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Application of Component Mode Synthesis to Protein Structure for Dynamic
Analysis

Jae In Kim1, Kilho Eom2, Moon Kyu Kwak3 and Sungsoo Na4

Abstract: This paper concerns the application
of component mode synthesis for biomolecule
modeling to understand protein dynamics. As for
protein dynamics, eigenvalue problem should be
formulated to obtain eigenvalue, eigenvector and
thermal fluctuation. To describe the thermal fluc-
tuation of protein, normal mode analysis is in-
troduced and normal modes identify the dynamic
behavior of protein very well. Component mode
synthesis considers the given complex structure as
an assembly of smaller components. The selec-
tion of a component may be arbitrary. When the
component mode synthesis is applied to formu-
late the eigenvalue problem of protein structure,
we selected a protein which may be composed of
two and/or four domains. The domain of protein
can be considered as a component. In this sense
the number of component is increased as neces-
sary, and the size of each component is decreased
for fast calculation. The component mode synthe-
sis widely used in engineering was well applied to
understand protein dynamics in present study.
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1 Introduction

Traditionally, molecular dynamics (MD) is com-
monly used for studying nano-scaled struc-
tures such as carbon nanotube[Chakrabarty, Tahir
(2008)] and even the protein dynamics. Previ-
ous researches showed that the molecular dynam-
ics provided some good results for understanding
protein behaviors, in particular [Brooks, Karplus,
Pettit (1988); McCammon and Harvey (1987)].
However, MD has some limitations such as com-
putational loads and storage space because MD
considers all atoms of model protein and imple-
ments covalent bonding, hydrogen bonding, and
van der Waals interaction, etc. for potential func-
tion [McCammon and Harvey (1987)]. Since
the potential function for MD is complicated, it
takes a long time and needs large size of mem-
ory for computing. Moreover, for the biologi-
cal function of protein structure, it needs time
scale in microseconds, while MD produces the
solution in time scale of nanoseconds. Some-
how it is inconvenient to use MD in studying
protein dynamics, which may invoke mislead-
ing errors. To overcome these problems, nor-
mal mode analysis (NMA) [Xie and Long (2006)]
and elastic network model (ENM) [Tirion (1996);
Haliloglu, Bahar and Erman (1997); G. Yoon et
al (2008)] were introduced. Tirion developed
a simple elastic model for protein’s conforma-
tional fluctuations. Tirion’s model gave an insight
to introduce Gaussian network model (GNM) by
Hailoglu et al. GNM regards the protein struc-
ture as a simple one-dimensional entropic spring
network for alpha carbon residues. GNM intro-
duces two parameters such as a universal force
constant and a cut-off radius for implementing
a one-dimensional harmonic entropic spring net-
work for protein structures. GNM allowed for
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fast computing on the normal modes and fluctu-
ations for protein dynamics. In spite of its fast
computation on the normal modes, GNM shows
some computational inefficiency of large stiffness
matrix for complex proteins. To overcome this
inefficiency, many researchers introduced various
breakthroughs. In this regard, among them, Ming
et al. introduced Substructure Synthesis Method
for simulating repeated protein structure like F-
actin [Ming, Kong, Wu, Ma (2003)].

Eom et al introduced dynamic condensation
method for dynamic analysis of biomolecules and
provided the hierarchical model reduction of pro-
tein structure to build the low-resolution struc-
tures consisting of the minimal number of atoms
for the studies of protein dynamics [Eom, Baek,
Ahn and Na (2007)]. In this paper the compo-
nent mode synthesis was applied to Hemoglobin
protein structure associated with GNM to under-
stand protein dynamics, which is not restricted to
repeated protein structure. A modified implemen-
tation of the boundary conditions at the interface
of adjacent biomolecular substructures has been
incorporated. The proposed method was applied
to model protein successfully, and it is remarkable
that the component mode synthesis is capable of
reproducing the dynamics of protein structures.

2 Gaussian Network Model

Gaussian network model is a simple mass-spring
model for investigating fluctuation dynamics of
protein. The position of nodes for the specific
obtained by experiment was deposited in protein
data bank and the springs connecting the nodes
are representative of the bonded and non-bonded
interactions between residues. The nodes which
are inside interaction range called cutoff radius
rc are connected by spring. The force constant
is taken to be uniform for all springs. The cutoff
radius is taken as 7Å in present study.

The Gaussian network model assumes that the
protein is fluctuating about the equilibrium state.
The potential field of folded protein for GNM is
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where H
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is the Heaviside step func-

tion, i.e. H
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= 1 if rc ≥ ri j, otherwise

H
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)
= 0 . Herein,ri j is the distance be-

tween residues i and j and γ is the spring constant.
The potential energy can be approximated by a
harmonic expansion, which results in [Haliloglu,
Bahar, Erman, (1997)]

P =
γ
2 ∑

i, j
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where uiis the fluctuation of residue i, and Γi j is
the ij-th element of connectivity matrix implying
the interaction between residue i and j, defined as
[Qiang, Bahar (2006)]
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The fluctuation of proteins can be described by
eigenvalue problem

γΓi je j = ω2ei (2c)

where ω is the natural frequency and ei is the nor-
mal mode.

