K̄
K̄T ¯̄K

]{
Ũ
E

}
=
{

0
Σ

}
. (7)

Here, the stiffness matrix reads:

K = ∑
e

k(e),

k(e) =
1
V

∫
e
B(e)T

D(e)B(e)dV

K̄ = ∑
e

k̄(e),

k̄(e) =
1
V

∫
e
B(e)T

D(e)dV

¯̄K = ∑
e

¯̄k(e),

¯̄k(e) =
1
V

∫
e
D(e)dV

(8)

Considering the periodicity of RVE, the fluctuation displacement ũ must satisfy
periodic boundary conditions:

ũA = ũB, (9)
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Figure 2: Periodicity boundary conditions

where, (A, B) is any pair of nodes on any side of the RVE, symmetrical with respect
to the symmetrical axial of the RVE. In Figure 2, the symmetrical nodes are denoted
in square and hexagonal array RVEs.

The periodical boundary conditions must be considered as constrains imposed to
the discrete FE equation, Eq.(7).

2.3 FE formulation with debonded interface element

In the simulation of soil-root composite, the low strength of the interface must be
considered. For this purpose, the Goodman interface element is modified to satisfy
the periodic condition.

Two sets of Cartesian coordinates are established. One is the global coordinates
OXY Z, where the displacement is u and the fluctuation displacement is ũ; the other
is local coordinates O′X ′Y ′Z′, where the displacement is u′ and the fluctuation dis-
placement is ũ′. The transformation matrix between these two coordinates is de-
noted as the matrix T .

u′ = Tu

ũ′ = T ũ
(10)

The constructed interface element with m(e) nodes is shown in Figure 3. For the
interface element in GPS state, the 2-D interface element can also describe 3-D
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failure mode. In local coordinates O′X ′Y ′Z′, each node has three DOF U ′(e)j ={
u′(e)j ,v′(e)j ,w′(e)j

}T
, j = 1 · · ·m(e), and the corresponding fluctuation displacements

are Ũ ′(e)j =
{

ũ′(e)j , ṽ′(e)j , w̃′(e)j

}T
, j = 1 · · ·m(e).

 

Figure 3: Six-node interface element

The displacement field can be discretized in the following form:

u′(e)upper = N(e)U ′(e)upper

u′(e)lower = N(e)U ′(e)lower

. (11)

Here, u′(e)upper and u′(e)lower are the displacements in the upper edge and the lower edge

of the interface element, respectively. U ′(e)upper and U ′(e)lower are the corresponding
nodal displacement vector. The corresponding discretization form of the fluctuation
displacement field is given by

ũ′(e)upper = N(e)Ũ ′(e)upper

ũ′(e)lower = N(e)Ũ ′(e)lower

(12)

where N(e) is the shape function in one dimension, which can be split into 3× 3
sub-matrices, each one pertinent to one node:

N j(x′) = N j(x′)

1 0 0
0 1 0
0 0 1

 , j = 1 · · · m
(e)

2
; (13)
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Because in this interface element, one point on the upper edge requires a paired
point on the lower edge, the total number of element nodes m(e) must be even.

The difference of the displacement between upper and lower edge is given by

∆u′(e) = N(e)
(

U ′(e)upper−U ′(e)lower

)
. (14)

Considering the thickness of the interface element t is much smaller than the di-
mension of the adjacent element, the difference of the overall displacement can be
ignored. The difference of the fluctuation displacement can be read as

∆u′(e) = ∆ũ′(e)

= N(e)
(

Ũ ′(e)upper−Ũ ′(e)lower

)
=
[
−N(e)

N(e)

][
Ũ ′(e)lower

Ũ ′(e)upper

]

=
[
−N(e)

N(e)

]
Ũ ′(e)

=
[
−N(e)

N(e)

]
T (e)Ũ (e)

(15)

Supposing the thickness of the interface element t is constant and the strain of the
interface element is

ε
′(e) =


γ ′

(e)
X ′Y ′

ε ′
(e)
Y ′

γ ′
(e)
Y ′Z′

=
1
t


∆u′(e)X ′Y ′

∆u′(e)Y ′

∆u′(e)Y ′Z′

=
1
t

M(e)Ũ ′(e) =
1
t

M(e)T (e)Ũ ′(e), (16)

where, M(e) is given by

M(e) =
[
−N(e)

1 · · · −N(e)
m(e)

2

N(e)
1 · · · N(e)

m(e)
2

]
. (17)

The compatibility matrix in interface element reads

B(e) =
1
t

M(e). (18)

From the Hill’s lemma (Eq. (3)), the discretized FE equation for the RVE with
debonded interface has the same form as Eq. (7), while the stiffness matrix is
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modified as follows:

