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Controllability Conditions of Finite Oscillations of Hyper-Elastic Cylindrical
Tubes Composed of a Class of Ogden Material Models

X.G. Yuan1,2, R.J. Zhang3 and H.W. Zhang1

Abstract: In this paper, the dynamic inflation
problems are examined for infinitely long cylin-
drical tubes composed of a class of transversely
isotropic incompressible Ogden material models.
The inner surface of the tube is subjected to a class
of periodic step radial pressures relating to time.
The influences of various parameters, namely, the
material parameters, the structure parameters and
the applied pressures, on dynamic behaviors of
the tube are discussed in detail. Significantly, for
some given material parameters, it is proved that
the motion of the tube would present a class of
nonlinear periodic oscillations for any given pres-
sures and the amplitude of oscillation is discon-
tinuous for some special values of the given pres-
sures. For other cases of material parameters,
there exists a critical pressure such that the motion
of the tube would also present nonlinear periodic
oscillations if the given pressure does not exceed
the critical value, however, the tube would inflate
infinitely with the increasing time if the pressure
exceeds the critical value. Finally, the case of pe-
riodic step pressures is considered and all control-
lability conditions for the finitely periodic oscil-
lations of the cylindrical tube with time are pre-
sented by using the phase diagrams of the ordi-
nary differential equation that governs the motion
of the inner surface of the tube, especially for the
neo-Hookean material, i.e., a special case of the
incompressible Ogden material models. Mean-
while, some numerical examples are given.
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1 Introduction

There are several material groups such as elas-
tomers, polymers, foams and biological tissues
which can undergo large deformations without
permanent set, and hence exhibit large nonlinear
elastic behavior. Moreover, the mathematical the-
ory of elasticity of materials subjected to large de-
formations is inherently nonlinear.

At present, a number of problems on the static
deformations have been extensively investigated
in the context of nonlinear theory of elasticity
for both incompressible and compressible non-
linearly elastic bodies, which may be found in
the monograph on Nonlinear Elasticity: The-
ory and Applications edited by Fu and Ogden
(2001). In particular, inflation responses of spher-
ical and cylindrical shells, membranes have been
well studied (see the review article by Beatty
(1987)). Non-homogeneous deformations such
as bending, shearing, everting, straightening and
stretching of nonlinearly elastic materials were
examined by Carroll and Horgan (1990), Hill and
Arrigo (1996), Haughton et al (2003), Ogden et
al (2004), and so on. Cavitation in solid spheres
and cylinders was firstly supplied by the theoret-
ical work of Ball (1982). Thereafter, many sig-
nificant works have been carried out. See the re-
view articles, by Horgan and Polignone (1995)
and by Yuan et al. (2005), for comprehensive re-
views for both incompressible and compressible
materials. While the investigations on static de-
formations are well understood, the analogous dy-
namic problems are relatively unexplored. The
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first investigation on the radial oscillations of
some axisymmetric structures was undertaken by
Knowles (1960, 1962). He respectively consid-
ered a cylindrical tube and a spherical shell com-
posed of isotropic incompressible hyper-elastic
materials, and reduced the equations of motion
to second order ordinary differential equations.
The finite oscillation of nonlinear elastic spheri-
cal shells was also examined by Guo and Solecki
(1963), Calderer (1983), and the dynamical mech-
anisms of the motion of the shells were ana-
lyzed. Moreover, dynamic inflation of hyper-
elastic spherical membranes was studied by Ver-
ron et al (1999). Recently, the radial oscillations
of thin cylindrical and spherical shells were inves-
tigated by Roussos and Mason (2005) by using
the Lie point symmetry structures. Other aspects
of nonlinear elastodynamics for hyper-elastic ma-
terials may be found in Chou-Wang and Horgan
(1989), Dai et al (2002, 2006), Yuan et al (2006,
2007), and so on.

