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Effective Elastic Property Estimation for Bi-continuous Heterogeneous
Solids

L.M. Xu1, H. Fan2,3, X M Xie3 and C. Li3

Abstract: In the present study we performed fi-
nite element simulation for bi-continuous hetero-
geneous solids via a random distribution of mate-
rials to predict effective elastic properties. With a
random distributing scheme, a statistical analysis
via finite element becomes feasible for the multi-
phase heterogeneous solids. Using a two-phase
bi-continuous material as example, the numerical
prediction of the effective properties is obtained
in terms of a mean value and standard deviation
with a sample size of 30 for each of given vol-
ume fraction. The finite element simulation re-
sults fall within the analytical bounds proposed by
Hashin and Shtrikman (1963) based on the prin-
ciple of variation. Comparison between the effec-
tive modulus based on the present bio-continuous
morphology with the matrix-fiber configuration
shows big difference.
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1 Introduction

Heterogeneous solids are of great engineering in-
terests. Prediction and estimation of the macro-
scopic effective properties of the heterogeneous
solids has been an active research field for solid
mechanics and materials science researchers. We
may classify the heterogeneous solids in terms of
the micro-morphological feature into two basic
groups. The first group of heterogeneous solids is
the so-called the particulate composite where ma-
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trix and reinforcement particles/fibers are clearly
identified. Modeling this type of composite has
been mainly via analytical approaches (see the re-
view article by Christensen (1990)). There are a
few books by Christensen (1979), Mura (1982),
Taya and Arsenault (1989) covered most develop-
ment and results before 1990s. Some of the re-
cent development, such as, Gao et al (2006) and
Gornet et al (2006), indicate that failure predi-
cation is of great concern. The second group of
the heterogeneous solids is called bi-continuous
solids, in which matrix and particles cannot be
clearly identified. This type of micro-structure
is widely observed in polycrystalline, polymer
blends, porous media and cement-based materials
such as concrete (Haecker et al, 2005), to name
a few. Research on this bi-continuous solid has
been lagged behind its counterpart, the matrix-
particulate composites. It has also been no-
ticed that the analytical models developed for the
matrix-particulate composite (for example, Chris-
tensen and Lo, 1979) are not able to make good
prediction/estimation on the elastic properties of
bi-continuous composite (for example, Roberts
and Garboczi (1999)). Fortunately, people devel-
oped a few bounds (normally in pairs, i.e. up-
per and lower bound under certain conditions)
for gauging the effective elastic properties of the
heterogeneous solids predicated/estimated by the
various approaches. The most well-known and
frequently-used pair of such bounds is by Hashin
and Shtrikman (1963), where the spatial distri-
bution of each component of the composite is
treated equally. Therefore, it can be used for both
matrix-particulate composites and bi-continuous
composites. In the present paper, our interest is
on the bi-continuous composites.

An existing analytical model for the bi-continuous
configuration is the self-consistent scheme (Bu-



120 Copyright c© 2008 Tech Science Press CMC, vol.7, no.3, pp.119-127, 2008

diansky, 1965). However, it is an approxi-
mate model as the interaction among phases was
roughly counted. Studies on bi-continuous com-
posite recently had a new development via fi-
nite element and statistical reconstruction (Gar-
boczi and Day, (1995)). With years of accumu-
lation of the knowledge and finite element pro-
gram, Roberts and Garboczi (1999) made very
accurate estimation on elastic modulus for silver-
tungsten composite by using the statistic recon-
struction technique. Recently, Sundararagha-
van and Zabaras (2005) further developed this
scheme. Their procedure is working on two
“transparencies”. On the first transparency, they
copied the microscopic photo or statistic recon-
structed “photo” of the micro morphology of
the bi-continuous composite. The second trans-
parency copied with very fine meshed elements,
while the elements’ material properties are yet
to be specified. When the second transparency
is put on the top of the first transparency, one
can pick up the material property of a specific
element based on the morphology of the micro-
structure of the composite recorded on the first
transparency. Apparently, the accuracy of this ap-
proach depends on the information of the micro-
morphology of the composite. Hereby, we are
concerned that the situations when we do not have
detailed statistical information about the micro-
structure of the composite. It is particularly true in
the beginning stage of designing new materials, or
when the morphology is difficult to obtain. There-
fore, in the following sections we propose a sim-
ple scheme of assigning properties based on the
finite element mesh for the bi-continuous com-
posite, where no other micro-structure informa-
tion than the volume fraction is needed a prior.

