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A Displacement Solution to Transverse Shear Loading of
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Abstract: In this paper the boundary element method is employed to develop a
displacement solution for the general transverse shear loading problem of compos-
ite beams of arbitrary constant cross section. The composite beam (thin or thick
walled) consists of materials in contact, each of which can surround a finite num-
ber of inclusions. The materials have different elasticity and shear moduli and are
firmly bonded together. The analysis of the beam is accomplished with respect to
a coordinate system that has its origin at the centroid of the cross section, while
its axes are not necessarily the principal bending ones. The transverse shear load-
ing is applied at the shear center of the cross section, avoiding in this way the
induction of a twisting moment. The evaluation of the transverse shear stresses at
any interior point is accomplished by direct differentiation of a warping function.
The shear deformation coefficients are obtained from the solution of two boundary
value problems with respect to warping functions appropriately arising from the
aforementioned one using only boundary integration, while the coordinates of the
shear center are obtained from these functions using again only boundary integra-
tion. Three boundary value problems are formulated with respect to corresponding
warping functions and solved employing a pure BEM approach. Numerical ex-
amples are worked out to illustrate the efficiency, the accuracy and the range of
applications of the developed method. The accuracy of the obtained values of the
resultant transverse shear stresses compared with those obtained from an exact so-
lution is remarkable.
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1 Introduction

One of the problems often encountered in engineering practice is the analysis of
rectilinear members of composite structures subjected to transverse shear loads.
Also, in recent years composite structural elements consisting of a relatively weak
matrix reinforced by stronger inclusions or of different materials in contact are of
increasing technological importance in engineering. Composite structures can pro-
duce very elegant solutions to complex structural engineering challenges. The use
of composite beams is now a real trend in many engineering applications. Steel
beams or columns totally encased in concrete are most common examples, while
construction using steel beams as stiffeners of concrete plates is a quick, familiar
and economical method for long bridge decks or for long span slabs. Moreover,
composite beams or columns offer many significant advantages, such as high load
capacity with small cross-section and economic material use, simple connection to
other members as for steel construction, good fire resistance, excellent earthquake
resistance, high resistance to compressive stresses reducing the risk of local buck-
ling of the steel section and advantages in fabrication. The extensive use of the
aforementioned structural elements necessitates a rigorous analysis.

The problem of a homogeneous prismatic beam subjected in shear torsionless load-
ing has been widely studied from both the analytical and numerical point of view.
Theoretical discussions concerning flexural shear stresses (Weber, 1924; Trefftz,
1935; Goodier, 1944), or the problem of the center of shear (Goodier, 1944; Os-
good, 1943; Weinstein, 1947; Reissner and Tsai, 1972; Andreaus and Ruta, 1998)
and text books giving detailed representations of these topics (Timoshenko and
Goodier, 1984; Sokolnikoff, 1956; Love, 1952) are mentioned among the extended
analytical studies.

Numerical methods have also been used for the analysis of the aforementioned
problem. Among these methods the majority of researchers have employed the fi-
nite element method (FEM) based on assumptions for the displacement field (Ma-
son and Herrmann, 1968; Koczyk, 1994; Gruttmann, Wagner und Sauer, 1998;
Kraus, 2005) or introducing a stress function that fulfils the equilibrium equations
for the evaluation of the shear stresses (Gruttmann, Sauer and Wagner, 1999) and
the shear deformation coefficients (Gruttmann and Wagner, 2001). However, the
FEM despite the generality of its application in engineering problems, is not free
of drawbacks. The FEM require the whole cross section to be discretized into area
(triangular or quadrilateral) elements. Hence, generation and inspection of the finite
element mesh exhibit difficulty and are both laborious and time consuming, espe-
cially when the geometry of the cross section is not simple. For example, when
there are holes, notches or corners, mesh refinement and high element density is
required at these critical regions. Although the FEM computes accurately the filed
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function, which is the unknown of the problem, it is ineffective in determining its
derivatives, especially in areas of large gradients.

The boundary element method (BEM) (Amaziane et al., 2005; Botta and Venturini,
2005; Divo and Kassab, 2005; Dziatkiewicz and Fedelinski, 2007; Hatzigeorgiou
and Beskos, 2002; Katsikadelis, 2002; Lie, et al., 2001; Liu, 2007; Mandolini, et
al., 2001; Mansur, et al., 2004; Miers and Telles, 2004; Ochiai, 2001; Providakis,
2000; Rashed, 2004; Sanz, et al., 2006; Sapountzakis and Tsiatas, 2007; Shiah and
Tan, 2000; Shiah, et al., 2005; Sun et al., 2004; Tan, et al., 2009; Tsai, et al., 2002;
Wang et al., 2006; Wang and Yao, 2008; Zhang and Savaidis, 2003; Zhou, et al.,
2006), on the other hand, seems to be an alternative powerful tool for the solution of
the aforementioned problem. BEM solutions require only boundary discretization
resulting in line or parabolic elements instead of area elements of the FEM solu-
tions, making the numerical modeling easy and reducing the number of unknowns
by one order. The method is particularly effective in computing the derivatives of
the field function (e.g. stresses). The BEM allows evaluation of the solution and
its derivatives at any point of the cross section, using the integral representation of
the solution as a continuous mathematical expression. This is impossible with the
FEM, since the solution is obtained only at the nodal points. The boundary element
procedure was first employed by Sauer (1980) for the calculation of shear stresses
based on Weber (1924) analysis. BEM was also used for the calculation of the
shear center location in an arbitrary homogeneous cross section by Chou (1993)
and for the presentation of a solution to the general flexure problem in an isotropic
only simply connected arbitrary cross section beam by Friedman and Kosmatka
(2000). More recently, the boundary element method has been applied to homo-
geneous orthotropic beams (Gaspari and Aristodemo 2005). In this research effort
the analysis is accomplished with respect only to the principal bending system of
axes of the cross section restricting in this way its generality. Moreover, Sapountza-
kis and Mokos (2005) presented a stress function solution employing the BEM for
the general transverse shear loading problem of homogeneous beams of arbitrary
constant cross section.

Contrary to these many efforts, to the authors’ knowledge very little work has been
done on the corresponding problem of composite beams of arbitrary constant cross
section. In the pioneer work of Muskhelishvili (1963) the governing equations of
the problem are formulated and an analytic solution of a composite cross section
of simple geometry is presented. Nouri and Gay (1994) presented a numerical so-
lution for the shear problem of composite beams of simply connected materials in
contact, of arbitrary cross section, employing the 2–D FEM and taking into account
the boundary conditions at the interfaces. In this reference the shear problem is for-
mulated with respect to the principal bending system of axes, which as it is stated
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below is different from the principal shear axes one, while the evaluation of the
non-diagonal shear deformation coefficient is missing. Moreover, Fatmi and Zen-
zri (2004) based on the “exact” elastic beam theory presented a numerical solution
of the shear problem of composite beams of arbitrary cross section employing the
3–D FEM. The last two references take into account the boundary conditions at the
interfaces in contrast with all other research efforts in composite beams of arbitrary
cross section that ignore them (Pilkey 2002), resulting in an analysis that is not
completely rigorous. In the case of composite beams of thin-walled or laminated
cross sections the aforementioned problem can also be solved using the “refined
models” (Reddy, 1989; Touratier, 1992; Wagner and Gruttmann, 2002; Karama,
Afaq and Mistou, 2003). However, these models do not satisfy the continuity con-
ditions of transverse shear stress at layer interfaces and assume that the transverse
shear stress along the thickness coordinate remains constant, leading to the fact that
kinematic or static assumptions cannot be always be valid. It is also worth here not-
ing that most of the commercial finite element packages can only handle the shear
problem of homogeneous beams (MSC/NASTRAN 1999), while the correspond-
ing ones handling composite beams usually ignore the boundary conditions at the
interfaces (SectionBuilder 2002), with very few exceptions of scientific programs
(Debard/RDM5.01 1997). Furthermore, Mokos and Sapountzakis (2005) presented
a stress function solution employing the BEM for the general transverse shear load-
ing problem of composite beams of arbitrary constant cross section. Finally, the
BEM has not yet been used for the solution of the aforementioned problem for
composite beams based on assumptions for the displacement field.

