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The Lie-Group Shooting Method for Thermal Stress Evaluation Through an
Internal Temperature Measurement

Chein-Shan Liu1

Abstract: In the present work we study numer-
ical computations of inverse thermal stress prob-
lems. The unknown boundary conditions of an
elastically deformable heat conducting rod are not
given a priori and are not allowed to measure di-
rectly, because the boundary may be not accessi-
ble to measure. However, an internal measure-
ment of temperature is available. We treat this
inverse problem by using a semi-discretization
technique, of which the time domain is divided
into many sub-intervals and the physical quanti-
ties are discretized at these node points of dis-
crete times. Then the resulting ordinary differen-
tial equations in the discretized space are numer-
ically integrated towards the spatial direction by
the Lie-group shooting method to find unknown
boundary conditions. The key point is based on
one-step Lie group elements: G(r) = G(y0,y�).
We are able to search missing boundary condi-
tions through a minimum discrepancy from the
targets in terms of a weighting factor r ∈ (0,1).
Several numerical examples were worked out to
persuade that this novel approach has good effi-
ciency and accuracy. Although the measured tem-
perature is disturbed by large noise, the Lie group
shooting method is stable to recover the boundary
conditions very well.

Keyword: Inverse problem, Inverse thermal
stress problem, Lie-group shooting method,
Group preserving scheme

1 Introduction

Recently, thermally induced stress analyses with
heat transfer for several geometries and boundary
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conditions have been solved numerically by many
researches, for example, Chen and Liu (2001),
Miyazaki, Tamura and Yamamoto (2000), and
Gulluoglu and Tsai (2000). Al-Huniti, Al-Nimr
and Naji (2001) have investigated the dynamic
thermal and elastic behavior of a rod due to a
moving heat source. They used an analytical-
numerical technique based on the Laplace trans-
formation and the Riemann-sum approximation
to calculate the temperature, displacement and
stress distributions in the rod. By using the
Laplace transform method, Grysa, Cialkowsky
and Kaminski (1981) have applied the thermal
stress theory to investigate the inverse problem
of finding temperature and stress fields from the
measurements of temperature, heat flux and dis-
placement at some points inside the solid. In or-
der to obtain a more accurate estimated result, the
measurement location should be located near the
position of unknown boundary condition. In ad-
dition, their estimated results were also sensitive
to the internal measurement errors and the mag-
nitude of time step. Blanc and Raynaud (1996)
have estimated unknown boundary condition of
an inverse problem by using the thermal strain and
temperature measurements instead of the temper-
ature measurements only.

For the inverse heat conduction problem (IHCP)
it is well known that the numerical schemes are
easily sensitive to measurement noises. In or-
der to overcome this drawback, Chen and Chang
(1990) have introduced a hybrid scheme of the
Laplace transform and finite-difference methods
to estimate unknown surface temperature in an
one-dimensional IHCP using the measured tem-
peratures inside the material without measure-
ment errors. Similarly, the measurement location
was better located near the position of unknown
boundary condition in order to obtain a more ac-
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curate estimated result. Recently, a large im-
provement to overcome the above drawback has
been made by Chen, Lin and Fang (2001, 2002),
who applied a similar scheme in conjunction with
a sequential-in-time concept and the least-squares
method to estimate unknown surface condition
from the temperature measurements. Then, Chen,
Wu and Hsiao (2004) have studied by applying
the same technique to predict unknown surface
condition from the theory of dynamic thermal
stress. The results of their study show that a good
estimation can be obtained even for the case with
measurement errors.

Chang, Liu and Chang (2005) have solved the
IHCP of boundary condition identification by us-
ing the group preserving scheme (GPS). A rather
comprehensive review of different techniques to
solve the IHCP has been surveyed in that paper.
We are going to extend it to the inverse thermal
stress problem (ITSP), of which stress is calcu-
lated by the following constitutive equation:

σ(x, t) =
2G

1−2ν

[
(1−ν)

∂u(x, t)
∂x

− (1+ν)αtT (x, t)
]
,

(1)

where t is the time, x is the spatial coordinate, ν is
the Poisson ratio and αt is the coefficient of ther-
mal expansion.

The linear momentum balance equation is written
as

∂σ(x, t)
∂x

= ρ
∂ 2u(x, t)

∂ t2 , (2)

where ρ is the material density. Substituting
Eq. (1) into Eq. (2) we obtain

∂ 2u(x, t)
∂x2 − 1

c2

∂ 2u(x, t)
∂ t2 = k

∂T (x, t)
∂x

,

0 < x < �, 0 < t ≤ t f , (3)

where t f is a final time, � is the length of rod, and
the coefficients are defined as

c =

√
2G(1−ν)
ρ(1−2ν)

, k =
(1+ν)αt

1−ν
. (4)

The one-dimensional heat conduction equation
with constant thermal properties can be expressed
as

∂ 2T (x, t)
∂x2 =

1
α

∂T (x, t)
∂ t

, 0 < x < �, 0 < t ≤ t f ,

(5)

where α is the thermal diffusivity.