K = ∑
e,stru

k(e)
1 + ∑

e,inter
k(e)

2 ,

k(e)
1 =

1
V

∫
e
B(e)T

D(e)B(e)dV

k(e)
2 =

1
V

∫
e
T (e)T

B(e)T
D(e)B(e)T (e)dV

K̄ = ∑
e,stru

k̄(e),

k̄(e) =
1
V

∫
e
B(e)T

D(e)dV

¯̄K = ∑
e,stru

¯̄k(e),

¯̄k(e) =
1
V

∫
e
D(e)dV

(19)

Here, the elastic matrix D(e) on the interface is given by

D(e) =

KX ′Y ′ 0 0
0 KY ′ 0
0 0 KY ′Z′

 , (20)

where

KX ′Y ′ = KY ′Z′ =
E

2(1+ν)

KY ′ =
E(1+ν)

(1+ν)(1−2ν)

(21)

E is the elastic modulus and ν is the Poisson’s ratio. The stress σ ′(e) in the interface
reads as

σ
′(e) =


τ ′

(e)
X ′Y ′

σ ′
(e)
Y ′

τ ′
(e)
Y ′Z′

=

KX ′Y ′ 0 0
0 KY ′ 0
0 0 KY ′Z′




γ ′
(e)
X ′Y ′

ε ′
(e)
Y ′

γ ′
(e)
Y ′Z′

 . (22)

The parameters in elastic matrices KX ′Y ′ , KY ′Z′ and KY ′ must be adjusted to represent
two major failure modes of the interface, i.e., the slip and debonding. Here, the
interface stress σ ′(e) is used in the interface criteria for this purpose.

When σ ′
(e)
Y ′ ≤ σ ′cri, the interface is in stick or rebonding mode. The elastic matrix

can be formed according to Eq. (21).
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When σ ′
(e)
Y ′ > σ ′cri, the interface is in debonding mode. The elastic constant should

equal to zero. To avoid the numerical singularity, the elastic constants KX ′Y ′ , KY ′Z′

and KY ′ can also be set as small values.

When τ ′
(e)
X ′Y ′ > τ ′cri or τ ′

(e)
Y ′Z′ > τ ′cri, the interface is in slip mode. The corresponding

parameters KX ′Y ′ and KY ′Z′ should be replaced by zeroes or small values. The slip
mode can only occur when the normal stress σ ′

(e)
Y ′ is compressive.

σ ′criand τ ′cri are the critical stresses which are determined by the material model
used. Mohr-Coulomb criteria

τ
′
cri = c+σ

(e)
Y ′ tanϕ. (23)

are mostly used to define the initiation of slip for the soil-structure interface. Here,
c and ϕ are the cohesion and friction angle of the soil. For the perfectly strong
interface, σ ′cri and τ ′cri can choose large values. The interface will never break.
For the perfectly weak interface, σ ′cri and τ ′cri can both equal to zero. The interface
is therefore only able to transfer compression force.

3 Experimental study of the soil-root composites

Qinghai-Tibet Plateau is called the Asia’s water tower. The vegetation is much
useful to reserve water and protect soil. The experiments of soil-root composites
were carried out in Xining, Qinghai Province, China. The Elymus dahuricus Turcz,
a popular vegetation to prevent shallow landslide and protect soils in Qinghai-Tibet
Plateau, was selected to study the strength of the soil-root composites. In this
section, the basic material parameters were obtained for the numerical simulation.
The triaxial tests were performed to study the root reinforcement to the soil.

3.1 Material parameters of root and soil

Tension tests were carried out to obtain the material parameters of the Elymus
dahuricus turcz roots. The obtained elastic modulus was 101.9257MPa, and yield
stress was 50.7739MPa.

The soil was obtained from the North Mountain in Xining. The big soil grains
were eliminated through the sieve with 2mm pores. From triaxial tests the obtained
elastic modulus was 0.001168MPa; the cohesion was 0.009556MPa; and the angle
of friction was 24.716 degree.

The natural soil-root composites, shaped in a cylinder with 120mm in height and
61.8mm in diameter, were also obtained from the North Mountain. The roots col-
lected from the smashed natural composites weighted about 1.847g. The weight
of a single root with 120mm in height and 0.4mm in diameter was about 0.011g.
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The total number of roots was 168. In the following triaxial tests, the man-made
specimens were in the same dimension with the same number of roots.

3.2 The triaxial test of soil-root composites

The triaxial test is commonly used to obtain the strength parameters of soil. To
prove the reinforcement of the root, the soil-root composites were subjected to the
triaxial test.

The specimen of the soil-root composite was shaped in a cylinder. The roots were
aligned in parallel along the axis of the specimen. The arrangement of the roots
was homogeneous and periodical, which is shown in Figure 4.