In this paper the boundary element method is employed to develop a displacement
solution for the general transverse shear loading problem of composite beams of ar-
bitrary constant cross section. The composite beam (thin or thick walled) consists
of materials in contact, each of which can surround a finite number of inclusions.
The materials have different elasticity and shear moduli and are firmly bonded to-
gether. The analysis of the beam is accomplished with respect to a coordinate
system that has its origin at the centroid of the cross section, while its axes are
not necessarily the principal bending ones. The formulation of the problem fol-
lows the displacement field adopted in the FEM solutions presented in Gruttmann,
Wagner und Sauer (1998) and Wagner and Gruttmann (2002). The transverse shear
loading is applied at the shear center of the cross section, avoiding in this way the
induction of a twisting moment. The evaluation of the transverse shear stresses at
any interior point is accomplished by direct differentiation of a warping function.
The shear deformation coefficients are obtained from the solution of two boundary
value problems with respect to warping functions appropriately arising from the
aforementioned one using only boundary integration, while the coordinates of the
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shear center are obtained from these functions using again only boundary integra-
tion. Three boundary value problems are formulated with respect to corresponding
warping functions and solved employing a pure BEM approach. In very thin-walled
cross sections, special care is taken during the numerical evaluation of the line in-
tegrals in order to avoid their “near singular integral behaviour”. According to this,
boundary elements that are very close to each other (distance smaller than their
length) are divided in sub elements, in each of which Gauss integration is applied
(Katsikadelis, 2002). The essential features and novel aspects of the present for-
mulation are summarized as follows:

i. The proposed displacement solution constitutes the first step to the solution of
the nonuniform shear problem avoiding the use of stress functions.

ii. All basic equations are formulated with respect to an arbitrary coordinate sys-
tem, which is not restricted to the principal axes.

iii. The boundary conditions at the interfaces between different material regions
have been considered.

iv. The shear deformation coefficients are evaluated using an energy approach in-
stead of Timoshenko’s (Timoshenko and Goodier, 1984) and Cowper’s (Cow-
per, 1966) definitions, for which several authors (Schramm, Kitis, Kang and
Pilkey, 1994; Schramm, Rubenchik and Pilkey, 1997) have pointed out that
one obtains unsatisfactory results or definitions given by other researchers
(Stephen, 1980; Hutchinson, 2001), for which these factors take negative val-
ues.

v. The proposed method can be efficiently applied to homogeneous and com-
posite beams of thin walled cross section and to laminated composite beams,
without the restrictions of the “refined models”.

vi. The developed procedure retains the advantages of a BEM solution over a pure
domain discretization method since it requires only boundary discretization.

Numerical examples are worked out to illustrate the efficiency, the accuracy and
the range of applications of the developed method. The accuracy of the obtained
values of the resultant transverse shear stresses compared with those obtained from
an exact solution is remarkable.

2 Statement of the problem

Consider a prismatic beam of length L with an arbitrarily shaped composite cross
section consisting of materials in contact, each of which can surround a finite num-
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ber of inclusions, with modulus of elasticity E j, shear modulus G j, occupying the
regions Ω j (j=1,2,. . . ,K) of the y,z plane (Fig.1). The materials of these regions
are firmly bonded together and are assumed homogeneous, isotropic and linearly
elastic. Let also the boundaries of the nonintersecting regions Ω j be denoted by Γ j

(j=1,2,. . . ,K.). These boundary curves are piecewise smooth, i.e. they may have
a finite number of corners. Without loss of generality, it may be assumed that the
beam end with centroid at point Cis fixed, while the x−axis of the coordinate sys-
tem is the line joining the centroids of the cross sections. The system y,z is not
necessarily the principal bending one.

When the beam is subjected to torsionless bending arising from a concentrated load
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Fig.  1. Prismatic beam subjected to torsionless bending (a) and two dimensional 

region Ω  occupied by the composite cross−section (b). 

 

Figure 1: Prismatic beam subjected to torsionless bending (a) and two dimensional
region Ω occupied by the composite cross–section (b).
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Q having as Qy, Qz its components along yand z axes, respectively, applied at the
shear center S of its free end cross section, the displacement components in the x, y
and zdirections are approximated as

u(x,y,z) = zθy (x)− yθz (x)+ ϕ̃C (y,z) (1a)

v(x,y,z) = v(x) (1b)

w(x,y,z) = w(x) (1c)

where θy (x), θz (x) are the angles of rotation about the centroidal y and z axes,
while v(x), w(x) describe the deflections of the reference point in y and z directions,
respectively. The customary beam kinematic with inextensibility in transverse di-
rections and plane cross sections is extended by a main warping function ϕ̃C (y,z)
due to shear with respect to the centroid C of the cross section (Fig.2). From the
above definition, it follows that this function is a parameter of the cross section
assuming it independent of its x coordinate. However, in a more refined model the
influence of this coordinate may also be considered taking into account restrained
warping due to shear of the cross section (nonuniform shear problem). It is worth
here noting that the angles of rotation, also referred to as angles of slope, are the
angles between the x axis and the tangents to the deflection curve. Furthermore, the
derivatives of these angles can be written as

∂θy

∂x
= κy (2a)

∂θz

∂x
= κz (2b)

where for small rotations κy and κz are the curvatures of the transverse displacement
curve (Pilkey, 2002).

Employing the linearized strain–displacement equations of the three-dimensional
elasticity (Love, 1952), which form the Cauchy strain tensor, the following strain
components are easily obtained

εxx = zκy− yκz (3a)

γxy =
∂v
∂x
−θz +

∂ ϕ̃C (y,z)
∂y

(3b)

γxz =
∂w
∂x

+θy +
∂ ϕ̃C (y,z)

∂ z
(3c)

εyy = εzz = γyz = 0 (3d)
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Fig.2. Warping due to shear of a rectangular and a hollow square cross section. 
 

Figure 2: Warping due to shear of a rectangular and a hollow square cross section.

while the resulting from three-dimensional elasticity stress components in the re-
gions Ω j (j=0,1,2,. . . ,K) are given as

(σxx) j = E j (zκy− yκz) (4a)

(τxy) j = G j

(
∂v
∂x
−θz +

∂ ϕ̃C (y,z)
∂y

)
(4b)

(τxz) j = G j

(
∂w
∂x

+θy +
∂ ϕ̃C (y,z)

∂ z

)
(4c)

(σyy) j = (σzz) j = (τyz) j = 0 (4d)

It is worth noting that in the above relations the materials’ Poisson ration is set
equal to zero (engineering beam theory), since the kinematic assumption of eqns.
(1) leads to inextensibility in the transverse directions.