In applications, it is known that the loading forms
acting on the structures are always dynamic loads
such as periodic loads or step loads relating to
time. The aim of this paper is to study dynamic
inflation of infinitely long cylindrical tubes com-
posed of a class of transversely isotropic incom-
pressible Ogden material models, where the inner
surface of the tube is subjected to a class of pe-
riodic step radial pressures relating to time. As a
special case of Ogden material, the dynamic be-
haviors of the tube composed of the neo-Hookean
material are also studied. Some interesting con-
clusions are obtained in this work. In Section 2,
the mathematical model of the problem is pro-
posed and a second order nonlinear ordinary dif-
ferential equation that governs the dynamic infla-
tion of the inner surface of the tube with time
is presented. There are three parts in Section
3, in which the influences of various parame-
ters, namely, the material parameters, the struc-
ture parameters and the applied pressures, on dy-
namic behaviors of the tube are discussed in de-
tail. In Subsection 3.1, the dependence of the
number of equilibrium points of the differential
equations on all parameters is studied. In Sub-
section 3.2, the case of constant pressure that is

independent of time is considered, the existence
conditions of the periodic solutions of the differ-
ential equation are proposed. In particular, for
some material parameters, it is proved that the
motion of the tube would present a class of non-
linear periodic oscillations for any given pressures
and the amplitude of oscillation is discontinuous
for some special values of the given pressures.
For other cases of material parameters, there ex-
ists a critical pressure such that the motion of the
tube would present nonlinear periodic oscillations
as the given pressure does not exceed the critical
value, however, the tube would inflate infinitely
with the increasing time if the pressure exceeds
the critical value. In Subsection 3.3, the case of
periodic step pressures relating to time is stud-
ied and all controllability conditions for the non-
linearly periodic oscillations of the tube are pre-
sented by using the phase diagrams of the differ-
ential equation. Meanwhile, some numerical ex-
amples are also carried out.

2 Formulation and solutions

2.1 Mathematical model

Consider a homogeneous incompressible hyper-
elastic material, whose mechanical response in
plane strain is characterized by its strain energy
density W(λ1,λ2), and λ1, λ2 are the principal
stretches of the deformation gradient tensor F.

Here we are concerned with the dynamic inflation
problems of an infinitely long cylindrical tube of
such a material, where the inner surface of the
tube is subjected to a class of periodic step radial
pressures p̂(t) relating to time t, and the form of
p̂(t) is taken as

p̂(t) =

⎧⎪⎨
⎪⎩

p1, t ∈ [2kT,2kT + t0),
p2, t ∈ [2kT + t0,2kT + t0 +2t1),
p1, t ∈ [2kT + t0 +2t1,2(k +1)T ]

(1)

In Eq.(1), p1, p2 > 0. Obviously, p̂(t) is a step
function of period T = 2t0 +2t1, (k = 0,1,2, · · ·).
Under the assumption of radial symmetric defor-
mation, the resulting deformation takes the point
with Cartesian coordinates (RcosΘ,RsinΘ) to
the point (r cosθ , r sinθ ) at time t, moreover, we
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have

r = r(R, t) > 0, R1 < R ≤ R2; θ = Θ (2)

where r(R, t) is the radial deformation function to
be determined, R1 and R2 denote the radii of the
inner and the outer surfaces of the undeformed
tube, respectively. The associated deformation
gradient F is written as

F = diag(λr,λθ ) = diag(∂ r(R, t)/∂ t), r(R,t)/R)
(3)

where

λ1 = λr = ∂ r(R, t)/∂R,

λ2 = λθ = r(R, t)/R
(4)

are the radial and the circumference stretches, re-
spectively.

It is known that the response of an elastic material
can be described completely by its strain energy
function. In the case of plane strain, the form is
given by

W = Ŵ(F) = W (λr,λθ ) (5)

In this work, assume that the cylindrical tube is
composed of a class of transversely isotropic in-
compressible Ogden material models, and that the
corresponding strain energy density function is
given by

W(λr,λθ) =
μ
α

[(λ α
r +λ α

θ −2)+β (λ 2
r −1)2] (6)

where μ , α and β are material constants, in which
μ coincides with the usual infinitesimal shear
modulus, β is a dimensionless material param-
eter measuring the degree of transverse isotropy
of the material about the radial direction. Obvi-
ously, the case β = 0 corresponds to the isotropic
Ogden material model first proposed by Ogden
(1972), while the case α = 2 coincides with
the transversely isotropic neo-Hookean material
model first proposed by Polignone and Horgan
(1993).

For incompressible hyper-elastic materials, the in-
compressibility condition requires that det(F) =
λrλθ = 1, and from Eq.(4) we have

r = r(R, t) = (R2 + r2
1(t)−R2

1)
1/2, t ≥ 0 (7)

where r1(t) is the undetermined radial deforma-
tion function of the inner radius of the tube. It is
easy to know that the motion of the tube can be
completely described by r1(t).

