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Numerical Modeling of Grain Structure in Continuous Casting of Steel
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Abstract: A numerical model is developed for
the simulation of solidification grain structure for-
mation (equiaxed to columnar and columnar to
equiaxed transitions) during the continuous cast-
ing process of steel billets. The cellular au-
tomata microstructure model is combined with
the macroscopic heat transfer model. The cellular
automata method is based on the Nastac’s defini-
tion of neighborhood, Gaussian nucleation rule,
and KGT growth model. The heat transfer model
is solved by the meshless technique by using local
collocation with radial basis functions. The mi-
croscopic model parameters have been adjusted
with respect to the experimental data for steel
51CrMoV4. Simulations have been carried out
for nominal casting conditions, reduced casting
temperature, and reduced casting speed. Proper
response of the multiscale model with respect to
the observed grain structures has been proved.

Keyword: continuous casting of steel, solidifi-
cation, multiscale modeling, equiaxed to colum-
nar transition, columnar to equiaxed transition,
macroscopic model, microscopic model, heat
transfer model, cellular automata model, mesh-
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1 Introduction

An important and huge class of manufacturing
and materials processing operations include solid-
ification of metals at some stage. Among these
is the process of continuous casing of steel [Ir-
wing, (1993)] most wide spread. The proper-
ties of the continuously cast billets, slabs and
blooms in downstream processing are strongly
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affected by the microstructural features and dif-
ferent types of defects, such as cracks, porosity
and macrosegregation. There is a growing in-
terest in computational modeling of continuous
casting of steel [Thomas (2001); Šarler, Vertnik,
Šaletić, Manojlović and Cesar (2005)], in order
to be able to predict the properties of the prod-
uct. The properties of the product can be calcu-
lated [Janssens, Raabe, Kozeschnik, Miodownik
and Nestler (2007)] through a combination of
the macroscopic and microscopic models. The
macroscopic model calculates the relations be-
tween the process parameters and the macro-
scopic variables, such as temperatures, concen-
trations, and velocities on the scale of the pro-
cess. The microscopic model calculates the re-
lations between the macroscopic variables and
the microstructure. The properties of the product
can be related afterwards from the microstructure.
The multiscale modeling [Shen and Atluri (2004);
Haasemann, Kästner and Ulbricht (2006); Zhang
and Shen (2008)] represents one of the currently
most rapidly developing computational mechan-
ics fields.

A principal goal of this study represents the de-
velopment of a new simulation tool for model-
ing the dendritic grain structure in solidification
of steel (equiaxed to columnar transition (ECT)
and columnar to equiaxed transition (CET)) by
using coupled micro and macroscopic models and
validation of the model by experimental results.
Several stochastic models of microstructure have
been developed over the past years. The first ap-
proach was initiated by Spittle and Brown [Spit-
tle and Brown (1989)], based on the Monte Carlo
procedure to predict re-crystallization and grain
growth in the solid – solid phase transformations,
as well as to simulate the solidification structure.
Rappaz and Gandin [Rappaz and Gandin (1993)]
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were the first who applied another stochastic
model, the Cellular Automata (CA) technique to
predict solidification grain structure.

The present paper is structured in the follow-
ing way: we present macroscopic and micro-
scopic models first, followed by the description
of the deterministic and stochastic solution proce-
dures. The experimental validation of the model
describes next. Finally, we represent the influence
of the process parameters on the grain structure of
the continuously cast billet.

2 Macroscopic model

The macroscopic model is designed to be able
to calculate the steady temperature distribution in
the continuously cast billet as a function of the
following process parameters: billet dimension,
steel grade, casting temperature, casting veloc-
ity, primary and two secondary cooling systems
flows, pressures, temperatures, type and quantity
of the casting powder, and the (non)application
of the radiation shield and electromagnetic stir-
ring. The Bennon-Incropera [Bennon and Incr-
opera (1987)] mixture continuum formulation is
used for the physical model, solved by the re-
cently developed meshless Local Radial Basis
Function Collocation Method (LRBFCM) [Šar-
ler and Vertnik (2006); Vertnik and Šarler (2006);
Vertnik, Založnik and Šarler (2006)]. In this novel
numerical method, the domain and boundary of
interest are divided into overlapping influence ar-
eas. On each of them, the fields are represented
by the multiquadrics radial basis function colloca-
tion on a related sub-set of nodes. Time-stepping
is performed in an explicit way. The governing
equations are solved in its strong form, i.e. no
integrations are performed. The polygonization
is not present and the method is practically in-
dependent on the problem dimension. The other
possibility represents the local approximation by
the moving least squares [Šarler, Vertnik, Perko
(2005)] instead of interpolation.