In this context, the fluctuation matrix Q is defined
from statistical mechanics theory [Haliloglu, Ba-
har, Erman, (1997)] as
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Here 〈〉 denotes ensemble average, k is the Boltz-
mann constant, T is the absolute temperature, ωn

is the natural frequency for the n-th mode, N is the
total number of residues and summation excludes
the one zero-mode associated with rigid body mo-
tions. The mean square fluctuation of residue is
given by

Qii =
〈
(ri − r0

i )
2〉 (3b)
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3 Component Mode Synthesis

In this paper, we used component mode synthe-
sis for protein analysis, which was well defined in
structural engineering [Hale, Meirovitch (1980)].
Component mode synthesis (CMS) was intro-
duced for solving very large structural dynamics
problems, where the structure consists of several
natural components, for example, fuselage, wings
of airplanes or the space shuttle orbiter and its
payloads. The basic concept of component mode
synthesis is to consider the structure as an assem-
blage of components. CMS describe the motion
separately over each of the domain, referred to
as component by generating a component eigen-
value problem and then constrain the components
to work together as a single original structure
by enforcing geometric compatibility at the in-
terface of adjacent components [Craig, R (1981);
Meirovitch, L. (1980)]. Since each component is
modeled separately, there are redundant coordi-
nates, as atoms shared by two adjacent compo-
nents behave the same motions. The removal of
redundant coordinates is carried out during an as-
sembling process in which the constituent com-
ponents are constrained to act as a whole struc-
ture. The efficiency of CMS lies in the fact that
the scheme only deals with an eigenvalue prob-
lem for a much smaller component compared with
original structure. The way to choose substructure
is arbitrary, though, however, in the present paper,
the substructure is chosen on the base of domain
(substructure) of the target proteins, which con-
sists of several domains depending on model pro-
tein. In the process, we calculate the modes of
each component using NMA. Substructures are
assembled using constraint mass points, and the
modes of assembled structure can be composed.
Using this methodology, we can approach the pro-
tein dynamics in a view point of domains, while
maintaining computational accuracy, in terms of
thermal fluctuations, and eigensolutions. In this
respect, let us consider a given component s and
write the displacement vector us of an arbitrary
point P on the component [Refer to Fig. 1]. Phys-
ical displacement vector is represented as series
of space-dependent functions multiplied by time-

dependent generalized coordinates as below:

us(P, t) = Ψs(P)qs(t) (4)

where Ψs may be regarded as assumed eigenvec-
tor of specific component, s and qs(t) is general-
ized coordinate.

The kinetic energy of individual component can
be defined using the generalized coordinates as

Ts =
1
2

q̇T
s Msq̇s (5)

where Ms is component mass matrix.

Similarly, we also have potential energy as

Vs =
1
2

qT
s Ksqs (6)

where Ks is a component stiffness matrix.

Figure 1: Configuration of a structure with com-
ponents

By means of Lagrange’s equation [Meirovitch, L.
(1980)], which can be written as

d
dt

(
∂Ts

∂ q̇s

)
− ∂Ts

∂qs
+

∂Vs

∂qs
= Q (7)

component equations of motion can be obtained
after introducing Eq. (5) and (6) into Eq. (7).

Msq̈s(t)+Ksqs = Q (8)

Herein, generalized force Q is assumed to be zero.

The assembling process can be invoked by intro-
ducing the matrices

Md =

⎡
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. . .
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⎤
⎥⎥⎥⎦ (9a)
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The corresponding equations of motion for as-
sembled components are written as

Mdq̈(t)+Kdq(t) = 0 (10)

The displacement vector q(t) includes a certain
number of redundant values due to constraints of
boundaries between adjacent components. As-
suming that there are Nc constraints, and q(t) has
dimension M, then the number of independent
generalized coordinates is n = M − Nc. At this
point, coordinate transformation between q(t) and
η(t) is related as

q(t) = Bη(t) (11)

where B is a constraint matrix, and η(t) is the n-
dimensional independent generalized coordinate
vector. The matrix B reflects certain geometric
condition at boundary points for which are shared
by components r and s, because the points has the
same displacement as below

ur = us (12)

Moreover, the translational displacements at the
interfaces are related to the generalized displace-
ment vector q(t) In view of this, one can combine
Eq. (12) corresponding to all interfaces into a sin-
gle constraint equation as

T q = 0 (13)

in which T is a Nc ×M matrix. Then dividing the
vector q(t) into vector η(t) of independent vari-
ables and a vector p of dependent variables and
partitioning the matrix T as follows:

T = [T1
...T2] (14)

Eq. (13) can be rewritten as

T1η +T2 p = 0 (15)

which yields

p = −T−1
2 T1η (16)

Eq. (16) permits one to write a relation Eq. (11)
between the η(t) of independent generalized co-
ordinates for the full structure and the vector q.

B =

⎡
⎣ I

· · ·
−T−1

2 T1

⎤
⎦ (17)

where I is a unit matrix of order n.