Introducing the unit warping function ϕC (y,z) due to shear as

ϕC (y,z) =
(

∂v
∂x
−θz

)
y+
(

∂w
∂x

+θy

)
z+ ϕ̃C (y,z) (5)

Its derivatives with respect to y and z axes are given as

∂ϕC (y,z)
∂y

=
∂v
∂x
−θz +

∂ ϕ̃C (y,z)
∂y

(6a)

∂ϕC (y,z)
∂ z

=
∂w
∂x

+θy +
∂ ϕ̃C (y,z)

∂ z
(6b)
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and the shear stress components (τxy) j, (τxz) j of eqns. (4b,c) and the resultant shear
stress (τΩ) j in the regions Ω j (j=1,2,. . . ,K) can be written as

(τxy) j = G j
∂ϕC (y,z)

∂y
(7a)

(τxz) j = G j
∂ϕC (y,z)

∂ z
(7b)

(τΩ) j =
[
(τxy)

2
j +(τxz)

2
j

]1/2
(7c)

Applying the shear stress components (7a,b) in the first equation of equilibrium of
the three-dimensional elasticity neglecting the body forces

∂ (σx) j

∂x
+

∂ (τxy) j

∂y
+

∂ (τxz) j

∂ z
= 0 (8)

we obtain the following relation

G j

(
∂ 2ϕC

∂y2 +
∂ 2ϕC

∂ z2

)
=−

∂ (σx) j

∂x
(9)

while the last two elasticity equations of equilibrium are identically satisfied. Dif-
ferentiating eqn.(4a) with respect to x the derivative of the normal stress component
may be written as

∂ (σx) j

∂x
= E j

(
z
∂κy

∂x
− y

∂κz

∂x

)
(10)

Substituting equation (4a) in the relations of the bending moments

My =
K

∑
j=1

(My) j =
K

∑
j=1

∫
Ω j

(σxx) j zdΩ j (11a)

Mz =
K

∑
j=1

(Mz) j =−
K

∑
j=1

∫
Ω j

(σxx) j ydΩ j (11b)

the following system of equations is obtained[
Iyy −Iyz

−Iyz Izz

]{
κy

κz

}
=

1
Ere f

{
My

Mz

}
(12)
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where

Iyy =
K

∑
j=1

λ j

∫
Ω j

z2dΩ j (13a)

Izz =
K

∑
j=1

λ j

∫
Ω j

y2dΩ j (13b)

Iyz =
K

∑
j=1

λ j

∫
Ω j

yzdΩ j (13c)

are the moments of inertia with respect to y and z axes and the product of inertia of
the composite cross section, respectively and λ j is given from

λ j =
E j

Ere f
=

G j

Gre f
(14)

with Ere f , Gre f the modulus of elasticity and shear modulus of a reference material,
respectively. It is worth here noting that any material of the composite cross section
can be used as reference material for the reduction of eqns (12), (13). Moreover, the
weighted elastic and shear moduli of the j-th material have the same value λ j since
as it was mentioned before its Poisson ration has been set equal to zero. Solving the
system of eqns. (12) the curvatures of the transverse displacements are obtained as

κy =
1

Ere f

IzzMy + IyzMz

IyyIzz− I2
yz

(15a)

κz =
1

Ere f

IyzMy + IyyMz

IyyIzz− I2
yz

(15b)

Differentiating eqns. (15) with respect to x and taking into account that

∂My

∂x
= Qz (16a)

∂Mz

∂x
=−Qy (16b)

the following relations are obtained

∂κy

∂x
=

1
Ere f

IzzQz− IyzQy

∆
(17a)

∂κz

∂x
=

1
Ere f

IyzQz− IyyQy

∆
(17b)
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where ∆ is defined as

∆ =
(
IyyIzz− I2

yz

)
(18)

Substituting eqns. (17) in eqn.(10) the derivative of the normal stress component is
written as

∂ (σx) j

∂x
=

λ j

∆
[(IyyQy− IyzQz)y+(IzzQz− IyzQy)z] (19)

and employing eqn.(9) the partial Poisson type differential equation governing the
unit warping function ϕC (y,z) is obtained as

∇2
ϕC (y,z) =− 1

Gre f ∆
[(IyyQy− IyzQz)y+(IzzQz− IyzQy)z] in Ω j j = 1,2, . . . ,K

(20)

where
(
∇2
)

j ≡
(
∂ 2/∂y2

)
j +
(
∂ 2/∂ z2

)
j is the Laplace operator and Ω = ∪K

j=1Ω j

denotes the whole region of the composite cross section.

The boundary condition of the aforementioned warping function will be derived
from the following physical considerations:

• The traction vector in the direction of the normal vector n vanishes on the
free surface of the beam

• The traction vectors in the direction of the normal vector n on the interfaces
separating the j-th and i-th different materials are equal in magnitude and
opposite in direction

• The displacement componentsu, v, w remain continuous across the interfaces
since it is assumed that the materials are firmly bonded together

The third condition ensures the continuity of the warping function across the bound-
aries Γ j (j=1,2,. . . ,K) separating different materials ((ϕC) j = (ϕC)i = ϕC), while
the first two lead to

(τxn) j = (τxy) j ny +(τxz) j nz = 0 on the free surface of the beam (21a)

(τxn) j = (τxn)ior (τxy) j ny +(τxz) j nz = (τxy)i ny +(τxz)i nz on the interfaces (21b)

where ny = cosβ , nz = sinβ (with β = ŷ,n as shown in Fig.1b) are the direction
cosines of the normal vector n to the boundary Γ j (j=1,2,. . . ,K), while on both
sides of the equality (21b) the normal vector n points in one and the same direction.
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Substituting eqns. (7a,b) in eqns. (21a,b), the Neumann type boundary condition
of the unit warping function can be written as

G j

(
∂ϕC

∂n

)
j
−Gi

(
∂ϕC

∂n

)
i
= 0on Γ j j = 1,2, . . . ,K (22)

where Gi is the modulus of elasticity of the Ωi region at the common part of the
boundaries of Ω j and Ωi regions, or Gi = 0 at the free part of the boundary of Ω j

region, while (∂/∂n) j ≡ ny (∂/∂y) j +nz (∂/∂ z) j denotes the directional derivative
normal to the boundary Γ j. The vector n normal to the boundary Γ j is positive if
it points to the exterior of the Ω j region. It is worth here noting that the normal
derivatives across the interior boundaries vary discontinuously.

Referring to the Neumann boundary value problem described by eqns. (20, 22) the
following should be taken into account arising from the theory of partial differential
equations of elliptic type:

• The aforementioned problem will have a solution if the following condition
is satisfied (Muskhelishvili, 1963)∫

Γ j

[
G j

(
∂ϕC

∂n

)
j
−Gi

(
∂ϕC

∂n

)
i

]
ds = 0 (23)

• The solution ϕC is not determined uniquely, but to the approximation of an
arbitrary constant term. That is, the exact solution (unit warping function)
ϕC can be written in the form

ϕC (y,z) = ϕC (y,z)+ c (24)

where ϕC (y,z) is the function obtained form the solution of the aforedescribed
Neumann problem and is called basic warping function and c is a integration
constant.

The first remark is identically satisfied taking into account the boundary condition
of the Neumann problem (eqn. 22). According to the second remark, the stress
components are not influenced by the integration constant c, since following eqns.
(6a,b) only the derivatives of ϕC are required for the evaluation of these quantities.
With respect to the displacement u, the arbitrary constant introduces a rigid motion
in the direction of the beam axis, which, however, does not influence the deforma-
tion of the composite cross section. The constant term c can be determined from
the condition

K

∑
j=1

E j

∫
Ω j

ϕC (y,z)dΩ j = 0 (25)
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which after substituting eqn. (24) leads to

c =− 1
A

K

∑
j=1

λ j

∫
Ω j

ϕC (y,z)dΩ j (26)

and the unit warping function is given from the relation

ϕC (y,z) = ϕC (y,z)− 1
A

K

∑
j=1

λ j

∫
Ω j

ϕC (y,z)dΩ j (27)

where

A =
K

∑
j=1

λ j

∫
Ω j

dΩ j (28)

is the area of the composite cross section.