The present ITSP is subjected to the following
boundary conditions:

Tx(0, t) = 0, T (�, t) = F�(t), (6)

u(0, t) = 0, σ(�, t) = 0, (7)

and initial conditions:

T (x,0) = f (x), u(x,0) = g(x), ut(x,0) = h(x).
(8)

However, F�(t) is an unknown function. This
point is different from the direct problem, where
F�(t) is given. For the inverse problem, F�(t) can
be estimated, provided that the internal measure-
ment of temperature at an internal point x = xm is
available:

T (xm, t) = Fm(t). (9)

When it is impossible to measure the tempera-
ture on an inaccessible surface directly, such as
in the use of combustion chambers, nuclear reac-
tors, heat exchangers and re-entry vehicles, etc.,
the ITSP is often occurred in engineering appli-
ances, in which one wants to resolve the surface
temperature from measurements inside a heat-
conducting object. The problem setup with its
physical model is shown in Fig. 1. The pur-
pose of the present paper is using the above equa-
tions to recover the thermal stress, displacement
and temperature of an elastically deformable heat
conducting rod. Moreover, in a practical use we
are usually required to mount a thermocouple as
far away from the surface as possible for not de-
stroying the structure of the engineering appliance
too much, which means that xm should be much
smaller than �.

The main difficulties of the ITSP are that for
Eq. (5) there has an unknown boundary condition
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Figure 1: A schematic diagram of the inverse ther-
mal stress problem.

T (�, t) = F�(t) in Eq. (6), and that when T (x, t)
is not available in the whole spacetime domain
we have to solve Eq. (3), of which Tx(x, t) is as
a source term and there is also an unknown Neu-
mann boundary condition for u specified by

ux(�, t) = kT (�, t) = kF�(t). (10)

Due to these difficulties, in the past studies the
measurement point is necessarily located near the
position of unknown boundary condition in order
to obtain a more accurate estimated result. On the
other hand, in the paper by Chen, Wu and Hsiao
(2004) the measurement point xm in Eq. (9) is lo-
cated at the left-boundary. From this condition
together with the condition Tx(0, t) = 0 in Eq. (6),
one really has a direct problem (not an IHCP) to
solve Eq. (5) by integrating it in the x-direction.
Then, it is not difficult to obtain the whole tem-
perature in the rod and moreover the condition
(10) can be available. Hence, we can treat the
wave equation (3) by using a general method for
direct problem to find the displacement and then
the thermal stress in Eq. (1). In this regard the
problem treated by Chen, Wu and Hsiao (2004)
under the condition of xm = 0 is not an inverse
problem, even they claimed that it is an inverse
thermal stress problem.

Here we are attempting to develop a new Lie-
group shooting method (LGSM) for the ITSP. It
is an extension of the works by Liu (2004), Liu,
Chang and Chang (2006a) and Chang, Liu and
Chang (2007a). Recently, Liu (2008a,2008b) has
explored its superiority by using the LGSM to es-
timate parameters in parabolic type PDEs.

The ITSP is one of the inverse problems for the
applications in heat conduction engineering by
considering thermal stress. The inverse prob-
lems are those in which one would determine

the causes for an observed effect. One of the
characterizing properties of many of the inverse
problems is that they are usually ill-posed, in the
sense that a solution that depends continuously
on the data does not exist. For the present ITSP
the observed effect is the temperature measure-
ment T (xm, t) made at an internal point x = xm in
the rod. We are interesting to search the causes
of these two unknown boundary conditions in
Eqs. (6) and (10), which induce the effect we ob-
serve through measurement. For the inverse prob-
lems the measurement error may often lead to a
large discrepancy of the causes.

The LGSM is originally used for the boundary
value problems as designed by Liu (2006a, 2006b,
2006c) for direct problems. However, these meth-
ods are restricted only for the two-dimensional or-
dinary differential equations (ODEs), and here we
will extend them to the multi-dimensional prob-
lems. In a series of papers by the author and
his coworkers, the Lie group shooting method re-
veals its excellent behavior on the numerical so-
lutions of different boundary value problems, for
example, Chang, Chang and Liu (2006, 2008)
and Liu and Chang (2008) to treat the boundary
layer equations in fluid mechanics, Liu, Chang
and Chang (2006b) to treat the Burgers equation,
Chang, Liu and Chang (2007a, 2007b) to treat
the backward heat conduction equation, and Liu
(2008c) to treat an inverse Sturm-Liouville prob-
lem.

It is interesting to note that the new method of
LGSM does not require any a priori regular-
ization when applying it to the ITSP, and also
exhibits several advantages than other methods.
It would be clear that the new method can
greatly reduce the computational time and is very
easy to implement on the calculations of ITSP.
Especially, when the thermocouple is mounted in
a position far away from the surface of unknown
boundary conditions for a safety reason, the
present method of LGSM would provide much
better computational results than others, which
in turns greatly suggest us to use the LGSM in
these calculations of ITSP when xm is limited to
be small for a safety reason.
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2 Numerical solution procedures

We are going to solve the ITSP through three
steps. First, we use the Lie-group shooting
method to solve the heat conduction problem in
a spatial interval of 0 < x < xm by subjecting to
the initial condition, the Neumann boundary con-
dition at the left-side x = 0 and an available mea-
sured data at the right-side x = xm. The numer-
ical procedures and numerical examples will be
exposed in Section 6.