Let R = R2, this leads to

r2 = r(R2, t) = (R2
2 + r2

1(t)−R2
1)

1/2 (8)

In the absence of body force, the differential equa-
tions that govern the radial motion of the cylindri-
cal tube reduce to the single equation

∂τrr(r, t)
∂R

(
∂ r(R, t)

∂R

)−1

+
1

r(R, t)
[τrr(r, t)−τθθ(r, t)]

= ρ0
∂ 2r(R, t)

∂ t2 , t ≥ 0 (9)

where ρ0 is the constant mass density of the ma-
terial and

τrr(r(R, t), t)=

μ [λ α
r +4(β/α)λ 2

r (λ 2
r −1)]− p(r, t), (10a)

τθθ (r(R, t), t)= μλ α
θ − p(r, t) (10b)

are the principal components of the Cauchy stress
tensor associated with the transversely isotropic
Ogden material (6), and p(r, t) is the hydrostatic
pressure to be determined.

Since the inner surface of the cylindrical tube is
subjected to the suddenly applied periodic step
pressures p̂(t) given by Eq.(1) and the outer sur-
face is traction-free, we have the following bound-
ary conditions

τrr (r (R1, t) , t) = −Δp(t), τrr (r (R2, t) , t) = 0,

t ≥ 0 (11)

Assume that the sphere is in an undeformed state
and at rest at time t ≤ 0, so we have the initial
conditions

r (R,0) = R, ṙ (R,0) = 0 (12)

Note. It is supposed that the dots over any letters
denote derivatives with respect to t.



158 Copyright c© 2008 Tech Science Press CMC, vol.7, no.3, pp.155-165, 2008

Thus, under the suddenly applied periodic step
pressures p̂(t) given by Eq.(1), the mathemati-
cal model that governs the dynamic inflation of
the tube is composed of Eqs.(6) ∼(10), the initial-
boundary conditions (11) and (12).

2.2 Solutions

Differentiating with respect to t in Eq.(7), we de-
duce that ∂ 2r/∂ t2 = r−3

(
r2− r2

1

)
ṙ2

1 +r−1r1r̈1 and
so

∂ 2r
∂ t2 =

∂
∂ r

(
(r1 lnr)r̈1 +(lnr +

1
2

r−2r2
1)ṙ2

1

)
(13)

Attentively, the term ∂τrr(r,t)
∂R

(
∂r(R,t)

∂R

)−1
in Eq.(9)

can be written as ∂τrr(r, t)/∂ r.

Substituting Eqs.(10a, b) into (9), then integrating
it with respect to r from r1(t) to r2, and using the
boundary conditions (11), we obtain

1
2

ρ0

{
r1r̈1 ln

r2
2

r2
1

+ ṙ2
1

[
ln

r2
2

r2
1

+ r2
1

(
r−2

2 − r−2
1

)]}

−μ
∫ r2

r1

(
(λ α

r −λ α
θ )+4(β/α)λ 2

r (λ 2
r −1)

)dr
r

−Δp(t) = 0 (14)

where r2 is given by Eq.(8).

Remark. Similarly, p(r, t) can be obtained by the
above solving processes, i.e.,

p(r, t) = μ [aλr −bλ−1
r +2αλr(λr −1)]

+ μ
∫ r

r1

(
(λ α

r −λ α
θ )+4(β/α)λ 2

r (λ 2
r −1)

)dr
r

− 1
2

ρ0

{
r1r̈1 ln

r2

r2
1

+ ṙ2
1

[
ln

r2

r2
1

+ r2
1

(
r−2 − r−2

1

)]}
(15)

From Eqs.(7) and (12), the initial conditions be-
come

r1(0) = R1, ṙ1(0) = 0 (16)

In sum, if there exists a solution r1(t) of Eq.(14)
satisfying the initial conditions (16), then the mo-
tion of the tube can be completely described, that
is to say, Eqs.(7) and (15) are solutions of the dy-
namical inflation problems of an infinitely long

cylindrical tube composed of the transversely
isotropic incompressible Ogden material model
(6).

Next we examine the dynamic properties of
Eq.(14).

3 Nonlinear dynamic analyses of Eq.(14)

First of all, rewrite Eq.(7) as R =
(
r2 − r2

1 +R2
1

)1/2

and introduce the following notation

κ = κ(r, r1) = (1− r2
1 −R2

1

r2 )−1/2 (17)

this leads to λr = κ−1 and λθ = κ .