It can be proven that the resultants of the shear stress components (τxy) j, (τxz) j of
eqns. (7) at the beam ends (x = 0, x = L) are the shear loads Qy, Qz, respectively,
that is

Qy =
K

∑
j=1

∫
Ω j

(τxy) j dΩ j (29a)

Qz =
K

∑
j=1

∫
Ω j

(τxz) j dΩ j (29b)

Indeed, using the equilibrium equation (8) the integral of the shear stresses (τxy) j
is reformulated as follows

K

∑
j=1

∫
Ω j

(τxy) j dΩ j =
K

∑
j=1

∫
Ω j

[
(τxy) j + y

(
∂ (τxy) j

∂y
+

∂ (τxz) j

∂ z
+

∂ (σx) j

∂x

)]
dΩ j

=
K

∑
j=1

∫
Ω j

[
∂ (yτxy) j

∂y
+

∂ (yτxz) j

∂ z

]
dΩ j +

K

∑
j=1

∫
Ω j

[
y

∂ (σx) j

∂x

]
dΩ j (30)

Applying integration by parts for the first integral of the right hand side of eqn. (30)
and using eqns. (7a,b), (23) the first integral of the right hand side vanishes, while
substituting eqn. (19) in eqn. (30) the domain integral of the shear stresses (τxy) j
may be written as

K

∑
j=1

∫
Ω j

(τxy) j dΩ j =
(IyyQy− IyzQz)

∆

K

∑
j=1

λ j

∫
Ω j

y2dΩ j

+
(IzzQz− IyzQy)

∆

K

∑
j=1

λ j

∫
Ω j

yzdΩ j (31)
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and considering eqns. (13b,c), (18) we obtain Eqn. (29a). An analogous derivation
can be applied to the integral of the shear stresses (τxz) j, which yields the shear
load Qz.

Having in mind that the shear center S is defined as the point of the cross section at
which the torsional moment arising from the transverse shear stresses vanishes, the
coordinates {yS,zS} of this point with respect to the system of axes with origin the
cross section centroid can be derived from the condition

ySQz− zSQy = Mx → ySQz− zSQy =
K

∑
j=1

∫
Ω j

[
(τxz) j y− (τxy) j z

]
dΩ j (32)

For {Qy = 0, Qz = 1}, after substituting eqns. (6a,b) in eqn. (32), the yS coordinate
of the shear center S can be obtained from

yS =
K

∑
j=1

G j

∫
Ω j

(
∂ϕCy

∂ z
y−

∂ϕCy

∂y
z

)
dΩ j (33)

while for {Qy = 1, Qz = 0} the zS coordinate is given as

zS =
K

∑
j=1

G j

∫
Ω j

(
∂ϕCz

∂y
z− ∂ϕCz

∂ z
y

)
dΩ j (34)

Equations (33), (34) declare that the {yS,zS} coordinates of the shear center S are
independent from shear loading. Moreover, it can be shown that the coordinates of
the shear center S, given from the aforementioned eqns. (33), (34), coincide with
the coordinates of the center of twist M, that is

yS = yM (35a)

zS = zM (35b)

where the equations for the coordinates {yM,zM} are given in Sapountzakis (2000).
This coincidence of these centers was first recognized by Weber (1926) apply-
ing the Betty-Maxwell reciprocal relations and Trefftz (1935) using an energy ap-
proach.

Furthermore, the shear deformation coefficients ay, az and ayz = azy, which are in-
troduced from the approximate formula for the evaluation of the shear strain energy
per unit length (Schramm, Rubenchik and Pilkey, 1997)

Uappr. =
ayQ2

y

2AGre f
+

azQ2
z

2AGre f
+

ayzQyQz

AGre f
(36)
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are evaluated equating this approximate energy with the exact one given from

Uexact =
K

∑
j=1

1
2G j

∫
Ω j

[
(τxy)

2
j +(τxz)

2
j

]
dΩ j (37)

and are obtained for the cases

{Qy 6= 0, Qz = 0} , {Qy = 0, Qz 6= 0}

and

{Qy 6= 0, Qz 6= 0} ,

respectively, as

ay =
1
κy

= AGre f

K

∑
j=1

G j

∫
Ω j

[(
∂ϕCz

∂y

)2

j
+
(

∂ϕCz

∂ z

)2

j

]
dΩ j (38a)

az =
1
κz

= AGre f

K

∑
j=1

G j

∫
Ω j

[(
∂ϕCy

∂y

)2

j
+
(

∂ϕCy

∂ z

)2

j

]
dΩ j (38b)

ayz =
1

κyz
= AGre f

K

∑
j=1

G j

∫
Ω j

[(
∂ϕCy

∂y

)
j

(
∂ϕCz

∂y

)
j
+
(

∂ϕCy

∂ z

)
j

(
∂ϕCz

∂ z

)
j

]
dΩ j

(38c)

where the factors κy, κz, κyz are called shear correction factors or shear form factors
or shear stiffness factors (Pilkey, 2002). It is worth here noting that the unit warp-
ing function ϕCy of Eqns. (33), (38b,c) results from the solution of the Neumann
boundary value problem

∇2
ϕCy (y,z) =

1
Gre f ∆

(Iyzy− Izzz) in Ω j j = 1,2, . . . ,K (39a)

G j

(
∂ϕCy

∂n

)
j
−Gi

(
∂ϕCy

∂n

)
i
= 0 on Γ j j = 1,2, . . . ,K (39b)

and the unit warping function ϕCz of Eqns. (34), (38a,c) from the Neumann bound-
ary value problem

∇2
ϕCz (y,z) =

1
Gre f ∆

(Iyzz− Iyyy) in Ω j j = 1,2, . . . ,K (40a)
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G j

(
∂ϕCz

∂n

)
j
−Gi

(
∂ϕCz

∂n

)
i
= 0 on Γ j j = 1,2, . . . ,K (40b)

Notice that the unit warping functions ϕCy and ϕCz are determined exactly apart
from an arbitrary constant term (Neumann problem). However, the coordinates of
the shear center and the shear deformation coefficients are not influenced by this
arbitrary constant, since according to Eqns. (33), (34), (38a,b,c), only the deriva-
tives of ϕCy and ϕCz are required for the evaluation of these quantities. Employing
the shear deformation coefficients ay, az, ayz using eqns. (38a,b,c) we can define
the cross section shear rigidities of the Timoshenko’s beam theory as

Gre f Asy = Gre f (A/ay) = Gre f (κyA) (41a)

Gre f Asz = Gre f (A/az) = Gre f (κzA) (41b)

Gre f Asyz = Gre f (A/ayz) = Gre f (κyzA) (41c)

The shear deformation coefficients ay, az, ayz can be expressed in matrix form as

[As] =
[

ay ayz

azy az

]
= AGre f

K

∑
j=1

G j

∫
Ω j

(
{By}T {By}+{Bz}T {Bz}

)
dΩ j (42)

where

{By}=
{

∂ϕCz
∂y

∂ϕCy

∂y

}
(43a)

{Bz}=
{

∂ϕCz
∂ z

∂ϕCy

∂ z

}
(43b)

The matrix [As] is a symmetric tensor. The principal values of this tensor can be
obtained form the solution of the eigenvalue problem