Then the above solution is extended into the
whole domain in the interval of 0 < x < �, which
is substituted into Eq. (3) providing a right-hand
side function. We transform Eq. (3) into the fol-
lowing equations:

∂u(x, t)
∂x

= v(x, t), (11)

∂v(x, t)
∂x

=
1
c2

∂ 2u(x, t)
∂ t2 +k

∂T (x, t)
∂x

. (12)

Then, in the third step, by using a semi-
discretization method to discretize the quantities
of u(x, t) and v(x, t) along the time direction, we
can obtain a system of ODEs for u and v with x
as an independent variable. The Lie group shoot-
ing method as developed by Liu (2006a) is thus
extended and applied to the following discretized
equations:

∂ui(x)
∂x

=vi(x), i = 2, · · · ,n, (13)

∂vi(x)
∂x

=
[

ui+1(x)−2ui(x)+ui−1(x)
c2(Δt)2

]
(14)

+k
∂T (x, ti)

∂x
, i = 2, · · · ,n,

where ui(x) = u(x, iΔt) and vi(x) = v(x, iΔt) and
Δt = t f /n is a uniform discretization time incre-
ment. The two known boundary conditions are
given by

ui(0) = 0, i = 2, · · · ,n, (15)

vi(�) = kT (�, ti), i = 2, · · · ,n, (16)

which are obtained from Eq. (7).

In Eq. (14), the unknown function un+1(x) is set
equal to zero. On the other hand, according to the

finite difference and initial conditions which are
specified for both u0(x) = u(x,0) and ut(x,0) we
can obtain

u1(x) = u0(x)+ut(x,0)Δt, (17)

where the value of u0(x) = u(x,0) is determined
by the initial condition. It means that u1(x) is fully
determined by these two initial conditions g(x)
and h(x) in Eq. (8), and at the same time v1(x)
is determined by v1(x) = ∂u1(x)/∂x. Therefore,
the two variables u1(x) and v1(x) in Eqs. (13) and
(14) should be deemed as known functions. This
is the reason that we let i start from i = 2 in the
above equations.

Obviously, there are two missing boundary con-
ditions ui(�), i = 2, · · · ,n and vi(0), i = 2, · · · ,n
in Eqs. (13) and (14). In Section 4 we will use
the LGSM to calculate these quantities. Upon the
left-boundary condition of vi is obtained, we can
treat Eqs. (13) and (14) as a coupled ODEs system
supplemented with a source term T (x, ti), which is
already calculated in the first step, and we can use
the GPS or other available numerical integrators
to calculate ui and vi. If both u(x, t) and T (x, t)
are available, we can use Eq. (1) to calculate stress
σ(x, t).

3 Mathematical preliminaries

3.1 The GPS

Let us write Eqs. (13) and (14) as in a vector form:

y′ = f(x,y), (18)

where the prime denotes the differential with re-
spect to x, and

y :=
[

y1

y2

]
, f :=

[
y2

h(x,y1)

]
, (19)

in which y1 = (u2, . . . ,un)t and y2 = (v2, . . . ,vn)t .
Each component of h represents the right-hand
side of Eq. (14).

Liu (2001) has embedded Eq. (18) into an aug-
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mented system:

X′ :=
d
dx

[
y

‖y‖
]

=

[
0(2n−2)×(2n−2)

f(x,y)
‖y‖

ft (x,y)
‖y‖ 0

][
y

‖y‖
]

:= AX,

(20)

where ‖y‖ denotes the Euclidean norm of y, and
A is an element of the Lie algebra so(2n− 2,1)
satisfying

Atg+gA = 0 (21)

with

g =
[

I2n−2 0(2n−2)×1

01×(2n−2) −1

]
(22)

a Minkowski metric. Here, I2n−2 is the identity
matrix, and the superscript t stands for the trans-
pose.

The augmented variable X satisfies the cone con-
dition:

XtgX = y ·y−‖y‖2 = 0. (23)

Accordingly, Liu (2001) has developed a group
preserving scheme (GPS) to guarantee that each
Xk locates on the cone:

Xk+1 = G(k)Xk, (24)

where Xk denotes the numerical value of X at the
discretized point xk, and G(k) ∈ SOo(2n− 2,1)
satisfies

GtgG = g, (25)

det G = 1, (26)

G0
0 > 0, (27)

where G0
0 is the 00th component of G.

3.2 One-step Lie-group transformation

Applying scheme (24) to Eq. (20) with a specified
condition X(0) = X0 we can compute the solu-
tion X(x) by the GPS. Assuming that the stepsize
used in the GPS is Δx = �/K, and starting from an

augmented condition X0 = ((y0)t,‖y0‖)t we will
calculate the value X� = ((y�)t,‖y�‖)t at x = �.

By applying Eq. (24) step-by-step we can obtain

X� = GK(Δx) · · ·G1(Δx)X0. (28)

However, let us recall that each Gi, i = 1, . . .,K,
is an element of the Lie group SOo(2n− 2,1),
and by the closure property of Lie groups,
GK(Δx) · · ·G1(Δx) is also a Lie group denoted by
G. Hence, we have

X� = GX0. (29)

This is a one-step transformation from X0 to X�.

It should be stressed that the one-step Lie-group
transformation property is obviously not shared
by other numerical methods, when those methods
do not belong to the Lie-group types. This impor-
tant behavior has first pointed out by Liu (2006d)
and used to solve the backward in time Burgers
equation. After that Liu (2006e) has used this
concept to establish a one-step estimation method
to estimate the temperature-dependent thermal
conductivity, and then extended to estimate ther-
mophysical properties [Liu (2006f); Liu (2007);
Liu, Liu and Hong (2007)].