The convergence, continuity, and completeness of
global radial basis function interpolation, based
on the multiquadrics, has been recently elabo-
rated by [Huang, Lee and Cheng (2007)]. A re-
lated comprehensive mathematical study is given

in [Buhmann (2003)]. At the present state-of-the-
art, no rigorous mathematical theory exists for the
local collocation. Nevertheless, the convergence
of the method has been demonstrated for diffu-
sion problems on NAFEMS [Cameron, Casey,
Simpson (1986)] benchmark test and Dirichlet
jump problem, and compared to the finite differ-
ence method (FDM) [Šarler and Vertnik (2006)].
The favorable convergence of the method com-
pared to the classical second order FDM was
demonstrated. The convergence of the LRBFCM
was tested for convective-diffusive problems with
and without phase change in [Vertnik and Šar-
ler (2006)] and compared with the boundary ele-
ment and finite element methods. Favorable con-
vergence properties of the LRBFCM have been
demonstrated in this case as well. The RBF-
based numerical methods represent one of the
key directions in meshless methods research for
fluids [Amaziane, Naji and Ouazar (2004); Šar-
ler (2005); Mai-Duy, Mai-Cao and Tran-Cong
(2007); Divo and Kassab (2007); Kosec and Šar-
ler (2008)], solids [Mai-Duy, Khennane and Tran-
Cong (2007); Le, Mai-Dui, Tran-Cong and Baker
(2008)], moving boundaries [La Rocca, Power,
La Rocca and Morale (2005); Mai-Cao and Tran-
Cong (2008)] and solution of partial differential
menthods in general [Mai-Duy and Tran-Cong
(2003); Mai-Cao and Tran-Cong (2005)].

2.1 Governing equations

Consider a connected fixed domain Ω with
boundary Γ occupied by a liquid-solid phase
change material described with the temperature
dependent density ρ℘ of the phase ℘, tempera-
ture dependent specific heat at constant pressure
c℘, thermal conductivity k℘, and the specific la-
tent heat of the solid-liquid phase change hm. The
mixture continuum formulation [Bennon and In-
cropera (1987)] of the enthalpy conservation for
the assumed system is

∂
∂ t

(ρh)+∇ · (ρ�vh) = ∇ · (k∇T )

+∇ · (ρ�vh− fV
S ρS�vShS − fV

L ρL�vLhL
)

(1)

where the second term on the right-hand side is
a correction term, needed to accommodate the
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mixture continuum formulation of the convective
term. In continuation we neglect this term. In Eq.
(1) mixture density and thermal conductivity are
defined as

ρ = fV
S ρS + fV

L ρL, (2)

k = fV
S kS + fV

L kL, (3)

where fV
℘ represents the volume fraction of the

phase ℘. The liquid volume fraction fV
L might

vary from 0 to 1 between solidus TS and liquidus
temperature TL. Mixture velocity is defined as

�v =
(

fV
S ρS�vS + fV

L ρL�vL
)
/ρ , (4)

and mixture enthalpy is defined as

h = fV
S hS + fV

L hL. (5)

The constitutive temperature-enthalpy relation-
ships are

hS =
∫ T

Tre f

cSdT, (6)

hL = hS (T )+
∫ T

TS

(cL −cS)dT +hm, (7)

with Tre f standing for the reference temperature.
Thermal conductivity and specific heat of the
phases can arbitrarily depend on temperature.