[[As]−a [I]]{x}= {0} (44)

where [I] is the unity matrix. Solution of this problem yields the eigenpairs (ai,{x}i),
i = 1,2. The eigenvectors {x}i, i = 1,2 are the basis vectors of the principal co-
ordinates, which is called principal shear system of axes (Pilkey, 2002), while the
eigenvalues ai, i = 1,2 are the principal shear deformation coefficients which are
always greater than or equal to 1 (Schramm, Rubenchik and Pilkey, 1997). The an-
gle φ Sof the principal shear system with respect to the coordinate system y,z(Fig.1)
is obtained form

tan2ϕ
S =

2ayz

ay−az
(45)
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In general, for an asymmetric cross section the principal shear axes do not coincide
with the principal bending ones, defined by the engineering beam theory as

tan2ϕ
B =

2Iyz

Iyy− Izz
(46)

Due to this difference (ϕS 6= ϕB), the deflection components in the y and z directions
are in general coupled, even if the system of axes of the cross section coincides with
the principal bending one (Pilkey, 2002). If the cross section is symmetric about an
axis, the principal shear axes system coincides with the principal bending one. In
this case, the deflection components with respect to the principal directions are not
coupled any more (ayz = azy = 0 and Iyz = Izy = 0).

Finally, the shear stress components at points on the boundary Γ j (j=1,2,. . . ,K)
are evaluated from the established values of (ϕC) j and (∂varphiC/∂n) j using the
following relations

(τxn) j = G j

(
∂ϕC

∂n

)
j

(47a)

(τxt) j = G j

(
∂ϕC

∂ t

)
j

(47b)

(τΓ) j =
[
(τxn)

2
j +(τxt)

2
j

]1/2
(47c)

where the tangential derivative (∂ϕC/∂ t) j = (∂ϕC/∂ s) j is computed numerically
using appropriately central, backward or forward differences. It is worth noting
that (τxn) j is the bond stress at the interface part of the boundary Γ j, while (τΓ) j is
the resultant boundary shear stress.

3 Integral representations – Numerical solution

According to the precedent analysis, the shear problem of a composite beam re-
duces in establishing the warping functions ϕC (y,z), ϕCy (y,z) and ϕCz (y,z) having
continuous partial derivatives up to the second order and satisfying the boundary
value problems described by eqns. [(20), (22)], [(39a), (39b)] and [(40a), (40b)].
The numerical solution of these problems is similar. For this reason, in the follow-
ing we will analyze the solution of the problem of eqns. [(20), (22)].

The evaluation of the warping function ϕC is accomplished using BEM (Katsikadelis,
2002) as this is presented in Mokos and Sapountzakis (2005). According to this
method the Green identity∫

Ω j

(
Ψ
(
∇2

ϕC
)

j− (ϕC) j ∇2Ψ
)

dΩ j =
∫

Γ j

(
Ψ
(

∂ϕC

∂n

)
j
− (ϕC) j

∂Ψ
∂n

)
ds (48)
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when applied to the warping function ϕC and to the fundamental solution

Ψ =
1

2π
lnr(P,Q) P,Q ∈Ω j (49)

which is a particular singular solution of the Poisson equation

∇2Ψ = δ (P,Q) (50)

where δ (P,Q) is the Dirac delta function in two dimensions, yields

ε (ϕC(P)) j =
∫

Ω j

lnr
(
∇2

ϕC(Q)
)

j dΩQ

+
∫

Γ j

[
(ϕC(q)) j

cosa
r
−
(

∂ϕC(q)
∂n

)
j
lnr

]
dsq (51)

with α = r̂,n; r = |P−q|, P,Q∈Ω j, q∈Γ j (j=1,2,. . . ,K) and ε = 2π, π or 0depending
on whether the point P is inside the region Ω j, P≡ p on the boundary Γ j or P out-
side Ω j, respectively. Note that the boundary has been assumed to be smooth at
point p ∈ Γ j. Using eqn. (20) the integral representation (51) is written as

ε (ϕC(P)) j =
∫

Ω j

f (Q) lnr dΩQ +
∫

Γ j

[
(ϕC(q)) j

cosa
r
−
(

∂ϕC(q)
∂n

)
j
lnr

]
dsq

(52)

where the function f is defined as

f =− 1
Gre f ∆

[(IyyQy− IyzQz)y+(IzzQz− IyzQy)z] (53)

Applying once more the Green identity given by eqn. (48) for the function f satis-
fying the Laplace equation

∇2 f = 0 (54)

and for the function U defined as

U =
1

8π
r2 (lnr−1) (55)

satisfying the Poisson equation

∇2U = Ψ (56)
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the domain integral of eqn. (52) can be converted into a line integral along the
boundaries of the cross section and the integral representation (52) is written as

ε (ϕC(P)) j =
1
4

∫
Γ j

[
f (q)(2lnr−1)r cosa− ∂ f (q)

∂n
(lnr−1)r2

]
dsq

+
∫

Γ j

[
(ϕC(q)) j

cosa
r
−
(

∂ϕC(q)
∂n

)
j
lnr

]
dsq (57)

In eqn. (57) the subscript q in the arc element dsq indicates that point q varies along
the boundaries of the cross section during integration and differentiation, while the
point P (or p) is retained constant. The values of the function (ϕC(P)) j inside the
region Ω j can be established from the integral representation (57) if (ϕC) j and its
derivative (∂ϕC/∂n) j were known on the boundaries Γ j. Thus,

(ϕC(P)) j =
1

8π

∫
Γ j

[
f (q)(2lnr−1)r cosa− ∂ f (q)

∂n
(lnr−1)r2

]
dsq

+
1

2π

∫
Γ j

[
(ϕC(q)) j

cosa
r
−
(

∂ϕC(q)
∂n

)
j
lnr

]
dsq, P ∈Ω j, q ∈ Γ j (58)

The unknown boundary quantities (ϕC) j and (∂ϕC/∂n) j can be evaluated from
the solution of a boundary integral equation on the boundary Γ j, which is derived
working as follows.

Consider a point p lying on the boundary Γ j (j=1,2,. . . ,K). For a point q lying on
the boundary Γ j of the region Ω j eqn. (57) may be written as

π (ϕC(p)) j =
1
4

∫
Γ j

[
f (q)(2lnr−1)r cosa− ∂ f (q)

∂n
(lnr−1)r2

]
dsq

+
∫

Γ j

[
(ϕC(q)) j

cosa
r
−
(

∂ϕC(q)
∂n

)
j
lnr

]
dsq, q ∈ Γ j (59)

Similarly, for a point q lying on the part of the boundary Γk of the region Ωk, which
is an interface between regions Ω j and Ωk, eqn. (57) may be written as

π (ϕC(p)) j =
1
4

∫
Γk

[
− f (q)(2lnr−1)r cosa+

∂ f (q)
∂n

(lnr−1)r2
]

dsq

+
∫

Γk

[
−(ϕC(q))k

cosa
r

+
(

∂ϕC(q)
∂n

)
k
lnr

]
dsq, q ∈ Γk (60)



20 Copyright © 2009 Tech Science Press CMC, vol.10, no.1, pp.1-39, 2009

Moreover, for a point q lying on the boundaries Γi (i=1,2,. . . ,K, i 6= k) eqn. (57)
yields

0 =
1
4

∫
Γi

[
− f (q)(2lnr−1)r cosa+

∂ f (q)
∂n

(lnr−1)r2
]

dsq

+
∫

Γi

[
−(ϕC(q))i

cosa
r

+
(

∂ϕC(q)
∂n

)
i
lnr

]
dsq, q ∈ Γi (61)