3.3 Generalized mid-point method

The remaining problem is how to calculate G.
While an exact calculation of G is difficult,
we can calculate G by a generalized mid-point
method, which is obtained from an exponential
mapping of A by taking the values of the argu-
ment variables of A at a generalized mid-point.
The Lie group generated from A ∈ so(2n− 2,1)
by an exponential admits a closed-form represen-
tation given as follows:

G =

⎡
⎢⎣ I2n−2 + (a−1)

‖f̂‖2 f̂f̂t bf̂
‖f̂‖

bf̂t

‖f̂‖ a

⎤
⎥⎦ , (30)
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where

ŷ = ry0 +(1− r)y�, (31)

f̂ = f(x̂, ŷ), (32)

a = cosh

(
�
‖f̂‖
‖ŷ‖

)
, (33)

b = sinh

(
�
‖f̂‖
‖ŷ‖

)
. (34)

Here, we use y0 = (y1(0),y2(0)) and y� =
(y1(�),y2(�)) through a suitable weighting factor
r to calculate G, where r ∈ (0,1) is a parameter
and x̂ = r�. The above method has applied a gen-
eralized mid-point rule on the calculation of G,
and the resultant is a single-parameter Lie group
element denoted by G(r).

Throughout this paper we use the superscripted
symbol y0 to denote the value of y at x = 0, and
y� the value of y at x = �.

3.4 A Lie group mapping between two points
on the cone

Let us define a new vector

F :=
f̂

‖ŷ‖ , (35)

such that Eqs. (30), (33) and (34) can be also ex-
pressed as

G =

⎡
⎣ I2n−2 + a−1

‖F‖2 FFt bF
‖F‖

bFt

‖F‖ a

⎤
⎦ , (36)

a = cosh[�‖F‖], (37)

b = sinh[�‖F‖]. (38)

From Eqs. (29) and (36) it follows that

y� = y0 +ηF, (39)

‖y�‖ = a‖y0‖+b
F ·y0

‖F‖ , (40)

where

η :=
(a−1)F ·y0 +b‖y0‖‖F‖

‖F‖2 . (41)

Substituting F in Eq. (39) written as

F =
1
η

(y�−y0) (42)

into Eq. (40) and dividing both the sides by ‖y0‖,
we obtain

‖y�‖
‖y0‖ = a+b

(y�−y0) ·y0

‖y�−y0‖‖y0‖ , (43)

where, by inserting Eq. (42) for F into Eqs. (37)
and (38), a and b are now written as

a = cosh

(
�‖y�−y0‖

η

)
, (44)

b = sinh

(
�‖y�−y0‖

η

)
. (45)

Let

cosθ :=
[y�−y0] ·y0

‖y�−y0‖‖y0‖ , (46)

�y := �‖y�−y0‖, (47)

where θ is the intersection angle between vectors
y�−y0 and y0, and thus from Eqs. (43)-(45) it fol-
lows that

‖y�‖
‖y0‖ = cosh

(
�y

η

)
+cosθ sinh

(
�y

η

)
. (48)

By defining

Z := exp

(
�y

η

)
, (49)

from Eq. (48) we obtain a quadratic equation for
Z:

(1+cosθ )Z2 − 2‖y�‖
‖y0‖ Z +1−cos θ = 0. (50)

On the other hand, by inserting Eq. (42) for F into
Eq. (41) we obtain

‖y�−y0‖2 =

(a−1)(y�−y0) ·y0 +b‖y0‖‖y�−y0‖. (51)

Dividing both sides by ‖y0‖‖y� − y0‖ and us-
ing Eqs. (44)-(47) and (49) we obtain another
quadratic equation for Z:

(1+cosθ )Z2 −2

(
cosθ +

‖y�−y0‖
‖y0‖

)
Z

+ cosθ −1 = 0. (52)
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From Eqs. (50) and (52), the solution of Z is found
to be

Z =
(cosθ −1)‖y0‖

cosθ‖y0‖+‖y�−y0‖−‖y�‖ , (53)

and then from Eqs. (49) and (47) we obtain

η =
�‖y�−y0‖

lnZ
. (54)

Therefore, we come to an important result that
between any two points (y0,‖y0‖) and (y�,‖y�‖)
on the cone, there exists a Lie group element
G ∈ SOo(2n − 2,1) mapping (y0,‖y0‖) onto
(y�,‖y�‖), which is given by

[
y�

‖y�‖
]

= G
[

y0

‖y0‖
]
, (55)

where G is uniquely determined by y0 and y�

through the following equations:

G(y0,y�) =

⎡
⎣ I2n−2 + a−1

‖F‖2 FFt bF
‖F‖

bFt

‖F‖ a

⎤
⎦ , (56)

a = cosh[�‖F‖], (57)

b = sinh[�‖F‖], (58)

F =
1
η

(y�−y0). (59)

η is still calculated by Eq. (54), which in view of
Eqs. (53) and (46) is fully determined by y0 and
y�. Note that G is independent on �.

It should be stressed that the above G is different
from the one in Eq. (30). In order to feature its
dependence only on y0 and y�, we write it to be
G(y0,y�), which is independent on r. Conversely,
G(r) is also a function of y0 and y�, but its de-
pendence on them is through the vector field f and
the mean value of ŷ. However, that two Lie group
elements G(r) and G(y0,y�) are both indispens-
able in our development of the Lie-group shooting
method for the ITSP.

4 The Lie-group shooting method

From Eqs. (13)-(16) it follows that

y′1 = y2, (60)

y′2 = h(x,y1), (61)

y1(0) = y0
1, y1(�) = y�

1, (62)

y2(0) = y0
2, y2(�) = y�

2, (63)

where y0
1 and y�

2 are known from Eqs. (15) and
(16), but y�

1 and y0
2 are unknown.