Mechanics issue is the main concern of the
present paper. Therefore, we make the presenta-
tion with non–interrupted stream for the mechan-
ics related topics in Section 2 and 3. The sec-
ondary issues regarding the statistics due to the
random distribution of the materials and numeri-
cal accuracy in refining the domains are discussed
in Section 4 after we have the whole picture of the
mechanics issues.

2 Finite element analysis with randomly dis-
tributed material components

Let us consider a two-dimensional plane strain
configuration. The present scheme shows no dif-
ficulties for the 3-dimensioal configuration, al-
though memory and computational time demands
are larger. The specimen is firstly discretetized
into equal sized domains so that volume fraction
of the materials can be easily calculated. The do-
mains are assigned with different materials prop-
erties randomly for a given volume fractions of
components via a MATLAB program. The de-
tailed procedure is described as follows. Firstly,
we use the commercial ANSYS 8.1 finite element
package to mesh the specimen into multiple do-
mains. Secondly, we copy the element file of AN-
SYS, which contains the material column, into an
Excel spreadsheet. A random selection program
is written in MATLAB for randomly picking up
“1” and “2”. The random selection of "1" and "2",
which represent Material 1 and 2, is then replac-
ing the material column in Excel. Thirdly, this
file is re-input into ANSYS as the element file
where we have defined Material 1 and 2 (Epoxy
and Glass listed in Table 1). In order to minimize
the numerical error due to the sudden change of
material properties from one domain to other do-
main, each domain is further refined into a few
elements. Increasing the number of domains in
the specimen can reduce the statistical variation
of the predicted effective modulus. Physically, the
increasing number of elements inside of each do-
main leads a “relaxation” of the stressed domain
which may be surrounded by domains with differ-
ent material properties It is seen that there is not
difficult to extend this random selection process
to include more than two component materials.

The schematic illustration of the domains and el-
ements are shown in Fig.1. The numerical calcu-
lation is carried out by using the eight-node plane
strain element PLANE82 in ANSYS. The bound-
ary conditions are prescribed as follows:
along x = 0, ux = 0,
along y = 0, uy = 0,
along x = 1. σxx = S, uniform stress.

The above deformation provides us the value
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Table 1: Elastic properties of the material components used in finite element calculation

Material component Elastic modulus Poisson’s ratio
Glass (material 1) 73.1 GPa 0.22
Epoxy (material 2) 3.41 GPa 0.35

4 PLANE 82 elements 
in a domain 

y

x

Domain

0at0 == xU x

0at0 == yU y

1at == xSxxσ

Figure 1: Squared domains and elements in a bi-
continuous material.

of in-plane shear modulus for later comparison
with various analytical results. It is noted that
the aforementioned configuration implies a trans-
versely isotropic material under in-plane (x − y
plane) deformation. Thus, we have,

εx =
σx

E11
− ν12σy

E11
− ν13

E11
σz (1a)

εy = −ν12σx

E11
+

σy

E11
− ν13

E11
σz (1b)

εz = −ν31σx

E33
− ν31σy

E33
+

σz

E33
= 0 (1c)

It is seen that σy = 0 and σz �= 0. From Eq.(1a)
and Eq.(1b), we have

εx −εy =
(1+ν12)σx

E11
(2a)

or

μ12 =
E11

2(1+ν12)
=

S
2[εx −εy]

=
S

2[ux(x = 1)−uy(y = 1)]
(2b)

The finite element numerical result of the nodal
displacement ux(x = 1)− uy(y = 1) is averaged
along the lines for the calculation of effective
modulus of the composite. An alternative loading

configuration is given in Appendix. The in-plane
shear modulus deducted from Eq.(2b) is presented
in Fig.2 as the finite element prediction.
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Figure 2: Effective modulus of the composite
normalized by epoxy modulus vs. the volume
fraction of glass. Christensen and Lo (1979)
model was applied for both hard fiber and soft
fiber, which gave two predictions. The hard fiber
(glass as fiber) model prediction is close the lower
Hashin and Shtrikmen (HS) (1963) bound and
the soft fiber (epoxy as fiber) model prediction is
close to the HS upper bounds. The present finite
element bi-continuous model prediction is located
between them.