2.2 Spatial discretization

The temperature field of a point in the billet is pre-
scribed by the following three-dimensional vector
in the Cartesian coordinate system:

p = xix +yiy + ziz, (8)

where x, y, z are coordinates and ix, iy, iz are base
vectors. The z coordinate measures the length
of the inner radius of the casting machine. This
Cartesian coordinate system represents the flat ge-
ometry, which is the geometrical approximation
of the real curved casting process (Fig. 1). The
origin of the z coordinate coincides with the the
top side of the mould, and the base vector iz co-
incides with the casting direction. The x coordi-
nate measures the width (west-east direction) of
the billet, perpendicular to the casting direction.

Its origin coincides with the centre of the billet.
The y coordinate measures the thickness (south-
north direction) of the billet, perpendicular to the
casting direction. Its origin coincides with the in-
ner (south) side of the billet.

According to the heat transfer phenomena of the
continuous casting of steel, the heat conduction in
the casting direction might be roughly neglected.
The z coordinate is then parabolic, while the x and
y coordinates are elliptic. The temperature field in
the billet at a given time is described by the cal-
culation of the cross-section (called infinite slice)
temperature field of the billet. In this way the tem-
perature field at a given z coordinate depends only
on the slice history and its cooling intensity as a
function of time. The slices form at the zstart lon-
gitudinal coordinate of casting and travel in the di-
rection of the iz base vector with the casting speed
v. For calculating the cooling intensity of the slice
as a function of time, we need the connection be-
tween the z coordinate of the casting machine and
the slice history t, which is in general

z (t) =
t∫

tstart

v(t ,)dt , + zstart , v(t) =�v (t) · iz, (9)

where tstart is the initial time of a slice. In the case
when the casting speed and other process param-
eters are steady, we obtain the following simple
connection between the z coordinate of the cast-
ing machine and the slice history t

t (z) =
z− zstart

v
+ tstart . (10)

∂
∂ t

(ρh) = ∇ · (k∇T ) . (11)

In this paper, the simple Eq. (10) is used, since
we assume the steady-state solution of the cast-
ing process. The prescribed simplified spatial dis-
cretization also simplifies the Eq. (1) by removing
the convective terms. Thus the Eq. (1) transforms
into transient equation, defined on x-y plane. This
simplified model is consistent with the models,
given by [Louhenkilpi (1995)].

2.3 Boundary conditions

The heat transport mechanisms in the mould
take into account the heat transport mechanisms
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Figure 1: Slice traveling schematics of the billet (See Fig. 8 for the slice discretization).

through the casting powder, across the air-gap (if
it exists), to the mould surface, in the mould, and
from the mould inner surface to the mould cooling
water. The heat transport mechanisms in the sec-
ondary cooling zone take into account the effects
of the casting velocity, strand surface tempera-
ture, spray nozzle type, spray water flow, temper-
ature and pressure, radiation and cooling through
the rolls contact. Different types of the rolls are
considered (driving, passive, centrally cooled, ex-
ternally cooled, etc.). The mentioned basic heat
transfer mechanisms are modified with regard to
running water and rolls stagnant water at relevant
positions. It is not possible to explicitly expose all
the involved correlations within the scope of the
present paper. Respectively, the calculated tem-
perature distributions of the macroscopic model
are given in Figs. 2-4 for the nominal condi-
tions and for the reduced casting temperature and
speed.

2.4 Solution procedure

We seek for mixture temperature at time t0 + Δt
by assuming known initial temperature, velocity
field, and boundary conditions at time t0. The ini-
tial value of the temperature T (p, t) at a point with
position vector p and time t0 is defined through
the known function T0

T (p, t) = T0 (p) ;p ∈ Ω+Γ (12)

The boundary Γ is divided into not necessarily

connected parts Γ = ΓD ∪ΓN ∪ΓR with Dirichlet,
Neumann and Robin type boundary conditions,
respectively. At the boundary point p with nor-
mal nΓ and time t0 ≤ t ≤ t0 + Δt, these boundary
conditions are defined through known functions
T D

Γ , T N
Γ , T R

Γ , T R
Γre f

T = T D
Γ ;p ∈ ΓD (13)

∂
∂nΓ

T = T N
Γ ;p ∈ ΓN (14)