By using Eq. (19) for y we have

y0 =
[

y0
1

y0
2

]
, y� =

[
y�

1
y�

2

]
, (64)

and further inserting them into Eq. (42) yields

F :=
[

F1

F2

]
=

1
η

[
y�

1 −y0
1

y�
2 −y0

2

]
. (65)

From Eqs. (54), (53) and (46) by inserting
Eq. (64) for y0 and y� we can obtain cosθ , Z and
η in terms of y0

1, y�
1, y0

2, and y�
2; however, for sav-

ing space we do not write them out.

Comparing Eq. (65) with Eq. (35) and noting that

ŷ :=
[

ŷ1

ŷ2

]
=
[

ry0
1 +(1− r)y�

1
ry0

2 +(1− r)y�
2

]
(66)

by Eqs. (31) and (64), we obtain

y�
1 = y0

1 +
η
‖ŷ‖y�

2 −
rη2

‖ŷ‖2 ĥ, (67)

y0
2 = y�

2 −
η
‖ŷ‖ ĥ, (68)

where

‖ŷ‖ =
√
‖ŷ1‖2 +‖ŷ2‖2

=
√
‖ry0

1 +(1− r)y�
1‖2 +‖ry0

2 +(1− r)y�
2‖2,

(69)

ĥ = h(r�, ŷ1). (70)

The above derivation of the governing equations
(67) and (68) is obtained by letting the two F’s
in Eqs. (35) and (59) be equal, which in terms of
the Lie group elements G(r) and G(y0,y�) is es-
sentially identical to the specification of G(r) =
G(y0,y�).
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For a specified r, Eqs. (67) and (68) can be used to
generate the new (y�

1,y0
2) by repeating the above

process until (y�
1,y0

2) converges according to a
given stopping criterion:√
‖y�

1,i+1 −y�
1,i‖2 +‖y0

2,i+1 −y0
2,i‖2 ≤ ε , (71)

which means that the norm of the difference be-
tween the i+1-th and the i-th iterations of (y�

1,y0
2)

is smaller than a given stopping criterion ε . If y0
2

is available, we can return to Eqs. (13) and (14)
and integrate them to obtain y2(�). The above
process can be done for all r in the interval of
r ∈ (0,1). Among these solutions we can pick up
the best r, which leads to the smallest error of

min
r∈(0,1)

‖y2(�)−y�
2‖, (72)

since y�
2 is our target value at the right-boundary

specified by Eq. (16).

When the best r is chosen, from Eq. (68) we can
simultaneously calculate the left-boundary condi-
tions of vi, i = 2, . . .,n, which together with the
known left-boundary conditions of ui, i = 2, . . . ,n
given in Eq. (15) leading to a complete set of
the left-boundary conditions for Eqs. (13) and
(14). Then, we can apply any available integrating
methods for ODEs, for example, the GPS or the
fourth-order Runge-Kutta method (RK4) to cal-
culate u and v in the x domain, and then supple-
mented with a previously calculated T we can cal-
culate stress by

σ(x, t) =
2G

1−2ν
[(1−ν)v(x, t)− (1+ν)αtT (x, t)]. (73)

5 Numerical examples of ITSP

Now, we are ready to apply the LGSM on the
calculations of ITSP through the tests of numer-
ical examples. When the input measured temper-
ature data T (xm, t) are contaminated by random
noise, we can investigate the stability of LGSM
by adding different levels of random noise on the
measured data:

T̂ (xm, ti) = T (xm, ti)+ sR(i), (74)

where T (xm, ti) is the exact data, and s spec-
ifies the level of noise. We use the function
RANDOM−NUMBER given in Fortran to gener-
ate the R(i), which are random numbers in [−1,1].
Then, the noisy data T̂ (xm, ti) are used as inputs in
the calculations.

5.1 Example 1

Let us first consider a simple ITSP with a closed-
form solution of T (x, t):

T (x, t) = 2αt +x2, (75)

with the boundary conditions

Tx(0, t) = 0, T (1, t) = 1+2αt, (76)

and the initial condition

T (x,0) = x2. (77)

The exact data at xm is given by

T (xm, t) = 2αt +x2
m. (78)

In order to compare our numerical results with ex-
act solutions, we also require to derive an exact
solution of u(x, t), which satisfies

utt(x, t)−c2uxx(x, t) = −2kc2x, (79)

0 < x < 1, 0 < t ≤ t f ,

u(x,0) = b0x3, 0 ≤ x ≤ 1, (80)

ut(x,0) = a0x, 0 ≤ x ≤ 1, (81)

u(0, t) = 0, 0 ≤ t ≤ t f , (82)

ux(1, t) = k(1+2αt), 0 ≤ t ≤ t f , (83)

where

a0 = 2kα , b0 =
k
3
. (84)

The exact solutions of u(x, t) and σ(x, t) are found
to be

u(x, t) =a0xt +b0x3, (85)

σ(x, t) =
2G

1−2ν
[
(1−ν)(a0t +3b0x2)

−αt(1+ν)(2αt +x2)
]

(86)

=0.
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The material parameters used here come from the
work of Grysa, Cialkowsky and Kaminski (1981),
which will be fixed to � = 1 cm, G = 7.9461×
106 N·cm−2, ρ = 7.8 g·cm−3, ν = 0.3, αt = 1.2×
10−7 deg−1 and α = 0.119 cm2·s−1. Then c and k
can be calculated by Eq. (4). In addition these we
can compute the other constants by Eq. (84). The
final time is fixed to be t f = 2 s for this example.