The constraint condition allows one to integrate
the components to assembled structure. Introduc-
ing Eq. (11) into Eq. (10) and premultiplying by
BT , the resulting equation of motion is expressed
as

Mη̈(t)+Kη(t) = 0 (18)

where

M = BT MdB, K = BT KdB (19)

Constraints

Using the component mode synthesis, geometric
compatibility condition or constraint has a domi-
nant role on the method. Geometric compatibility
condition is already shown in Eq. 12, however,
proper modification should be applied to the pro-
tein structure. While the component mode syn-
thesis was applied in engineering parts, there is
a single constraint point between two substruc-
tures and/or components. However, protein struc-
ture is very complex structure based on connec-
tivity between several mass points in boundary.
For the Hemoglobin structure, 36 pairs (72 con-
straint points) of constraint points based on rc = 6
are found. Since the protein structure is compli-
cated there are some mass points in one domain
at boundaries which are connected with two or
more other mass points in other domain. If we
consider all of these constraints, formulation of
boundary constrains should be modified such that
during the process of Eq.19, while assembling the
components, the mass matrix should be identity
matrix. In Fig.1 (c), 23 pairs of constraint points
are described in green circle and squares. Circle
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and squares are the connected constraint pairs, so
total of 46 constraint points are shown in Fig. 1
(c). Four colors of the protein structure, cyan, ma-
genta, yellow, and key is describing the different
domain of Hemoglobin, which are considered as
components.

4 Model Protein

Hemoglobin was chosen as model protein in
present study. Hemoglobin transports oxygen
from the lungs to the rest of the body, such
as to the muscles. Hemoglobin has two stable
states and the closed form of Hemoglobin (pdb
code: 1a3n) was selected as model protein. The
structure has 572 dominant residues, and those
residues were considered mass points for Gaus-
sian network model.

5 Simulation Results

Fig.2 displays the Hemoglobin model. Fig.2 (a)
shows the molecular structure of Hemoglobin,
and Fig. 2 (b) represents the mass-spring model
of dominant atoms in GNM. Hemoglobin con-
sists of 4 domains such as A, B, C and D. Both A
and C domains possess 141 residues, respectively,
while each of B and D domains includes 145
residues. For the present study, the two groups
of simulations are conducted; first considering the
Hemoglobin structure as two components, and
secondly Hemoglobin as four components. For
the one simulation, A and B domain were the first
component, while C and D domain were the sec-
ond component. For the other simulation, A, B,
C and D were taken as individual component. For
the former simulation, 11 mass points (residues)
were used for the constraint condition. And to-
tal of 23 mass points were used for the constraint
condition in the later simulation. Fig. 2 (c) dis-
plays constraint points at boundaries between ad-
jacent components.

The eigenvalue are compared by both origi-
nal GNM and component mode synthesis based
model in Fig. 3. The results compared the original
GNM structure with 2 component based structure
and 4 components based structure using compo-
nent mode synthesis.

(a) Molecular structure 

(b) Mass- spring model 

(c) Constraint points (dotted points) and four 
substructures (different colors)

Figure 2: Hemoglobin model
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Figure 3: Comparison of eigenvalues of original
GNM with ones of component mode synthesis
based model

Figure 4: Comparison of lowest frequency mode
for hemoglobin structure

It is shown that the eigenvalues from three dif-
ferent configurations are showing incredibly sim-
ilar results, especially for the lowest modes,
even some variance in the high frequency modes
though. Since low frequency modes play dom-
inant role on protein dynamics, the component
mode synthesis provides quantitatively compara-
ble results to original GNM.

The primary low-frequency normal mode that is
generally renowned to play a role in protein dy-
namics such as conformation change was consid-
ered to prove the robustness of component mode

Figure 5: Comparison of mean square fluctu-
ation of X-ray crystallography, GNM modeling
and component mode synthesis.

synthesis. In Fig. 4 the primary low-frequency
normal mode obtained by both original GNM and
component mode synthesis. It is shown that the
characteristics of lowest-frequency normal mode
are well preserved in the proposed method. It is
also observed that A domain and C domain has
the opposite motions and same trend for B and D
domain.

The mean-square fluctuations of model proteins
are compared by both GNM and component mode
synthesis in Fig. 5. It is remarkable that com-
ponent mode synthesis provides the mean-square
fluctuation qualitatively comparable to the one
obtained by both GNM and experiment one, even
though component allows one to reduce the com-
putational burden on the mean-square fluctuation.

6 Conclusion

The present paper shows that it is very successful
for predicting thermal fluctuation of protein struc-
ture via component mode synthesis. The com-
ponent mode synthesis may suggest further high
frequency mode reduction which might be appli-
cable to the large protein structures that are hardly
approachable with traditional method such as nor-
mal mode analysis. This method may provide hi-
erarchical substructure model allow to construct
low-frequency based model which is dominant for
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protein fluctuations. For further study, component
mode synthesis may enable to study dynamics of
biological supra large molecular structures. Spe-
cially, the dynamics which are not accessible by
conventional NMA may be possible to approach
with using component mode synthesis.
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