∂
∂nΓ

T = T R
Γ

(
T −T R

Γre f

)
;p ∈ ΓR (15)

The numerical discretization of Eq. (11), using
explicit (Euler) time discretization has the form

∂ (ρh)
∂ t

≈ ρh−ρ0h0

Δt
= ∇ · (k0∇T0) (16)

From Eq. (16) the unknown function value hl in
domain node pl can be calculated as

hl = h0l +
Δt

ρ0c0
(∇k0l ·∇T0l+ k0l ·∇2T0l

)
(17)

The spatial derivatives in Eq. (17) are approxi-
mated by the LRBFCM. In the LRBFCM, the rep-
resentation of unknown function value over a set
of lN (in general) non-equally spaced nodes lpn;
n = 1,2, ..., lN is made in the following way

φ (p) ≈
lK

∑
k=1

lψk (p)lαk (18)
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where lψk stands for the shape functions, lαk for
the coefficients of the shape functions, and lK rep-
resents the number of the shape functions. The
left lower index on entries of expression (18) rep-
resents the influence domain (subdomain or sup-
port) lω on which the coefficients lαk are deter-
mined. The influence domains lω can in general
be contiguous (overlapping) or non-contiguous
(non-overlapping). Each of the influence domains

lω includes lN nodes of which lNΩ can in general
be in the domain and lNΓ on the boundary, i.e.

lN = lNΩ + lNΓ. The total number of all nodes pn

is equal N = NΩ +NΓ of which NΓ are located on
the boundary and NΩ are located in the domain.
The influence domain of the node lp is defined
with the nodes having the nearest lN−1 distances
to the node lp. The five nodded lN = 5 influence
domains are used in this paper. The coefficients
are calculated by the collocation (interpolation).

Let us assume the known function values lφn in
the nodes lpn of the influence domain lω . The
collocation implies

φ (lpn) =
lN

∑
k=1

lψk (lpn) lαk. (19)

For the coefficients to be computable, the number
of the shape functions has to match the number of
the collocation points lK = lN, and the collocation
matrix has to be non-singular. The system of Eqs.
(19) can be written in a matrix-vector notation

lψ lα = lΦ; lψkn = lψk (lpn) , lφn = φ (lpn) .

(20)

The coefficients lα can be computed by inverting
the system (20)

lα = lψ−1
lΦ. (21)

By taking into account the expressions for the cal-
culation of the coefficients, lα the collocation rep-
resentation of temperature φ (p) on subdomain lω
can be expressed as

φ (p) ≈
lN

∑
k=1

lψk (p)
lN

∑
n=1

lψ−1
kn lφn. (22)

The first partial spatial derivatives of φ (p) on sub-
domain lω can be expressed as

∂
∂ pς

φ (p) ≈
lN

∑
k=1

∂
∂ pς

lψk (p)
lN

∑
n=1

lψ−1
kn lφn;

ς = x,y. (23)

The second partial spatial derivatives of φ (p) on
subdomain lω can be expressed as

∂ 2

∂ pς pξ
φ (p) ≈

lN

∑
k=1

∂ 2

∂ pς pξ
lψk (p)

lN

∑
n=1

lψ−1
kn lφn;

ς , ξ = x,y. (24)

The radial basis functions, such as multiquadrics,
can be used for the shape functions

lψk (p) =
[

lr
2
k (p)+c2]1/2

, (25)

where c represents the shape parameter. These
functions possess C∞ continuity and can easily be
used for approximation of the involved first and
second order derivatives. The explicit values of
the involved first and second derivatives of ψk (p)
are

∂
∂ pς

lψk (p) =
pς − l pkς(

lr2
k +c2

)1/2
, ς = x,y (26)

∂ 2

∂ p2
ς

lψk (p) = lr2
k −

(
pς − l pkς

)2 +c2(
lr2

k +c2
)3/2

, ς = x,y

(27)

More elaborated step by step description and test-
ing of the present solution procedure for tem-
perature field is presented in [Šarler and Vert-
nik (2006)]. A successful comparison of the
present meshless solution with the conventional
CFD code Fluent for the continuous casting of
steel is given in [Vertnik, Šarler, Buliński and
Manojloviæ (2007)]. The use of the model in
simulation system for continuous casting of steel
billets is given in [Šarler, Vertnik, Gjerkeš, Lor-
biecka, Manojlović, Cesar, Marčič and Sabolič
(2006)].
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2.5 Macroscopic simulations

Simulations were performed for the billet of di-
mension 140x140 mm and the spring steel grade
51CrMoV4. The process parameters were taken
directly from the process computer, installed on
the casting machine.