Before employing the numerical method of
LGSM to calculate this example we use it to
demonstrate how to pick up the best r as specified
by Eq. (72). We plot the error of mis-matching the
target with respect to r in Fig. 2. It can be seen that
there is a minimum point. Under this r the left-
boundary condition derived from the LGSM pro-
vides a numerical solution to best match the right-
boundary condition, and then we use the given y0

1
and the estimated y0

2 to calculate the whole dis-
placement and stress in the rod. In the calculation
we were fixed Δt = 0.005 s and the stopping cri-
terion ε = 10−10 was used in Eq. (71).
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Figure 2: For Example 1 we plot the error of mis-
matching the target with respect to r in a finer in-
terval.

In Fig. 3(a) we compare the computed u(x, t0)
with the exact one in Eq. (85) at t0 = 0.5 s, where
we use the fourth-order Runge-Kutta method
(RK4) with a step size Δx = 0.005 to calculate
the numerical solution. It can be seen that these
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Figure 3: For Example 1: (a) comparing the
LGSM and exact solutions of displacement at t =
t0, (b) displaying the numerical errors of displace-
ment, and (c) displaying the numerical errors of
normalized stress.

two curves are almost coincident. Therefore, we
plot the numerical error in Fig. 3(b), which is
smaller than 8×10−8. Similarly, in Fig. 3(c) we
plot the numerical error of the normalized stress
σ/E, where E is the Youngs modulus. The error
is smaller than 10−7. It can be seen that our nu-
merical method of LGSM can be applied to the
ITSP.

In the above computation we do not consider the
noise disturbance on the measured data. When the
measured data T (xm, t) is polluted by noise, the
exact temperature field is naturally contaminated
by that disturbance. Hence, by replacing Eq. (16)
we consider

vi(�) = k[T (�, ti)+ sR(i)], i = 2, · · · ,n. (87)

For the noised case with s = 0.01, we plot the
numerical errors of displacement and normalized
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stress in Figs. 3(b) and 3(c). It can be seen that the
noise makes the numerical errors slightly larger
than these without considering noise. However,
the numerical errors are still small and the numer-
ical solutions are acceptable.

5.2 Example 2

Suppose that f (x) = 0, and then by using the clas-
sical method we may obtain

T (x, t) =
1

x2
m

∞

∑
j=0

exp

(−α(2 j +1)2π2t
4x2

m

)

cos
(2 j +1)πx

2xm
(2 j +1)απ(−1) j

∫ t

0
exp

(
α(2 j +1)2π2τ

4x2
m

)
Fm(τ)dτ .

(88)

Next, the measured temperature history at xm is
assumed to be

T (xm, t) = Fm(t) = A0 sinωt. (89)

Then, substituting it into Eq. (88) we can get

T (x, t) =
1

x2
m

∞

∑
j=0

A0(
α(2 j+1)2π2

4x2
m

)2
+ω2

cos
(2 j +1)πx

2xm
(2 j +1)απ(−1) j

[
ω exp

(−α(2 j +1)2π2t
4x2

m

)

+
α(2 j +1)2π2

4x2
m

sinωt −ω cosωt

]
.

(90)

For this example we use A0 = 2, ω = 1 and the
temperature measurement is made at xm = 0.8 cm.
The final time is fixed to be t f = 1 s. In the cal-
culation Δt = 0.01 s and Δx = 1/150 cm were
used. In Fig. 4(a) we plot the mis-matching
of target with respect to r in a finer interval of
r ∈ (0.5,0.65). For this example we have no
closed-form solution of stress being compared,
and thus we assess the accuracy of our method
by testing its matching with the boundary condi-
tion σ(�, t) = 0 in Eq. (7), which is plotted with
respect to t in Fig. 4(b). The maximum error is

smaller than 9×10−6. In Figs. 4(c) and 4(d) we
display the displacement and stress at t0 = 0.5 s
along the spatial coordinate.
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Figure 4: For Example 2: (a) plotting the error of
mis-matching the target with respect to r in a finer
interval, (b) plotting the error of mis-matching
the stress boundary condition, (c) displaying the
LGSM solution of displacement at t = t0, and (d)
displaying the LGSM solution of stress at t = t0.

6 The LGSM for heat conduction equation

6.1 The LGSM

Under a given left-boundary Neumann condition,
a measured temperature T (xm, t) and an initial
condition, usually we may not have an analytical
solution, or its solution is rather complex as the
case in Eq. (90) for the previous example. The
series form solution may expend much computa-
tional time to calculate it. Therefore, as that done
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by Chang, Liu and Chang (2005) we consider the
following discretizations of Eq. (5):

∂T i(x)
∂x

= Si(x), i = 1, · · · ,n, (91)

∂Si(x)
∂x

=
T i+1(x)−T i−1(x)

2αΔt
, i = 1, · · · ,n−1,

(92)

∂Sn(x)
∂x

=
T n(x)−T n−1(x)

αΔt
, (93)

where T i(x)= T (x, (i−1)Δt) and Si(x)= S(x, (i−
1)Δt). When the central difference is used in
Eq. (92) to increase the accuracy, we should use
the backward difference in Eq. (93) at the last time
point.