In what follows, it is convenient to introduce the
dimensionless quantities

x(t) = r1 (t)/R1, δ = R2
2/R2

1 −1 (18)

In this case, we have some useful notations

r2
2

R2
2

=
δ +x2

1+δ
,

r2
2

r2
1

= 1+
δ
x2 ,

dr
r

=
1

1−κ2

dκ
κ

(19)

Consequently, Eq.(14) can be rewritten as

1
2

ρ0R2
1x ln

(
1+

δ
x2

)
ẍ

+
1
2

ρR2
1

[
ln

(
1+

δ
x2

)
− δ

x2 +δ

]
ẋ2

−μ
∫ (

x2+δ
1+δ

)1/2

x

(
κ−α −κα

κ(1−κ2)
+4

β
α

κ−5
)

dκ

−Δp(t) = 0 (20)

and the initial conditions become

x(0) = 1, ẋ(0) = 0 (21)

To better study the qualitative properties of the
solutions of Eq.(20), we firstly consider the case
Δp(t)≡ P in Eq.(1) which is independent of time
t.

Further, let y = ẋ, then Eq.(20) is equivalent to the
first order differential equations(

ẋ
ẏ

)
=

(
y

A(x,y)

)
(22)
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where

A(x,y) =
−C (x,δ )y2 −F (x,δ ,α ,β)+P

B(x,δ )
, (23a)

B(x,δ ) =
1
2

ρR2
1x ln

(
1+

δ
x2

)
, (23b)

C (x,δ ) =
1
2

ρR2
1

[
ln

(
1+

δ
x2

)
− δ

x2 +δ

]
, (23c)

and in (23a), we have

F(x,δ ,α ,β )=

−μ
∫ (

x2+δ
1+δ

)1/2

x

(
κ−α −κα

κ(1−κ2)
+4

β
α

κ−5
)

dκ

(23d)

Obviously, the equilibrium point of Eq.(22) is
(x,y) = (x,0), where x is a positive real solution
of the following equation

P = F(x,δ ,α ,β ) (24)

However, whether x exists or not depends exactly
on the parameters δ ,α ,β and P.

In order to determine the stability of each equi-
librium state, it requires studying the behaviors of
system (22). The Jacobian matrix [J] of system
(22) at the equilibrium point (x,0) is given by

[J]x=x,y=0 =
[

0 1
∂A(x,0)

∂x 0

]
(25)

Moreover, it is easy to obtain the eigenvalues of
the linearization equation of system (22), as fol-
lows,

λ1,2 = ±
[−Fx(x,δ ,α ,β )

B(x,δ )

] 1
2

(26)

3.1 Number of Equilibrium points

In this subsection, we will mainly discuss the
number of equilibrium points of Eq.(22) for dif-
ferent values of δ ,α ,β and P.

(i) Interestingly, the case α = 2 corresponds to
the transversely isotropic neo-Hookean material
model first proposed by Polignone and Horgan
(1993), and some typical phenomena come into

being, as follows:
Firstly, F (x,δ ,2,β) given by Eq.(23d) has the
following explicit expression

F (x,δ ,2,β) =
1
2

μ
[

ln(1+δ )− ln

(
1+

δ
x2

)
+

δ
(
x2 −1

)
x4 (x2 +δ )2

(
x2(x2 +δ )+2β x2 +β δ (x2 +1)

)]

(27)

For any values of δ and β , we have
F (1,δ ,2,β) = 0, lim

x→0+
F(x,δ ,2,β ) = −∞

and lim
x→+∞

F(x,δ ,2,β ) = (1/2)μ ln(1+δ ), in

other words, Eq.(27) has a horizontal asymptote,
written as Pa = (1/2)μ ln(1+δ ).

Secondly, by using the equation Fx (x,δ ,2,β) = 0,
it is not difficult to show that the following con-
clusions are valid for any δ and for any x > 0.

Conclusion 1 (a) If 0 ≤ β ≤ 1/2, we
then have Fx (x,δ ,2,β) > 0, that is to say,
F (x,δ ,2,β) increases monotonically with
x ∈ (0,+∞), F (x,δ ,2,β) < 0 as x ∈ (0,1) and
F (x,δ ,2,β) > 0 as x ∈ (1,+∞), moreover,
Pa = (1/2)μ ln(1+δ ) is the maximum of
Eq.(27).