The numerical simulation is carried out with sam-
ple size of n = 30. For a given volume fractions
of Material 1 and Material 2, the materials of two
phases are randomly distributed forn = 30 spec-
imens. Each of the specimens provides an ef-
fective modulus. The mean value (μ) and stan-
dard deviation ( s ) of the sample are obtained.
According to Central Limit Theorem in statistics
(e.g. Mendenhall et al (2006)), we have a 95%-
confidence interval for the effective modulus of
the population as

μ ±1.96× s√
n
. (3)
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This interval can be narrowed by increasing the
sample size or reducing the sample standard de-
viation. These statistic matters will be discussed
later in Section 4. The finite element results pre-
sented in Fig. 2 are the mean value of the sam-
ple (n = 30). Detailed data are presented in Table
2. We will elaborate more numerical accuracy in
Section 4, after we clear the physical significance
in the following section.

3 Related analytical solutions and compari-
son

For verification, we recalled the Hashin and
Shtrikmen (1963) bounds which were derived
without specifying the geometric shape or bias
on any materials components in the composite.
For the in-plane shear modulus of a transversely-
isotropic composite, the bounds are given by
(Christensen, 1979)

μlower = μ2+
c1

1/(μ1−μ2)+c2(K2 +2μ2)/[2μ2(K2 + μ2)]
(4)

μupper = μ1+
c2

1/(μ1−μ2)+c1(K1 +2μ1)/[2μ1(K1 + μ1)]
(5)

μlower ≤ μ12 ≤ μupper (6)

where c1 and c2 are the volume fractions of the
Material 1 and 2, respectively. In the equations,
K = k + μ/3 is the plane strain bulk modulus
for an isotropic material, and μ and k are the
shear and bulk modulus of isotropic components.
In applying this bound calculation, one has to
take μ1 > μ2. It is seen when the properties of
two phases are not too dissimilar, the Hashin and
Shtrikman (1963) bounds are very restrictive and
can be used for predictive purpose. Hereby, in
order to demonstrate our model, we adopted the
two material components as glass and epoxy. The
shear modulus difference between these two ma-
terials is as high as 23. The materials properties
are given in Table 1.

For a comparison purpose, we also made calcu-
lation based on the equations provided by Chris-
tensen and Lo (1979) for two configurations,
namely, epoxy matrix with glass fibers, and glass
matrix with epoxy fibers. Their model distin-
guished the fiber and matrix in the geometric lay-
out. That is why sometimes their model is called
“fiber-matrix-composite” model. The name of
model stated exactly the sequence of the layout of
the materials. Their model required that each fiber
is fully enclosed by the matrix in the compos-
ite. The numerical comparison in Fig.2 shows that
the shear modulus of the glass-fiber-epoxy-matrix
composite is closer to the HS lower bound, while
the modulus of the epoxy-fiber-glass-matrix com-
posite is closer to the HS upper bound. Our finite
element prediction is in between the modules of
two composites. We may draw the conclusion that
Christensen and Lo (1979) model does not gives
a good prediction for the bi-continuous composite
in general, which is also noticed by Roberts and
Garboczi (1999).

As the most accurate estimation for the effec-
tive modulus of the composite materials, Roberts
and Garboczi’s (1999) scheme covers both the
bi-continuous and the matrix-inclusion configura-
tions. The present finite element statistical simu-
lation, although were not made based on the exact
micro-morphology, captured the most important
feature of the bi-continuous composite. It should
give a better prediction than the Budiansky (1965)
analytical solution where the interactions among
the different phases of materials were roughly ap-
proximated by Eshelby inclusion solution (1957).
In our finite element statistical simulation, the in-
teraction among different phases is calculated ex-
actly.

4 Statistical matters and element type

For the aforementioned meshing with square do-
main and 8-node square elements, after the ran-
dom program assigned the material properties for
all the domains, the morphology of the micro-
structures of the composite for the various volume
fractions is shown in Fig. 3. Readers can have
visual feeling about the term “bi-continuous”,
where no particulate or matrix can be identified.
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Table 2: Finite element simulation with sample n = 30 are carried out for 40 by 40 squared domains and 3
by 3 PLANE82 elements in each of the domains. The sample (n = 30) mean value of the shear modulus,
standard deviation and relative variance are listed for various volume fraction of glass.