While the initial condition is given by Eq. (8) such
that T 0(x) is available, the two boundary condi-
tions in the interval of x ∈ [0,xm] are specified by

Si(0) = 0, i = 1, · · · ,n, (94)

T i(xm) = Fm(ti), i = 1, · · · ,n. (95)

If the left-boundary condition of T i can be ob-
tained, we can treat Eqs. (91)-(93) as a 2n-
dimensional coupled ODEs system, and use the
GPS or other available numerical integrators to
calculate T i and Si. And then inserting them into
Eqs. (13)-(16) we can calculate the ui and vi by the
LGSM as introduced in Section 4. Similarly, in
order to obtain the missing left-boundary condi-
tions of T i, we can apply the LGSM for Eqs. (91)-
(95). We directly write out the required equations:

y0
1 = yxm

1 − η
‖ŷ‖y0

2−
(1− r)η2

‖ŷ‖2 ĥ, (96)

yxm
2 = y0

2 +
η
‖ŷ‖ ĥ, (97)

where

y1 :=

⎡
⎢⎣

T 1

...
T n

⎤
⎥⎦ , y2 :=

⎡
⎢⎣

S1

...
Sn

⎤
⎥⎦ ,

h :=

⎡
⎢⎢⎢⎢⎣

T 2(x)−T0(x)
2αΔt

...
T n(x)−Tn−2(x)

2αΔt
T n(x)−Tn−1(x)

αΔt

⎤
⎥⎥⎥⎥⎦ .

(98)

The two known values are y0
2 = 0 and yxm

1 , the lat-
ter of which is obtained by the measurement at xm

specified by Eq. (95). The η is similar to that de-
fined by Eq. (54) but with � replaced by xm. At the
same time ‖ŷ‖ and ĥ are also defined by Eqs. (69)
and (70) with � replaced by xm and with the above
y1, y2 and h.

For a specified r, Eqs. (96) and (97) can be used
to generate the new (y0

1,yxm
2 ) until they converge

according to a given stopping criterion:√
‖y0

1,i+1 −y0
1,i‖2 +‖yxm

2,i+1 −yxm
2,i‖2 ≤ ε . (99)

If y0
1 is available, we can return to Eqs. (91)-(93)

and integrate them to obtain y1(xm). The above
process can be done for all r in the interval of r ∈
(0,1). Among these solutions we may pick up the
best r, which leads to the smallest error of

min
r∈(0,1)

‖y1(xm)−yxm
1 ‖, (100)

since yxm
1 is our target value at x = xm, wherein

we have made a measurement of the temperature
history.

6.2 Example 3

In order to test the numerical method in Section
6.1 let us consider

T (x, t) =
1√

1+4t
exp

(
− x2

1+4t

)
. (101)

The initial condition is given by f (x) = e−x2
and

the measured temperature history at xm is exactly
given by

T (xm, t) =
1√

1+4t
exp

(
− x2

m

1+4t

)
. (102)

For this example we fix the values of parameters
to be G = 2× 104 N·cm−2, ρ = 2 g·cm−3, ν =
0.3, αt = 10−3 deg−1 and α = 1 cm2·s−1 and � =
0.5 cm. The final time is fixed to be t f = 1 s. In
the calculation Δt = 0.01 s and Δx = 1/100 cm
were used.

We first suppose that the temperature measure-
ment is made at xm = 0.1 cm. In Fig. 5(a) we
plot the mis-matching of target with respect to r
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in a finer interval of r ∈ (0.45,0.55). Then, by
the LGSM we can determine the unknown left-
boundary condition, from which upon comparing
with the exact value obtained from Eq. (101) by
inserting x = 0 we can calculate the mis-matching
error as shown in Fig. 5(b). When both the left-
boundary conditions of T i and Si are known, we
can integrate Eqs. (91)-(93) by using the GPS
with Δx = 1/200 cm towards the right-boundary
at x = �. Both the numerical and exact values
are plotted in Fig. 5(c), of which it can be seen
that these two curves are very close, and thus we
plot the numerical error in Fig. 5(d). By compar-
ing Figs. 5(b) and 5(d) the accuracy of boundary
conditions is lost one order from 10−4 reducing
to 10−3. This is due to the numerical integration
from the left-side to the right-side.

For this example we have no closed-form solution
of stress being compared, and thus we assess the
accuracy of our method by testing its matching
with the boundary condition σ(�, t)= 0 in Eq. (7).
We plot the mis-matching of the target in Eq. (16)
with respect to r in Fig. 6(a) in a finer interval of
r ∈ (0,10−5). We plot the mis-matching of stress
boundary condition with respect to t in Fig. 6(b).
The maximum error is smaller than 5×10−4. In
Figs. 6(c) and 6(d) we display the displacement
and stress at t0 = 0.5 with respect to the spatial
coordinate.

Under the same conditions as that used in the
above we use a much smaller xm = 0.01 in the
calculation, of which the results are shown in
Figs. 5(b) and 5(d) by the dashed lines. Rather
significantly, when xm is smaller the present
method can produce more accurate boundary con-
ditions. This result indicates that we can mea-
sure the temperature far away from the unknown
surface boundary condition. In the past works,
for example, Grysa, Cialkowsky and Kaminski
(1981), in order to obtain a more accurate es-
timated result, the measurement location must
be located near the position of unknown surface
boundary condition.