The thermo-physical material properties of the
spring steel were calculated by the JMatPro
software [Saunders, Li, Miodownik and Schille
(2003)]. Three simulations have been pre-
prepared for input of the microscopic model (see
details in Tab. 1). The numerical results for each
case are presented in Figs. 2-4, where the cen-
terline and corner temperatures along the casting
direction are plotted. In each figure, the top line
represents the centerline temperature, the middle
lines represent centerline temperatures of the sur-
faces, and the bottom lines represent the corner
temperatures.

3 Microscopic model

The following three processes take place on the
microstructure level:

• Nucleation process: occurs when a small
grain of solid forms in the liquid. This is a
kinetic process in which a small number of

Figure 2: Centerline and corner temperatures
along the casting direction. Nominal values
(NOMINAL).

atoms form a stable cluster, called nucleus.
The rate of nucleation depends mainly on the
extent of the under-cooling.

• Growth process: once a grain nucleates it
is going to increase its size since the atoms
from the liquid are attaching to the tiny ini-
tial solid.

• Impingement: growth continues until the
grains occupy the whole region, previously
occupied by the liquid phase.

The present model is designed to be able to sim-
ulate the positions of the Equiaxed to Colum-
nar Transition (ECT) and Columnar to Equiaxed
Transformations (CET), see Fig. 9. A similar
model has been already used for modeling the
grain structure in aluminum-titanium alloys [Liu,
Guo, Wu, Su and Fu (2006)]. The model is struc-
tured as follows.

3.1 Nucleation model

Two different assumptions [Lee and Hong (1997)]
can be used for modeling of nucleation: a con-
tinuous dependency of nucleation density on tem-
perature (i.e. under-cooling) or the instantaneous
dependency of nucleation density on temperature.
In the present study we adopted continuous nu-
cleation model in which two different continuous
nucleation modes were considered: at the surface
area (index s) and in the bulk area (index b). The
increase of grain density dn which corresponds to
an under-cooling increase d(ΔT ) can be modeled
as follows

(
dn

d (ΔT )

)
ς
=

nmax,ς√
2πΔTσ ,ς

exp

[
−ΔT −ΔTmax,ς

ΔTσ ,ς
√

2

]2

,

ς := s,b (28)

where: ΔTmax,s, ΔTmax,b, ΔTσ ,s, ΔTσ ,b, nmax,b

and nmax,s represent the mean nucleation under-
cooling at the surface area, the mean nucleation
under-cooling in the bulk area, the standard devi-
ation for the temperature at the surface area, the
standard deviation for the temperature at the bulk
area, and the maximum density of nuclei that can
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Figure 3: Centerline and corner temperatures along
the casting direction. Reduced casting temperature
(CASE I).

Figure 4: Centerline and corner temperatures along
the casting direction. Reduced casting speed
(CASE II).

Table 1: Nominal and varied process parameters of the 0.14 m billet casting of 51CrMoV4 steel. Varied
process parameters are in bold.

Tcast(˚C) vcast(m/min)
NOMINAL 1525 1,750

CASE I 1500 1,750
CASE II 1525 1,00

form in the melt for the surface and bulk, respec-
tively. It is assumed that the highest occupancy
of nucleuses is expected in the range of (−3ΔTσ
to +3ΔTσ ), where ΔTσ means standard deviation
since the Gaussian distribution was chosen.

0

0,2

0,4

0,6

0,8

1

0 2 4 6 8 10 12 14

T

dn/d( T) bulk surface

-4 +4

-3 +3

Figure 5: Nucleation curves for the surface and
the bulk.