Volume fraction of glass shear modulus (Gpa) (μ ) standard deviation (s) (Gpa) s/μ
0 1.26
10 1.53 0.00386 0.252%
20 1.93 0.0101 0.522%
30 2.51 0.0277 1.11%
40 3.42 0.0590 1.72%
50 4.84 0.0887 1.83%
60 7.16 0.204 2.86%
70 10.60 0.234 2.21%
80 15.62 0.366 2.34%
90 22.16 0.261 1.18%
100 29.96

According to Roberts and Garboczi (1999), infor-
mation on micro-structural morphology is ranked
from low level to high level. The most basic and
lowest level information is the volume fraction,
then, is followed by surface/volume ratio, and di-
rectional information. In our meshing scheme,
we only identified the volume fraction of each
phase material. We are not able to capture the ex-
act surface/volume ratio and micro-morphology
and higher order information. Nevertheless, we
may use different type of element to change sur-
face/volume ratio to see its effect on the macro-
scopic effective properties. Since the present
study is carried out by using commercial soft-
ware ANSYS, we only demonstrate this aspect
by using different element type available in AN-
SYS. In Section 2, the micro-structural morphol-
ogy is formed by using PLAN82 with geometric
aspect ratio 1 to 1. It is straightforward to change
the element aspect ratio to have a micro-structure
which produces anisotropic effective properties in
the macro scale. In the present study, we only
focus on the isotropic composite (or transversely
isotropic composite to be exact). The effect of dif-
ferent element ratio will be studied elsewhere.

As the second type of element, we used 6-
node triangle element to have some insight that
the micro-morphology changes affect and macro-
scale effective modulus. The microscopic mor-
phology and detailed numbers of nodes, element

and domains are given in Fig. 4 and Fig.5. We
will elaborate the statistical procedure and argu-
ment by using the volume fraction of 50% (glass)
-50%(epoxy). The numerical simulations (sample
size of n = 30) carried out for the six-node trian-
gle element are summarized in Table 3, 4 and 5
with different number of domains and refinement
in each of the domains. It is seen that by increas-
ing the number of domains the sample standard
deviation decreases, and by increasing the num-
ber of elements in each of the domain, the mean
value of the effective shear modulus (Eq. (3)) de-
crease. The former is consistent with statistical
expectation; while the latter is in consistent with
mechanics expectation.

Apparently, high accuracy and narrow statistical
interval (Eq. (3)) needs large number of domains
and larger number elements inside of each of the
domains. We will choose an acceptable level of
accuracy based on the consideration of engineer-
ing knowledge and limitation of our computation
power. From an engineering measurement point
of view, 10% scattering in measured data for the
elastic modulus is commonly encountered in the
real world. Based on this fact, we could accept
the standard deviation of 1600-domain configu-
ration, where sample standard deviation (s/μ) is
about 1.85% (for example, row 3, Table 3) As-
suming the sample data for the effective modulus
follow a normal distribution, we have 99% of the
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Volume fraction c=0.2      Volume fraction c=0.4 

Volume fraction c=0.6      Volume fraction c=0.8 
Figure 3: The specimen is divided into 40 by 40 domains. Each domain consists of 3 by 3 PLANE82
elements. Microscopic morphologies for various volume fractions are illustrated for qualitative impression.

Table 3: Effective shear modulus (50% epoxy and 50% glass) obtained for 1600 triangle domains with
different level of refinement in the domains.

Number of elements in Mean value of shear Standard deviation s/μ
a domain modulus (Gpa) (Gpa)
1 (n =30) 5.47 0.14 2.55%
4 (n =30) 4.92 0.098 1.99%
16 (n =30) 4.76 0.088 1.85%
64 (n =30) 4.67 0.086 1.83%

data fall within

μ
(

1±2.58× s
μ

)
= μ(1±4.8%). (7)

Regarding to the refinement within each of the do-

mains, ideally, we would like to have more ele-
ments so that the mean value of the shear modulus
is closer to the real value as the smaller number
of elements tends to keep the effective material
“stiff”. However, this objective is constrained by
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Table 4: Effective shear modulus (50% epoxy and 50% glass) obtained for 3600 triangle domains with
different level of refinement in the domains.