 

Figure 4: The arrangement of roots in composites

To simulate the natural state, the root fraction of the specimen was close to natural
root fraction. Two sets of specimens of 0.5% and 1% root fractions were prepared.
The diameter of each root was measured and the total area of roots in one specimen
was ensured to be 0.5% or 1%.

To facilitate the preparation of the specimen, the soil and roots were provided in-
dependently in advance. All the roots, measured one by one, were 12mm in length
and approximately had the same diameter of the cross section. The number of roots
was determined by the total cross-sectional area of all the roots, which was equal
to 0.5% or 1% of the cross-sectional area of the specimen. In general triaxial tests
of pure soil, the same compactness of a series of specimen was ensured by the
same tamped method by hammer. The same weight of soil was used to assure the
same compactness in the triaxial test of soil-root composites. The pure soil speci-
men in Section 3.1 was weighed, which is denoted by msoil . Then the soil, whose
weight was 0.995msoil or 0.99msoil , was used for the preparation of the specimen
with different fiber fraction.

The specimen was made in a columniform metal box. Two thirds of the box laid
on the ground flatways. A layer of soil was placed in the box and a layer of roots
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was placed on the soil along the axial of the cylinder immediately. The soil and
the roots were put into the box alternately in this way and stopped when 90% of
the soil and all the roots were filled into the box. The remainder one third of the
box was placed on the specimen to form a whole columniform box and tamp the
composites. The specimen was tamped by hammer after the remainder soil was
placed to the two ends of the mental box. The specimen and the root arrangement
in composites are shown in Figure 5 and Figure 6.

 

Figure 5: Specimen of composites

The specimen was subjected to the triaxial test. The lateral pressure of 0.01MPa
was kept through the whole test process. The axial pressure was gradually increased
until the failure of the specimen appeared. The failure mode is shown in Figure 7.

The results of the triaxial tests on soil-root composites with different fiber fraction
are listed in Table 1 and Table 2.

The limit load of axial pressure in pure soil specimen was 0.0543MPa, which was
obtained according to general soil mechanics experiment in Section 3.1. Obvious
reinforcement effect of roots can be proved by comparing the limit load of pure soil
specimen with the average axial limit loads listed in Table 1 and Table 2.
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Figure 6: Root arrangement in composites

Table 1: Experiment result of soil-root composites with 0.5% fiber fraction

Number Average diameter Axial limit
of roots of roots (mm) pressure (MPa)

Sample 1 128 0.385 0.07740
Sample 2 142 0.365 0.08176
Sample 3 123 0.392 0.06978
Sample 4 127 0.387 0.06006
Average 0.07225

Table 2: Experiment result of soil-root composites with 1% fiber fraction

Number Average diameter Axial limit
of roots of roots (mm) pressure (MPa)

Sample 1 245 0.393 0.08105
Sample 2 249 0.391 0.08640
Sample 3 244 0.394 0.09301
Average 0.08682
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Fiber fraction=0.5%  

 
Fiber fraction=1% 

 Figure 7: The failure mode of soil-root composites
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4 Numerical Examples

4.1 Limit loads of metal matrix composites

These composites consist of a titanium matrix IMI 318, which is reinforced by
continuously aligned silicon carbide fibers (SM 1240) with volume fraction 35%.
Elastic perfectly plastic properties are used for the matrix in the FE model. For
the IMI 318 matrix, the elastic modulus is 107 GPa; Poisson’s ratio is 0.3 and the
yield stress is 940 MPa. The SM1240 fiber is assumed to be isotropic and linear
elastic with elastic modulus of 409 GPa and Possion’s ratio of 0.2. 8-node elements
presented in Section 2.2 and 6-node interface element in Section 2.3 are used to
discretize the RVE. Periodical boundary condition is applied to the RVE. The FE
mesh is shown in Figure 8.

 
Figure 8: Finite element mesh of RVE with 35% fiber fraction

A perfectly strong and a perfectly weak interface model are used to determine the
failure mode of the interface. In perfectly strong interface model, the interface does
not slip during the whole loading process. While in perfectly weak interface model,
the interface is only able to transfer compression force between fibers and matrix,
ignoring the friction. These two models can be considered to be the two extreme
behaviors of the actual material.