(b) If β > 1/2, we have Fx (x,δ ,2,β) > 0 as x ∈
(0,1), Fx (1,δ ,2,β) = 2μδ (1+β )/(1 + δ ) > 0
as x = 1 and Fx (x,δ ,2,β) < 0 for sufficient large
values of x, this means that there exists a unique
value xm ∈ (1,+∞) such that Fx (xm,δ ,2,β) =
0, namely, Pm = F (xm,δ ,2,β) is the maximum
of Eq.(27). Moreover, Fx (x,δ ,2,β) > 0 as x ∈
(0,xm) and Fx (x,δ ,2,β) < 0 as x ∈ (xm,+∞).

For other cases α 	= 2, however, the conclusions
are quite different.

(ii) For 0 < α < 2, we have lim
x→0+

F(x,δ ,α ,β ) =

−∞, F (1,δ ,α ,β) = 0 and lim
x→+∞

F(x,δ ,α ,β ) =
0.

Moreover, it can be numerically shown that
Eq.(23d) has a maximum for the given values of
δ , α and β .

(iii) For α > 2, we have lim
x→0+

F(x,δ ,α ,β )= −∞,

F (1,δ ,α ,β) = 0 and lim
x→+∞

F(x,δ ,α ,β ) = +∞.
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Table 1: Maximums of Eq.(23d) for δ = 1 and for
different values of α , β .

α = 1 α = 1.5 α = 2
β = 0 0.1325 0.2138 0.3466

β = 0.5 0.2084 0.2489 0.3466
β = 1.5 0.4026 0.3623 0.3905
β = 2.5 0.6036 0.4910 0.4746

It can be numerically shown that the following
conclusion is valid.

Conclusion 2 For the given values of δ and α ,
there exists a critical value of β , written as βc,
such that P = F(x,δ ,α ,β ) increases monotoni-
cally if β < βc and has a local minimum and a
local maximum if β > βc.

The curves, which also describe the effects of ma-
terial anisotropy on the number of equilibrium
points, P vs x are respectively shown in Fig.1 for
different values of β and for α = 2, δ = 1; in Fig.2
for different values of 0 < α < 2, β and for δ = 1;
in Fig.3 for different values of β and for δ = 1,
α = 2.5.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

=0
=0.25
=0.5

=1.5

P
/

x

=2

(xm,Pm/ )

Pa/

Figure 1: Curves of P/μ vs x for different values
of β and for α = 2, δ = 1.

3.2 Dynamic inflation (	 cñ): Constant pressure
case

In this subsection, we examine the constant pres-
sure case which is independent of time t, i.e.,
p1 = p2 = P.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
-0.2
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0.5

=0

=1.5
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P
/

x

=1

(xm,Pm/ )

Figure 2: Curves of P/μ vs x for different values
of 0 < α < 2, β and for δ = 1.
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=4.5 =3.5

c=2.9841
=1.5P/

x
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=0

Figure 3: Curves of P/μ vs x for different values
of β and for δ = 1, α = 2.5.

Combining the conclusions in Subsection 3.1, it
is not difficult to show that the following conclu-
sions are valid.

(i) α = 2, i.e., the transversely isotropic neo-
Hookean material model.

Conclusion 3 For any x ∈ (1,+∞) and for any
values of δ > 0, we have

(a) If 0 ≤ β ≤ 1/2, there exists a critical pres-
sure Pa = (1/2)μ ln(1+δ ) such that Eq.(22) has
a unique equilibrium point as 0 ≤ P < Pa, written
as (x1,0), moreover, (x1,0) is a center; Eq.(22)
has no equilibrium point as P ≥ Pa.

(b) If β > 1/2, there also exists a critical pres-
sure Pm such that Eq.(22) has a unique equilib-
rium point as P ∈ (0,Pa], written as (x2,0), more-
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over, (x2,0) is a center; Eq.(22) has two equilib-
rium points as P ∈ (Pa,Pm), written as, (x3,0) and
(x4,0), where x3 < x4, moreover, (x3,0) is a center
and (x4,0) is a saddle point; Eq.(22) has no equi-
librium point any more as P > Pm. (cf. Figure
1).

Remark. Conclusions of the case 0 < α < 2 are
similar to those of the case α = 2.

Examples of phase diagrams of Eq.(22) for the
given values of δ , α , β and P are respectively
shown in Figs.4 and 5, in which v = (ρ0R2

1/μ)ẋ2.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

v

x

Center

Saddle point

Figure 4: Phase diagrams of Eq.(22) satisfying
different initial conditions for P/μ = 0.4, δ = 1,
α = 2 and β = 2.5.