Number of elements in Mean value of shear Standard deviation s/μ
a domain modulus (Gpa) (Gpa)
1 (n =30) 5.51 0.086 1.56%
4 (n =30) 4.96 0.066 1.33%
16 (n =30) 4.79 0.060 1.26%

Table 5: Effective shear modulus (50% epoxy and 50% glass) obtained for 6400 triangle domains with
different level of refinement in the domains.

Number of elements in Mean value of shear Standard deviation s/μ
a domain modulus (Gpa) (Gpa)
1 (n =30) 5.55 0.054 0.96%
4 (n =30) 4.99 0.044 0.88%
16 (n =30) 4.82 0.041 0.86%
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Figure 4: Triangle domain with two phases.

our computation power and cost (time). For our
present computational power (an ordinary per-
sonal computer), we can only have around a dozen
of elements in each of the domains. We carried
out our numerical simulation by using 9 elements
in the squared domain and 16 elements in the tri-
angle domains. The statistical features of these
two configurations are about the same in terms
of mean value and standard deviation, as shown
in Table 2 and Table 3 (the row of 50% volume
fraction). Therefore, we may conclude that the
element type has almost no effect on the predic-

Figure 5: Micro-morphological patter of 1600 tri-
angle domains with 50% of epoxy and 50% of
glass.

tion of the effective modulus for the bi-continuous
solids for our cases. The real mean value (the pop-
ulation mean in the statistical terminology) of the
shear modulus with more elements in the domain
is expected to be a couple of percents lower than
the data presented in Table 2 and Fig. 3. The
trend can be seen in Table 3, where a higher level
refinement was carried out for 64 elements in the
domain.
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5 Concluding Remarks

The statistical finite element simulation with ran-
dom assigning material properties provides a sim-
ple and low cost numerical procedure for pre-
dicting the elastic properties of the bi-continuous
composite. The present numerical procedure in-
cludes ((i) meshing the specimen into domains,
(ii) randomly assigning the materials type to the
domains, (iii) refining the mesh within domains).
They are all done by commercial software (AN-
SYS and MATLAB).

There are two key issues in the above presenta-
tion, namely, the mechanics issues and statisti-
cal numerical matters. We present the mechan-
ical issue first as we would like to clarify that
the bi-continuous solids are different from the
particulate/matrix composites. The bi-continuous
solids deserve our attention (solid mechanics re-
searchers) as it has certain features that particu-
late/matrix composites do not have. For exam-
ple, in the heat conduction and electric conductiv-
ity problems, only the bi-continuous solids show
the percolation phenomenon; while the particu-
late/matrix composites never show the percola-
tion. For the second issue, i.e. the statistical and
numerical matters, due to the constraint of our
computational power and cost, we selected lower
accuracy configuration as discussed in Section 4,
which does not affect our methodology and con-
ceptual presentation.
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Appendix: An alternative of loading configu-
ration

If we prescribe the boundary conditions as fol-
lows,
(1) along x = 0, ux = 0,
(2) along y = 0, uy = 0,
(3) along x = 1. σx = S, uniform tensile stress,
(4) along y = 1,σy = −S, uniform compression
stress,
we have a pure shear deformation inx− y plane.
The normal stress in the z−direction vanishes.
Thus, we have

εx =
σx

E11
− ν12σy

E11
− ν13

E11
σz (A1a)

εy = −ν12σx

E11
+

σy

E11
− ν13

E11
σz (A1b)

εz = −ν31σx

E33
− ν31σy

E33
+

σz

E33
= 0 (A1c)

It is seen from Eq. (A1c) that σz = 0. The strain
energy is given by

U =
1
2
(σxεx +σyεy) =

(1+ν12)S2

E11
(A2a)

By collecting the strain energy of all the elements
from ANSYY, we haveUtotal . The in-plane shear
modulus is calculated as

μ12 =
S2

2Utotal
(A2b)

Alternatively, we can use the displacement data

εx =
(1+ν12)σx

E11
, (A3a)

and

μ12 =
E11

2(1+ν12)
=

S
2ux(x = 1)

. (A3b)

We have tried both schemes and have consistent
number of effective shear modulus.