The FE model is subjected to transverse stresses. The obtained limit loads are
compared with Aghdam’s results [Aghdam, Smith and Pavier (2000)] in Table 3.
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Table 3: Limit loads of the metal matrix composites in transverse load

Bonded interface(MPa) Debonded interface(MPa)
Limit load Aghdam’s Limit load Aghdam’s

Uniaxial tension 1.20 1.16 0.47 0.48
uniaxial compression -1.20 -1.16 -0.87 -0.87

4.2 Limit loads of soil-root composites in triaxial tests

The triaxial test performed in Section 3.2 is simulated according to the RVE method
presented in Section 2. Two RVEs with fiber fraction of 0.5% and 1% are estab-
lished. Material parameters of the soil and roots were obtained from the experi-
ments performed in Section 3.1. The elastic modulus of soil is 0.001168MPa, the
Possion’s ratio is assumed to be 0.2. The soil matrix satisfies Drucker-Prager cri-
terion with circumcircle assumption. The cohesion is 0.009556MPa, and the angle
of friction is 24.716 degree. The elastic modulus of roots is 101.805MPa and the
Poisson’s ratio is assumed to be 0.3. The root satisfies von Mises criterion. The
yield stress is 50.7739MPa. 8-node elements and 6-node interface elements are
used to discretize the RVE.

On the interface, only compression force can be transferred. So when the normal
stress in interface elements is greater than zero, the interface fails. The friction
between fibers and matrix is considered. Mohr-Coulomb criterion (Eq. (23)) is
used to determine the critical shear stress. The material parameters in Eq. (23)
are the same as the soil matrix. The composite fails when the whole interface is
debonded or the incremental load is very small. The corresponding load is the limit
load.

Periodic boundary condition is applied to the RVE. The FE mesh is shown in Figure
9.

The loading process is the same as the experiment. With lateral pressure of 0.01MPa,
the soil-root composites are subjected to the axial pressure step by step. When all
the interface elements are debonded, the soil-root composite is destroyed and the
limit load is obtained. The limit loads of axial pressure in different fiber fraction
are listed in Table 4.

Table 4: Limit loads of axial pressure in triaxial tests

Fiber fraction Numerical result (MPa) Experimental data (MPa)
0.5% 0.0839 0.07225
1% 0.1130 0.08682
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Fiber fraction = 0.5%                Fiber fraction = 1% 
 Figure 9: FE mesh of RVE with fiber fraction of 0.5% and 1%

In Table 4, the numerical solution is greater than the experimental data. This is
mainly due to the difficulty of preparing the specimen of soil-root composites and
the circumcircle Drucker-Prager yield criterion.

In Section 3.2, because the roots were arranged in the soil by hand and the roots
were not very straight, it was difficult to arrange the roots homogeneously. Though
the fiber fraction is 0.5% or 1% in average, there must be some parts of the soil-root
composites, whose fiber fraction are less than 0.5% or 1%. These unhomogeneity
would decrease the strength of the composites. The difficulty of homogeneous
arrangement in 1% fraction is greater than that of 0.5% in the same columniform
box. So from the numerical and experimental results, the error of the result with
1% fiber fraction is lager than that of 0.5%. In addition, the circumcircle Druker-
Prager yield criterion is used in the composites RVE model. It is reasonable that the
numerical result is greater than the real value. However, the computational solution
becomes larger with the increase of the fiber fraction. It proves that the strength of
soil is reinforced by roots.

4.3 In-plane limit loads of soil-root composites

The soil-root RVE subjected to uniaxial in-plane loads are simulated in this section.
The FE model and material parameters are the same as the model in Section 4.2.
The numerical solutions of limit loads are listed in Table 5.

From Table 5, the reinforcement of the root is almost the same in tensile and com-
pression loads. In uniaxial tension and uniaxial compression, the reinforcement of
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Table 5: Limit loads of soil-root composites with different fiber fraction

Limit load (MPa) Limit load (MPa)
(fiber fraction=0.5%) (fiber fraction=1%)

Uniaxial tension 0.0154 0.0140
Uniaxial compression -0.0599 -0.0590

the root fiber can be ignored because of weak interfaces. The soil matrix mainly
bears the in-plane loads. So the limit loads even decrease a little with the increase
of the fiber fraction.

5 Discussion

In this paper, a 2-D FE of composite RVE is established based on homogenization
method. This new element can describe 3-D deformations when the composite
satisfies the assumption of GPS. To simulate the failure mode of interface, a kind
of modified 2-D Goodman interface element, which is capable of describing 3-D
failure mode, is constructed based on the RVE.

The experiments of soil-root composites were performed in Qinghai Province. Ma-
terial parameters of soil and root were obtained by general experiments for the
numerical simulation. The triaxial tests of soil-root composites were performed.
The limit loads of axial pressure were obtained for different root fractions. The
strength of soil was increased obviously with the increase of root fibers.

Limit loads of mental matrix composites was obtained based on the presented com-
putational model and compared with literature on bonded and debonded interfaces.
The soil and the soil-root composites were also calculated based on this model. The
limit loads of soil-root composites were compared to the experiment results in tri-
axial tests. Good agreement of limit loads has been achieved between the numerical
and the experimental results.
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