Notice that the sign in eqns. (60), (61) is reversed, since the unit vector normal to
the boundary is negative. Multiplying eqn. (59) by G j, eqn. (60) by Gk, eqn. (61)
by Gi (i=1,2,. . . ,K, i 6= k) and adding them yields

π (ϕC(p)) j (G j +Gk) =

1
4

K

∑
j=1

∫
Γ j

(G j−Gi)
[

f (q)(2lnr−1)r cosa− ∂ f (q)
∂n

(lnr−1)r2
]

dsq

+
K

∑
j=1

∫
Γ j

[
(G j−Gi)(ϕC(q)) j

cosa
r
−

(
Gi

(
∂ϕC(q)

∂n

)
j
−G j

(
∂ϕC(q)

∂n

)
i

)
lnr

]
dsq

(62)

which after taking into account the boundary condition of the unit warping function
(eqn. 22) yields the following singular boundary integral equation

π (ϕC(p)) j (G j +Gk) =
K

∑
j=1

∫
Γ j

(G j−Gi)(ϕC(q)) j
cosa

r
dsq

1
4

K

∑
j=1

∫
Γ j

(G j−Gi)
[

f (q)(2lnr−1)r cosa− ∂ f (q)
∂n

(lnr−1)r2
]

dsq (63)

where the derivative of the function f in the direction of the vector n normal to the
boundary Γ j is defined as

∂ f
∂n

=− 1
Gre f ∆

[(IyyQy− IyzQz)cosβ +(IzzQz− IyzQy)sinβ ] (64)

It is worth here noting that in eqn. (63) the point p lies on the boundary Γ j

(j=1,2,. . . ,K), which is an interface between regions Ω j and Ωk, while the point
q varies along the boundary Γ j (j=1,2,. . . ,K), which is an interface between re-
gions Ω j and Ωi, while Gk = Gi = 0 in the case Γ j is a free boundary. Moreover,
in eqn. (63) the normal n to the boundary Γ j points to the exterior of the region Ω j

and Γ j is traveled only once.
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For any given geometry of the composite cross section the warping function (ϕC(s)) j
on the boundary Γ j (j=1,2,. . . ,K) is obtained from the solution of the boundary in-
tegral equation (63). Thus, using constant boundary elements to approximate the
line integrals along the boundaries and a collocation technique the following well
conditioned linear system of simultaneous algebraic equations is established (Kat-
sikadelis, 2002)

[A]{ΦC}= {C} (65)

where

{ΦC}T =
{
(ϕC)1 (ϕC)2 ... (ϕC)N

}
(66)

are the values of the boundary quantities ϕC at the nodal points of the N boundary
elements. Moreover, in eqn. (65) [A] and {C} are square N×N and column N×1
known coefficient matrices, respectively. From the solution of this system of simul-
taneous algebraic equations the values of the warping function ϕC for all boundary
nodal points are established.

The derivatives of (ϕC) j with respect to y and z at any interior point of the region Ω j,
for the calculation of the stress resultants (eqns. 7a,b) are computed differentiating
the integral representation (58) of the warping function (ϕC) j as

(
∂ϕC(P)

∂y

)
j
=

1
2π

∫
Γ j

[
(ϕC(q)) j

cos(ω−a)
r2 +

(
∂ϕC(q)

∂n

)
j

cosω

r

]
dsq

− 1
8π

∫
Γ j

[
f (q)(2cosω cosa+(2lnr−1)cosβ )− ∂ f (q)

∂n
(2lnr−1)r cosω

]
dsq

(67a)

(
∂ϕC(P)

∂ z

)
j
=

1
2π

∫
Γ j

[
(ϕC(q)) j

sin(ω−a)
r2 +

(
∂ϕC(q)

∂n

)
j

sinω

r

]
dsq

− 1
8π

∫
Γ j

[
f (q)(2sinω cosa+(2lnr−1)sinβ )− ∂ f (q)

∂n
(2lnr−1)r sinω

]
dsq

(67b)

with r = |P−q|, P ∈ Ω j, q ∈ Γ j and ω = x̂,r. The derivative (∂ϕC/∂n) j for the
evaluation of the shear stresses is known only on the free parts of the boundaries
Γ j. Its values on the interfaces can be established from eqn. (22) and the solution
of the singular integral eqn. (59) using the boundary values of (ϕC) j obtained from
the solution of eqn. (62).
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Moreover, since the torsionless bending problem of composite beams is solved
using BEM, the domain integrals in Eqns. (13a,b,c), (26), (33), (34), (38a,b,c)
have to be converted to boundary line ones in order to maintain the pure boundary
character of the method. This can be achieved using integration by parts and the
Green identity. Thus, for the moments of inertia, the product of inertia and the cross
section area we can write the following relations

Iyy =
K

∑
j=1

∫
Γ j

(λ j−λi)
(
yz2cosβ

)
ds (68a)

Izz =
K

∑
j=1

∫
Γ j

(λ j−λi)
(
zy2sinβ

)
ds (68b)

Iyz =
1
2

K

∑
j=1

∫
Γ j

(λ j−λi)
(
zy2cosβ

)
ds (68c)

A =
1
2

K

∑
j=1

∫
Γ j

(λ j−λi)(ycosβ + zsinβ )ds (68d)

while the {yS,zS} coordinates of the shear center S are obtained from the calculation
of the following boundary line integrals

yS =
K

∑
j=1

∫
Γ j

(λ j−λi)(ysinβ − zcosβ )ϕcyds (69a)

zS =
K

∑
j=1

∫
Γ j

(λ j−λi)(zcosβ − ysinβ )ϕczds (69b)

Furthermore, the integration constant c (eqn. 26) may be written in boundary inte-
gral form as

c =− 1
8AGre f ∆

K

∑
j=1

∫
Γ j

(λ j−λi)
[
8yϕCGre f ∆cosβ − (IyyQy− IyzQz)y4 cosβ

−2(IzzQz− IyzQy)y2z2 sinβ
]

ds (70)

and the shear deformation coefficients ay, az, ayz = azy are obtained from the fol-
lowing boundary line integrals

ay =
A

6Gre f ∆2

K

∑
j=1

(G j−Gi)
∫

Γ j

[
Iyyhyy3zsinβ − Iyzhzz

3ycosβ+

+ 3Gre f ∆
(
IyyϕCzy

2 cosβ − IyzϕCzz
2 sinβ

)]
ds (71a)
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az =
A

6Gre f ∆2

K

∑
j=1

(G j−Gi)
∫

Γ j

[
Izzgyz3ycosβ − Iyzgzy

3zsinβ+

+3Gre f ∆
(
IzzϕCyz2 sinβ − IyzϕCyy2 cosβ

)]
ds (71b)

ayz =
A

6Gre f ∆2

K

∑
j=1

(G j−Gi)
∫

Γ j

[
Iyygzy

3zsinβ − Iyzgyz3ycosβ+

+ 3Gre f ∆
(
IyyϕCyy2 cosβ − IyzϕCyz2 sinβ

)]
ds (71c)

where

hy =
1
2

Iyzz− Iyyy (72a)

hz = Iyzz−
1
2

Iyyy (72b)

gy =
1
2

Iyzy− Izzz (73a)

gz = Iyzy−
1
2

Izzz (73b)

Finally, the coordinates of the centroid C with respect to the arbitrary coordinate
system Oỹz̃ are obtained from

ỹC =
1
A

K

∑
j=1

∫
Γ j

(λ j−λi)(ỹz̃sinβ )ds (74a)

z̃C =
1
A

K

∑
j=1

∫
Γ j

(λ j−λi)(ỹz̃cosβ )ds (74b)

4 Numerical Examples

On the basis of the analytical and numerical procedures presented in the previous
sections, a FORTRAN program has been written and representative examples have
been studied to demonstrate the efficiency, wherever possible the accuracy and the
range of applications of the developed method. In all the examples treated each
cross section has been analysed employing N = 300 constant boundary elements
along the boundary of the cross section, which are enough to ensure the conver-
gence of the solution procedure. Moreover, the CPU time at a Personal Computer
Intel(R) 2.00GHz for the analysis of each example is less than 4 seconds.
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Table 1: Resultant transverse shear stresses τΩ (kPa) at points A and B for Qy = 1kN
of the composite cross section of Example 1.