3.2 Growth model

The [Kurz, Giovanola and Trivedi (1986)] (KGT)
model was used as the model of the growth kinet-
ics. The growth velocity in each point is calcu-
lated thought the following quadratic form

V 2A+V B+C = 0 (29)

where the coefficients A, B and C are modeled as

A =
π2Γ

Pe2D2
, (30)

B =
mC0(1−k0)ξc

D [1− (1−ko)Iv(Pe)]
, (31)

C = G, (32)

with

Iv(Pe) = exp(Pe)erfc
(√

Pe
)√

πPe,

ξc =
π2Γ
k0Pe

, Pe =
RV
2D

(33)
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Where Γ, D, m, C0, k0, Pe, Iv(Pe) and G are
Gibbs-Thomson coefficient, diffusion coefficient
in liquid, slope of the liquidus line, initial con-
centration of carbon, partition coefficient, Peclet
number for solute diffusion, Ivantsov function,
and temperature gradient, respectively. The tem-
perature gradient G at a surface has little influ-
ence on the growth velocity and it was set to 0
(G = 0) as proposed by [Kurz, Giovanola and
Trivedi (1986)] which reduces the equation (29)
as follows: V = −B/A. The under-cooling in
front of the dendrite tip was solved as follows
[Kurz and Fisher (1998)]

ΔT = m(C0 −Cl)+
2Γ
r

(34)

Cl =
C0

1− (1−k0)Iv(Pe)
(35)

Where the dendrite tip radius r is expressed as

r =

√
ΓD [1− (1−k0) Iv(Pe)]

−mV(1−k0)C0
(36)

The under-cooling temperature ΔT was calculated
through the assumed value of Peclet number Pe
and through equations (35, 36). These results
are related with the under-cooling temperatures
ΔT received from the macro heat transfer cal-
culation in order to calculate the growth veloc-
ity. To reduce the calculation effort, the values of
growth velocity V(Pe) and under-cooling temper-
ature ΔT (Pe) were obtained in advance. The least
squares method is used to obtain the coefficients
a1, a2, a3 of the growth velocity in the range of Pe
numbers from 0.004 to 10 (with step 0.002)

V(ΔT ) = a1(ΔT )3 +a2(ΔT )2 +a3(ΔT)
ai = (Pe,ΔT ) ; i = 1,2,3 (37)

The same assumption was also used by [Kurz,
Giovanola and Trivedi (1986); Yamazaki, Nat-
sume, Harada and Ohsasa (2006)]. If some of
the assumed parameters from the growth process
change, the coefficients in the relation V(ΔT)
have to be changed as well.

3.3 Impingement model

At the beginning all calculation area is liquid.
The nucleation process takes place in the mushy
zone where the first grains nucleate. The process
is completed until each of the grains completely
touch his neighbors.

3.4 Numerical solution of microstructure
equations

Microstructure equations are numerically solved
by the CA technique [Rappaz, Bellet and Dev-
ille (2003)]. This method is associated with a
system where the behavior is generated by pre-
defined rules based on the local relationship be-
tween nearest neighboring cells, into which the
domain is divided. Each cell has a ‘state’: liq-
uid or solid and a ‘neighborhood’ configuration
associated with it. The rules for evolution of the
state of an individual cell within the CA system
are in the present context already defined through
the rules for nucleation, growth and impingement.

The only parameter which is varied during simu-
lation is the value of local under-cooling ΔT , cal-
culated from the macroscopic model. For each
cell the nucleation conditions are checked: ap-
propriate temperature ΔT in the micro cell and
the probability condition. During each time step
all cells are assigned a random number between
(0 < rand < 1) and a random computational an-
gle from 〈(−45◦)− (+45◦)〉. The transformation
from liquid to solid will occur only when rand <

p where p = exp
[
(ΔT −ΔTmax)/

(√
2ΔTσ

)]2
.