It is worth noting that, as shown in Fig.5, there ex-
ists a critical value of P, written as Pcr < Pm, such
that the motion trajectories of the solutions of
Eq.(22) satisfying the initial conditions x(0) = 1,
ẋ(0) = 0 are close, convex and smooth curves if
0 < P ≤ Pcr, in other words, the dynamic inflation
of the inner surface of the tube would present a
class of nonlinearly periodic oscillations. How-
ever, the inflation of the tube will not be periodic
with the increasing time t if P > Pcr. Interestingly,
the inflation of the tube is at the critical state of
periodic oscillation if P = Pcr.

(ii) α > 2, i.e., another case of the transversely
isotropic incompressible Ogden material model.

Conclusion 4 For the given values of δ > 0, α >
2 and for any x ∈ (1,+∞), there exists a critical

1.0 1.5 2.0 2.5 3.0 3.5 4.0

-0.45

-0.30

-0.15

0.00

0.15

0.30

0.45

Pm/ =0.4746

P/ =0.3

P/ =0.2

P/ =0.4

Pcr/ =0.42305

v

x

P/ =0.5

Figure 5: Dynamic inflation of cylindrical tubes
composed of the transversely isotropic neo-
Hookean material models: v vs x for δ = 1, α = 2,
β = 2.5 and for different values of P/μ .

value of β , written as βc such that

(a) If 0 ≤ β ≤ βc, Eq.(22) has a unique equilib-
rium point for any P, written as (x5,0), moreover,
(x5,0) is a center.

(b) If β > βc, Eq.(22) has a local minimum and
a local maximum, respectively written as P′ and
P′′ (P′ < P′′). Further, Eq.(22) has a unique equi-
librium point as P < P′ and P > P′′, written as
(x6,0), moreover, (x6,0) is a center; Eq.(22) has
three equilibrium points as P′ < P < P′′, respec-
tively written as (x7,0), (x8,0) and (x9,0), where
x7 < x8 < x9, moreover, (x7,0) and (x9,0) are cen-
ters, and (x8,0) is a saddle point.

For the given parameters δ , α , β and P, exam-
ples of phase diagrams of Eq.(22) are respectively
shown in Figs.6 and 7, in which v = (ρ0R2

1/μ)ẋ2.

It is also worth noting that, as shown in Fig.7,
the dynamic inflation of the inner surface of the
tube presents a class of nonlinearly periodic os-
cillations, moreover, the amplitude of oscilla-
tion increases gradually as P increases from 0 to
Pb. However, the amplitude is discontinuous as
P passes through Pb. Another interesting phe-
nomenon occurs as P = Pb, namely, the phase di-
agram is a homoclinic orbit.
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Figure 6: Phase diagrams of Eq.(22) satisfying
different initial conditions for P/μ = 0.61, δ = 1,
α = 2.5 and β = 5.
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Figure 7: Dynamic inflation of cylindrical tubes
composed of the transversely isotropic Ogden ma-
terial models: v vs x for δ = 1, α = 2.5, β = 5 and
for different values of P/μ .

3.3 Dynamic inflation (II): Periodic step pres-
sures case

In this subsection, by using the phase diagrams of
Eq.(22) given in Subsection 3.2, we examine the
case of periodic step pressures given by Eq.(1).

In particular, we only study the case α = 2 and the
existence conditions of the periodic solutions of
Eq.(22) satisfying the initial conditions (21). Dis-
cussions of other cases are similar.

(i) 0 < p1, p2 < Pcr.

In this case, let T̂ and T̂1 be the periods of the
solutions of Eq.(22) starting at x(0) = 1, ẋ(0) = 0
for the given values of p1 and p2, respectively. m,
n are positive integers,

(a) If t0 = mT̂ and 2t1 = nT̂1, we can conclude that
Eq.(22) has periodic solutions of period T . This
means that the inner surface of the tube oscillates
periodically m times starting at x(0) = 1, ẋ(0) = 0
and Δp(t) = p1 as t ∈ [0, t0), moreover, x(t0) = 1,
ẋ(t0) = 0. The pressure is p2 as t ∈ [t0, t0 + 2t1)
and the inner surface of the tube oscillates peri-
odically n times, moreover, x(t0 +2t1) = 1, ẋ(t0 +
2t1) = 0. In succession, as t ∈ [t0 + 2t1,T ], the
pressure is p1 again, the inner surface of the tube
also oscillates periodically m times. Further, in
the following period T , the process will be the
same as the previous process, see the close curves
shown in Fig.5. Otherwise, if 2t1 	= nT̂1, Eq.(22)
has no periodic solutions of period T .