G1
G2

G3
G2

(
τA

Ω
)

2

(
τB

Ω
)

1
Present Exact Present Exact
study (Muskhelishvili, 1963) study (Muskhelishvili, 1963)

1
0 8.9401 8.9524 5.5141 5.5147
2 17.7319 - 6.69481 -

2
0 6.5326 6.5425 5.1021 5.1084
4 15.6410 - 6.6843 -

3
0 5.1287 5.1389 4.7134 4.7229
6 13.8086 - 6.3768 -

4
0 4.2173 4.2281 4.4271 4.4385
8 12.3228 - 6.0610 -

5
0 3.5792 3.5906 4.2143 4.2273
10 11.1132 - 5.7794 -

Table 2: Shear correction factors κy = κz and warping function ϕCz (mm) at points
A and B of the composite cross section of Example 1.

G1
G2

G3
G2

κy = κz
(
ϕA

Cz

)
2

(
ϕB

Cz

)
1

1
0 0.6819 0.7903 0.9301

(0.6818, Cowper, 1966 & Renton, 1997)
(0.7144, Nastran 4.0 Soft)

2 0.8862 0.3974 0.6038

2
0 0.6412 0.5403 0.6259
4 0.7813 0.2581 0.4109

3
0 0.6163 0.4135 0.4759
6 0.7054 0.1993 0.3248

4
0 0.6004 0.3356 0.3848
8 0.6536 0.1649 0.2726

5
0 0.5896 0.2825 0.3233

10 0.6165 0.1417 0.23642
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Table 3: Resultant transverse shear stresses τΩ (kPa) at points A and B for Qy = 1kN
and shear correction factors κy = κz for various boundary discretization schemes of
the composite cross section of Example 1.

Number of boundary elements N
Exact

100 200 300 600 1000
Resultant transverse shear stress

(
τA

Ω
)

2 at point A Muskhelishvili
for G1/G2 = 2, G3/G2 = 0 (1963)

computed 6.4059 6.5166 6.5326 6.5401 6.5416 6.5425
value

error (%) 2.0879 0.3959 0.1513 0.0367 0.0138
Resultant transverse shear stress

(
τB

Ω
)

1 at point B Muskhelishvili
for G1/G2 = 2, G3/G2 = 0 (1963)

computed 4.8743 5.0936 5.1021 5.1068 5.1075 5.1084
value

error (%) 4.5826 0.2897 0.1233 0.0313 0.0176
Shear correction factors κy = κz Cowper

for G1/G2 = 1, G3/G2 = 0 (1966)
computed 0.6920 0.6823 0.6819 0.6818 0.6818 0.6818

value
error (%) 1.4960 0.0733 0.0147 0.0000 0.0000

 
 

Figure 3: Composite circular tube cross section of the cantilever beam of Example
1.
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( )Cymax mm 0.6366ϕ =   

 
( )Cymax mm 0.4246ϕ =  

 
(a) 

 
(b) 

 

Fig. 4. Contours of the warping function ( )Cy mϕ  for 1 2G G 2= , 3 2G G 0=  (a) and 

1 2G G 2= , 3 2G G 4=  (b) of the composite cross section of Example 1. 

 

Figure 4: Contours of the warping function ϕCy (m) for G1/G2 = 2, G3/G2 = 0 (a)
and G1/G2 = 2, G3/G2 = 4 (b) of the composite cross section of Example 1.
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Figure 5: Transverse shear stresses τxy (kPa) for Qy = 1kN along the y-axis of
homogeneous circular cross section of Example 1.
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Table 4: Shear correction factors κy, κz of the composite cross section of Example
2.

G3
G1

G2
G1

κy κz

10
0.0 0.6948 0.0479

(0.8271, SectionBuilder, 2002) (0.0506, SectionBuilder, 2002)
0.2 0.8046 0.1292

20
0.0 0.7526 0.0249
0.4 0.8273 0.1091

30
0.0 0.7763 0.0168
0.6 0.8319 0.1013

40
0.0 0.7893 0.0127
0.8 0.8334 0.0969

50
0.0 0.7974 0.0102
1.0 0.8337 0.0939

(0.833, Fatmi and Zenzri, 2004) (0.094, Fatmi and Zenzri, 2004)

Example 1

A cantilever beam having the composite circular tube cross section shown in Fig.3
has been studied. In Table 1 the obtained values of the resultant transverse shear
stresses

(
τA

Ω
)

2,
(
τB

Ω
)

1 at points A and B of the cross section of the beam loaded at
its free end by a concentrated force Qy = 1kN are presented, as compared wher-
ever possible with those obtained from an exact solution (Muskhelishvili, 1963).
The results are in excellent agreement. In Table 2 the shear correction factors
κy = κz (values in parentheses come from an analytical formula developed by
Cowper (1966) and Renton (1997) as well as from a 2–D FEM solution using
the Nastran code) and the warping function

(
ϕA

Cz

)
2,
(
ϕB

Cz

)
1 at points A and B of

the cross section are presented. Moreover, in Table 3 the computed values of the
resultant transverse shear stresses

(
τA

Ω
)

2,
(
τB

Ω
)

1 at points A and B for the case{
G1/G2 = 2, G3/G2 = 0

}
and Qy = 1kN as well as the shear correction fac-

tor κy = κz for the case
{

G1/G2 = 1, G3/G2 = 0
}

(homogeneous circular tube
cross section) are presented for various boundary discretization schemes. From
this table the convergence and stability of the proposed method is concluded. It
is apparent that 300 boundary elements are enough to ensure the convergence of
the solution procedure. It is also worth here noting that a faster convergence can
be achieved by employing another type of constant element, which approximates
the geometry with a parabolic arc (Katsikadelis, 2002). Also, in Fig.4 for the
cases

{
G1/G2 = 2, G3/G2 = 0

}
and

{
G1/G2 = 2, G3/G2 = 4

}
the contours

of the warping function ϕCy are presented, while in Fig.5 for the case G1/G2 =
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G3/G2 = 0 (homogeneous circular cross section) the distribution of the transverse
shear stresses τxy (= τΩ) for Qy = 1kNalong the y-axis of the cross section are pre-
sented (maxτBEM

xy = 21.2207kPa) as compared with those obtained from the exact
solution (Sokolnikoff(1956), maxτExact

xy = 21.2206kPa) and the engineering beam
theory (maxτEBT

xy = 18.8628kPa). From the aforementioned figure both the ac-
curacy of the proposed method (error(%) = 0.0005) and the discrepancy of the
engineering beam theory (maxerror(%) = 11.1109) are verified.

Table 5: Shear correction factors κy, κz, κyz coordinates {yS,zS} of the shear center
S and angles of the principal shear φ S and bending φ B system of the composite
cross section of Example 4.