Once a cell is nucleated it grows with a preferen-
tial direction corresponding to its assigned crys-
tallographic orientation and with respect to the
heat flow. Depending on the randomly chosen
angle the following neighborhood configurations
[Nastac (2004)] (see Fig. 6) are chosen: Neu-
mann, Moore and modified Moore respectively.
All of new nucleuses which arise from the ‘par-
ent’ grow with different randomly chosen config-
uration which is fixed for them at the time when
they occur. For all „neighbours” of the treated nu-
cleus, the criterion d is checked by using the for-
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mula

d = l (t)/aθ , l (t) =
t∫

t0

V (ΔT)dt,

aθ = a
√

tan2 θ +1,

(38)

where t, to, a, θ and l(t) are the actual time, initial
time, the size of the cell, the crystallographic an-
gle, and the length between the centre of the refer-
ence cell and its neighborhood cell, respectively.
If a neighbor is one of the four nearest east, north,
west, and south neighbors aθ = a but if a neigh-
bor is a corner neighbor then aθ = a

√
2. When

d ≥ 1, the growth front of the solid reference cell
can touch the centre of the neighboring cell and
then this cell transforms its state from liquid to
solid [Zhu and Hong (2001)]. It is assumed that
the growth is not allowed to take place for more
than half of micro cell during each time step.

3.5 Coupling of the macroscopic and micro-
scopic temperature fields

In this paper 4120 axial temperature fields were
prepared from the macroscopic model. Each field
has a dimension 14 x 14 cm and the size of each
macro cell is 0.5 cm. There are 784 cells and
841 nodes of macro temperatures at each axial
position. Macroscopic temperature field values
have to be interpolated for use in the microscopic
model. The temperature of a micro cell is influ-
enced by its nearest neighboring macro calcula-
tion nodes Ti. The interpolation formula [Xu and
Liu (2001)] used in the present work is

Ta = (
4

∑
i=1

Ti ∗w)/
4

∑
i=1

w, w = exp [−(li/2.8)]

(39)

Where Ta, Ti and li represents the temperature of
the micro CA cell, the temperature of the neigh-
boring macro nodes and the distance to the near-
est macro nodes, respectively. Each macro cell
is divided into 625 micro CA cells for the calcu-
lation of nucleation and grain growth. Obtained
values of temperatures are recalculated into the
under-cooling temperatures by using the follow-
ing formula: ΔT = Tliq −T and then interpolated

for each micro cell during time. It was noticed
that the grid size should be around 200 μm, be-
cause in this range the simulation results are stable
and match the experiments. Two time-step loops
are used in the program: macro loop with 0.3 s
time step and micro loop with micro time step of
1.5 ms.

3.6 Calculation parameters of the microscopic
model

The input data to the microscopic model has a
tremendous influence on the final grain distribu-
tion. Respectively, a sensitivity study has been
performed to study this influence and to adjust
the model parameters to experimental values from
Fig. 9. The input data of the microscopic solid-
ification model are presented below, see Tab. 2.

The information connected with one cell (position
in the domain, angle, CA configuration, time of
generation), and all cells (amount of nucleuses,
generated at the surface and in the bulk areas) are
stored in a file for each micro time step. Simu-
lations with different values show that changing
some of the parameters can strongly affect the fi-
nal appearance of microstructure. It can be ob-
served, that the nucleation parameters of Gaus-
sian distribution influence mostly the final grain
structure. They determine the number of possi-
ble generated nucleuses at the surface and in the
bulk area. By changing the range of ΔTmax param-
eter the calculated area where new grains arise is
widen. The changes of the parameters indirectly
influence the probability condition and rapidly in-
crease or decrease the amount of nucleated grains.
It is shown [Lorbiecka and Šarler (2008)] that the
best results, with respect to the experimental data,
are received in the range of ΔTσ from 1.25 K to
1.75 K for the bulk and around 0.2 K for the sur-
face area. It was shown that the smaller casting
velocity increases longer columnar forms what is
seen on the examples. On the other hand, the
higher casting temperature is, the more extended
central zone becomes what is consistent with the
measurements as well.
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        A                   B                   C1                           C2

rand> 1 

rand < 1

Figure 6: Definition of neighborhood configuration:
A - Neumann, B - Moore, C1 and C2 - modified
Moore respectively.

Figure 7: Schematics of the neighborhood.