6.3 Example 4

In order to compare our numerical results with
that obtained by Grysa, Cialkowsky and Kamin-
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Figure 5: For Example 3: (a) plotting the er-
ror of mis-matching the target with respect to
r in a finer interval, (b) plotting the errors of
mis-matching the left-boundary condition of tem-
perature for different measurement locations, (c)
displaying the LGSM and exact right-boundary
temperature, and (d) plotting the errors of mis-
matching the right-boundary condition of temper-
ature for different measurement locations.

ski (1981), and Chen, Wu and Hsiao (2004), let
us consider a known surface temperature given by
F� = 1. Then the corresponding exactly measured
temperature at xm can be obtained by inserting
x = xm into the following equation:

T (x, t) =
∞

∑
j=0

4(−1) j

(2 j +1)π

[
1−exp

(−α(2 j +1)2π2t
4�2

)]

cos
(2 j +1)πx

2�
. (103)

In Table 1 we compare our numerical results at
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Table 1: For Example 4 the comparisons of T (�/2, t) by different methods with the exact ones

t GCK (xm = 0.4�) CWH (xm = 0.0�) Present (xm = 0.1�) Exact
1 0.2663 0.3075 0.3077 0.3075
2 0.4734 0.4980 0.4983 0.4980
3 0.6090 0.6268 0.6271 0.6268
4 0.7068 0.7218 0.7221 0.7218
5 0.7828 0.7926 0.7929 0.7926
10 0.9499 0.9522 0.9525 0.9522
15 0.9885 0.9890 0.9893 0.9890
20 0.9973 0.9975 0.9978 0.9975
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Figure 6: For Example 3: (a) plotting the error of
mis-matching the target with respect to r in a finer
interval, (b) plotting the error of mis-matching
the stress boundary condition, (c) displaying the
LGSM solution of displacement at t = t0, and (d)
displaying the LGSM solution of stress at t = t0.

x = �/2 but with different times to the results
of Grysa, Cialkowsky and Kaminski (1981), and
Chen, Wu and Hsiao (2004).

As pointed out by Chen, Wu and Hsiao (2004),
the difference between the estimate by Grysa,
Cialkowsky and Kaminski (1981) and the exact
solution goes up to 13.3%. The present numeri-
cal method provides a rather accurate numerical
result with the accuracy in the fourth order. In
the estimation by Chen, Wu and Hsiao (2004) the
measurement is carried out at the left-boundary.
If so we can directly apply the RK4 method to in-
tegrate the heat conduction equation towards the
x direction. The accuracy may be increased to
the same level as that obtained by Chen, Wu and
Hsiao (2004).

6.4 Example 5

For this case we consider an unknown surface
temperature given by

T (ξ = 1, t∗) = t∗ + sint∗ +cos t∗, (104)

where ξ = x/� and t∗ = αt/�2 are dimension-
less spatial and temporal coordinates. In terms of
these coordinates, Eq. (5) can be written as

∂ 2T (ξ , t∗)
∂ξ 2 =

∂T (ξ , t∗)
∂ t∗

, 0 < ξ < 1, 0 < t∗ ≤ t∗f .

(105)

Corresponding to the above surface temperature
the exactly measured temperature at ξm can be
obtained by inserting ξ = ξm into the following
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equation:

T (ξ , t∗) =
∞

∑
j=0

(2 j +1)π(−1) j

{
1

a2
j +1

[(1−a j)exp(−a jt∗)

+(1+a j) sint∗− (1−a j)cos t∗]+
t∗

a j
− 1

a2
j

+
1
a j

exp(−a jt
∗)
}

cos
(2 j +1)πξ

2
, (106)

where

a j :=
(2 j +1)2π2

4
. (107)

We calculate this example by the LGSM in Sec-
tion 6.1 with ξm = 0.001 very near the left-
boundary. As shown in Fig. 7(a) the recoverning
curve of the unknown boundary function is coin-
cident with the exact one given in Eq. (104) in the
interval of 0 < t∗ < 13. Therefore, we plot the
numerical error in Fig. 7(b), from which it can be
seen that the error is in the order of 10−3. Even for
the case with a large noise s = 0.02, the numerical
solution is also acceptable as shown in Fig. 7(a)
by the dashed-dotted line.

7 Concluding remarks

The inverse thermal stress problems are formu-
lated with a semi-discretization version from the
use of temporal finite difference. In order to eval-
uate the missing boundary conditions for the un-
known surface boundary values problems of the
ITSP, we have employed the Lie-group shoot-
ing method towards the spatial direction to de-
rive the algebraic equations. Hence, we can solve
them through a minimum discrepancy solution in
a compact space of r ∈ (0,1). Several numeri-
cal examples of the ITSP were examined to ev-
idence that the new algorithm has a fast conver-
gence speed on the solution of r in a pre-selected
finer range than (0,1) by using a minimum norm
to fit the target equations, which usually requires
only a few number of iterations to select the best r.
The new method is robust against the noise distur-
bance. Through this study, it can be seen that the
new Lie-group shooting method is accurate, ef-
fective and stable. Its numerical implementation
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Figure 7: For Example 5: (a) comparing the
LGSM and exact right-boundary condition of
temperature, and (b) plotting the error of mis-
matching the right-boundary condition of temper-
ature.

is very simple and the computational speed is very
fast. The numerical behavior of LGSM is very un-
like that of the conventional numerical methods.
It is found that the numerical errors of LGSM are
greatly reduced when the measurement locations
are more near to the left-boundary. This property
is very important, when in a practical use we are
usually required to mount a thermocouple as far
away from the surface of unknown boundary con-
dition as possible in order to avoid destroying the
engineering structure.
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