G1
G2

κy κz κyz yS zS φ S φ B

1 0.7616 0.8553 -15.6709 -0.0695 -0.0718 -20.7934o -4.8601o

4 0.6672 0.8308 -12.8046 -0.0808 -0.0905 -13.9448o -5.5983o

6 0.6064 0.8145 -10.8031 -0.0848 -0.0983 -11.8593o -5.8253o

8 0.5559 0.8007 -9.2984 -0.0877 -0.1042 -10.6812o -5.9714o

10 0.5145 0.7892 -8.1765 -0.0899 -0.1089 -9.9370o -6.0731o

Schramm, Rubenchik and Pilkey (1997), Pilkey (2002)
1 0.7614 0.8551 -15.6843 -0.0695 -0.0720 -20.7787o -4.8601o

Example 2

As a second example the composite rectangular cross section shown in Fig.6 has
been analyzed. In Table 4 the shear correction factors κy, κz of the cross sec-
tion are presented, where the values in parentheses come from a 2–D FEM so-
lution ignoring the boundary conditions at the interfaces (SectionBuilder, 2002)
and from a 3–D FEM solution (Fatmi and Zenzri, 2004) of the ‘exact’ elastic
beam theory (Ladevéze and Simmonds, 1998). The accuracy of the results be-
tween BEM (present study) and 3-D FEM solution is remarkable, while the dis-
crepancy of the results between BEM (present study) and 2-D FEM arisen from
the ignorance of the boundary conditions at the interfaces is easily verified. More-
over, for the case

{
G3/G1 = 10, G2/G1 = 0.2

}
in Fig.7a,b the warping surfaces

ϕCy and ϕCz of the composite cross section are presented. Finally, for the case{
G3/G1 = 10, G2/G1 = 0.2

}
in Fig.8a for Qz = 1kN and in Fig.8b for Qy = 1kN

the distributions of the resultant transverse shear stresses τΩ in the interior of the
cross section are presented, respectively.

Example 3

A cantilever beam of a steel IPB600-section (Eurocode No 3) in contact with a
concrete rectangular one, as shown in Fig.9, has been studied. In Fig.10a,b the
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Figure 6: Composite rectangular cross section of the cantilever beam of Example
2.

( )Cymax mm 7.7052ϕ =   ( )Czmax mm 0.9081ϕ =  
 

(a) 
 

(b) 
 

Fig. 7. Warping surface ( )Cy mϕ  (a) and ( )Cz mϕ  (b) for 3 1G G 10= , 2 1G G 0.2=   of 

the composite cross section of Example 2. 

 

Figure 7: Warping surface ϕCy (m) (a) and ϕCz (m) (b) for G3/G1 = 10, G2/G1 =
0.2 of the composite cross section of Example 2.

warping functions ϕCy and ϕCz along the boundaries of the composite cross section
are presented. Furthermore, in Fig.11a for Qz = 1kN and in Fig.11b for Qy = 1kN
the distributions of the resultant transverse shear stress τΓ along the boundary of
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( )max kPaΩτ = 51.72  

 
( )max kPaΩτ = 81.73 

 
(a) 

 
(b) 

 

Fig. 8. Distributions of the resultant transverse shear stresses ( )kPaΩτ  in the 

interior of the cross section of Example 2 for 3 1G G 10= , 2 1G G 0.2=  and 

for zQ 1kN=  (a) and yQ 1kN=  (b). 

 

Figure 8: Distributions of the resultant transverse shear stresses τΩ (kPa) in the
interior of the cross section of Example 2 for G3/G1 = 10, G2/G1 = 0.2 and for
Qz = 1kN (a) and Qy = 1kN (b).

the concrete rectangular part of the cross section are presented, respectively. From
Fig.11a it is concluded that the shear stresses in the upper surface of the concrete
rectangular section are not zero as it is assumed in engineering beam theory and
also that the shear stresses along the thickness of the concrete rectangular section
are not constant as it is assumed in thin tube theory (Vlasov, 1961).

Example 4

As a final example the composite trapezoidal cross section of Fig.12 with no axis
of symmetry has been analyzed. In Table 5 the shear correction factors κy, κz, κyz,
the coordinates {yS,zS} of the shear center S and the angles of the principal shear
φ S and bending φ B system with respect to the centroidal coordinate system y,z
are presented, as compared wherever possible (homogeneous cross section) with
those obtained from a 2–D FEM solution (Schramm, Rubenchik and Pilkey, 1997,
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 Figure 9: Cantilever composite beam of Example 3, consisting of a steel IPB600-
section in contact with a concrete rectangular one.

( )Cymax mm 5.1152E 4ϕ = −   ( )Czmax mm 3.3008E 4ϕ = −  
 

(a) 
 

(b) 
 

Fig. 10. Warping function Cyϕ  (a) and Czϕ  (b) along the boundary of the composite 

cross section of Example 3. 

 

Figure 10: Warping function ϕCy (a) and ϕCz (b) along the boundary of the com-
posite cross section of Example 3.

Pilkey, 2002). From the last row of Table 5 the accuracy of the developed method
is verified. Also, from this table it can be easily seen that the principal bending
and shear axes are of different orientation. Finally, in Fig.13a for Qz = 1kN and
in Fig.13b for Qy = 1kN the distributions of the resultant transverse shear stresses
τΓ along the boundary of the composite cross section for G1/G2 = 4 are presented,
respectively.
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For zQ 1kN= : ( )A kPa 4.4127Γτ =   

 
For yQ 1kN= : ( )B kPa 8.5171Γτ =  

 
(a) 

 
(b) 

 

Fig. 11. Distributions of the resultant transverse shear stresses Γτ  along the 

boundary of the concrete rectangular part of the composite cross section of 

Example 3. 

 

Figure 11: Distributions of the resultant transverse shear stresses τΓ along the
boundary of the concrete rectangular part of the composite cross section of Ex-
ample 3.

 
 

Figure 12: Composite trapezoidal cross section of the cantilever beam of Example
4.
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For zQ 1kN= : ( )max kPa 1.6902Γτ =   

 
For yQ 1kN= : ( )max kPa 1.8776Γτ =

 
(a) 

 
(b) 

 

Fig. 13. Distributions of the resultant transverse shear stresses Γτ  along the 

boundary of the composite cross section of Example 4,  for 1 2G G 4= . 

 

Figure 13: Distributions of the resultant transverse shear stresses τΓ along the
boundary of the composite cross section of Example 4, for G1/G2 = 4.

5 Concluding Remarks

In this paper the boundary element method is employed to develop a displacement
solution for the general transverse shear loading problem of composite beams of
arbitrary constant cross section. Three boundary value problems are formulated
with respect to corresponding warping functions and solved employing a pure BEM
approach. The evaluation of the transverse shear stresses at any interior point is
accomplished by direct differentiation of these warping functions, while both the
coordinates of the shear center and the shear deformation coefficients are obtained
from these functions using only boundary integration. The main conclusions that
can be drawn from this investigation are

a. The numerical technique presented in this investigation is well suited for com-
puter aided analysis for composite beams of arbitrary cross section, while the
analysis is performed with respect to an arbitrary system of axes and not neces-
sarily the principal one.

b. The convergence of the obtained results employing the proposed numerical pro-
cedure with those obtained from an analytical solution and a 3–D FEM is easily
verified.

c. Accurate results are obtained using a relatively small number of boundary ele-
ments.
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d. The inaccuracy of the engineering beam theory for arbitrary cross section is
verified.

e. The assumption that the transverse shear stress along the thickness coordinate
remains constant is right only in thin-walled cross sections.

f. The developed procedure retains the advantages of a BEM solution over a pure
domain discretization method since it requires only boundary discretization.

g. Further research is needed to investigate the influence of the restrained warping
due to shear of the composite cross section (nonuniform shear problem).
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