Central zone 
58% of surface 

area

Columnar 
zone 34 % of 
surface area 

Chill zone
8% of surface 

area

140 mm 

140 mm

Figure 9: Observed (Baumann print) equiaxed to columnar
(ECT) transition between chill and columnar zone (—) and
columnar to equiaxed transitions (CET) between columnar
and central zone (***) for the Nominal case.

Figure 10: Simulated grain structure of the
billet with ECT and CET.

4 Numerical implementation

Both, the macro and the micro models were coded
in Fortran.

Macroscopic simulator takes about 3 minutes to
prepare the macro temperature fields, while mi-
croscopic simulation takes approximately 6 hours
on a standard PC with 3 Ghz and 1024 Ram. Dur-
ing the simulation the results can be observed on
the screen, and afterwards post-processed. The
described multiscale model was coupled only in
the direction from macro to micro calculations.
The results represent good match with the experi-
ment, as elaborated in the next chapter.

5 Simulations of ECT and CET

A steel grade, used in this paper, has chemical
composition 51CrMoV4. The simulated final mi-
crostructure (see Fig. 10), calculated with the
nominal values from Tabs. 1 and 2. compare
well with the experimental Baumann print, rep-
resented on Fig. 9. The macroscopic parameters
have been subsequently varied, following the sec-
ond and third row of Tab.1.
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Table 3: Number of generated nucleuses for three simulated cases

Macro temp. filed Nucleuses at surface Nucleuses at bulk
CASE I 8543 15569

NOMINAL 14533 18200
CASE II 10609 10493

14 cm 

14 cm 

0.5 cm 

0.5 cm 
Figure 8: Relationship between macro field -
meshless (above) and micro CA mesh (below).
Solid circles in the macro field represent schemat-
ics of the corner, surface and bulk 5-noded do-
mains of influence of the meshless method.

6 Conclusions

The coupled multiscale model was developed to
predict the grain nucleation, growth and final
structure (ECT and CET) of the continuously cast
steel billets. The meshless LRBFCM was used to

a)        b)              c)

Figure 11: Calculated microstructures. a) Tcast=
1500 ˚C, Vcast=1.75 m/min (CASE I) (from top to
the bottom : 1min, 2min, 3min, 4min, 5min, 5 min
33s); b) Tcast= 1530 ˚C, Vcast=1.75 m/min (NOM-
INAL) (from top to zhe bottom: 1min, 2min,
3min, 4min, 5min, 5 min 55s); c) Tcast= 1530 ˚C,
Vcast=1.00 m/min (CASE II) (from top to the bot-
tom: 1min, 2min, 3min, 4min, 4 min 36 s).
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Table 2: Nominal parameters used in the simula-
tion.

Symbol Value Unit
ΔTmax,bulk 30.00 K

ΔTmax,sur f ace 0.60 K
ΔTσ ,bulk 1.75 K

ΔTσ ,sur f ace 0.20 K
k0 0.370 1
Γ 1.9 10−7 Km
D 2.0 10−8 m2/s
C0 0.51 %
M -30 1
a1 4,01*10−3 1
a2 4,37*10−3 1
a3 2,02*10−4 1
Tliq 1755.01 K
Tsol 1672.04 K
Vcast 1.75 m/min

micro cell size 200 μm
Surface area thickness 0.5 cm

solve the macroscopic heat transfer model and the
CA technique was used to solve the microstruc-
ture evolution. The model parameters were ad-
justed in order to obtain the experimentally de-
termined actual billet ECT and CET positions for
51CrMoV4 spring steel.

The influence of the variation of the princi-
pal macroscopic heat transfer parameters (cast-
ing temperature and casting speed) on calculated
grain structure was shown. Our future research
will focus on inclusion of the variable concentra-
tion field in the model and implementation of ir-
regular CA (transition from cell-wise description
to point-wise description and transition from reg-
ular to irregular pointwise description) [Janssens
(2000)]. Irregular CA involve the meshless phi-
losophy also on the microscopic level. With this,
the whole multiscale model would be able to be
solved in a meshless [Atluri (2004); Liu and Gu
(2005); Šarler (2007)] sense.
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