(b) If mT̂ < t0 < mT̂ + T̂/2, in other words, the
inner surface motions from x(0) = 1, ẋ(0) = 0 and
reaches to x(t0) = x0, ẋ(t0) = ẋ0 at time t0. The
pressure is p2 as t ∈ [t0, t0 + 2t1), interestingly, if
x(t0 + 2t1) = x0 and ẋ(t0 + 2t1) = −ẋ0, then we
can conclude that Eq.(22) has periodic solutions
of period T . Since the pressure is p1 again as t ∈
[t0 +2t1,T ], the inner surface will reach to x(2t0 +
2t1) = 1, ẋ(2t0 +2t1) = 0. In the following period
T , the process will be the same as the previous
process, as shown in Fig.8. In other cases, the
solutions of Eq.(22) are no longer periodic.

(c) If t0 = mT̂ + T̂/2, i.e., the inner surface mo-
tions from x(0) = 1, ẋ(0) = 0 and reaches to
x(t0) = x̂, ẋ(t0) = 0 at time t0, while if 2t1 = nT̂2,
where T̂2 is the oscillation period of the inner sur-
face starting at x(t0) = x̂, ẋ(t0) = 0 for the given
values of p2, then we can also conclude that
Eq.(22) has periodic solutions of period T , as
shown in Fig.9. Otherwise, the solutions are no
longer periodic.

(d) If t0 > mT̂ + T̂ /2, it is numerical shown that
Eq.(22) has no periodic solutions of period T for
any values of t1.

(ii) For the case of 0 < p1 < Pcr, p2 > Pcr and for
the case of p1, p2 > Pcr, Eq.(22) has only increas-
ing solution with the infinitely increasing timet
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Figure 8: Phase diagrams of Eq.(22) for the cases
of periodic oscillations of the tube as mT̂ < t0 <

mT̂ + T̂ /2, where δ = 1, β = 2.5 and p1 = 0.4.
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Figure 9: Phase diagrams of Eq.(22) for the cases
of periodic oscillations as t0 = mT̂ + T̂/2, where
δ = 1, β = 2.5 and p1 = 0.3.

for any values of t0 and t1.

(iii) p1 > Pcr and 0 ≤ p2 ≤ Pcr.

In this case, an interesting phenomenon may ap-
pear, as shown in Fig.10, although the initial pres-
sure p1 exceeds the critical value Pcr, there exists
another critical pressure, written as Pd, such that
the periodic oscillations of the inner surface of the
tube are also controllable if p2 < Pd , otherwise,
the inner surface will inflate infinitely if p2 > Pd.
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Figure 10: Phase diagrams of Eq.(22) for the
cases of periodic oscillations as t0 = mT̂ + T̂/2,
where δ = 1, β = 2.5 and p1 = 0.48.

4 Conclusions

In this work, the dynamic inflation problems of
infinitely long cylindrical tubes composed of a
class of transversely isotropic incompressible Og-
den material models are investigated by studying
the qualitative properties of the differential equa-
tion that governs the motion of the inner surface
of the tube. The effects of all parameters on the
finitely periodic oscillations of the tube are dis-
cussed in detail and all the controllability condi-
tions for finitely periodic oscillations of the tube
under both constant pressure and periodic step
pressures are presented, particularly for the spe-
cial case α = 2, i.e., the neo-Hookean material.
Some new phenomena are observed, such as:

(i) For the case of 0 < α ≤ 2, it is proved that there
exists a critical pressure such that the dynamic in-
flation of the tube would present a class of non-
linear periodic oscillations as the given pressure
does not exceed the critical value, however, the
tube would inflate infinitely with the increasing
time if the pressure exceeds the critical value. (cf.
Conclusion 3)

(ii) For the case of α > 2, it is proved that the mo-
tion of the tube would present nonlinear periodic
oscillations for any given pressures and the ampli-
tude of oscillation is discontinuous in some cases.
(cf. Conclusion 4)

(iii) Under the periodic step pressures, the finitely
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periodic oscillations of the tube are controllable
if some necessary conditions are imposed, even
though the initial pressure p1 exceeds the critical
value Pcr. (cf. Subsection 3.3)
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