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An LGEM to Identify Time-Dependent Heat Conductivity Function by an
Extra Measurement of Temperature Gradient

Chein-Shan Liu1,2

Abstract: We consider an inverse problem for
estimating an unknown heat conductivity param-
eter α(t) in a heat conduction equation Tt(x, t) =
α(t)Txx(x, t) with the aid of an extra measurement
of temperature gradient on boundary. Basing on
an establishment of the one-step Lie-group ele-
ments G(r) and G(�) for the semi-discretization
of heat conduction equation in time domain, we
can derive algebraic equations from G(r) = G(�).
The new method, namely the Lie-group estima-
tion method (LGEM), is examined through nu-
merical examples to convince that it is highly ac-
curate and efficient; the maximum estimation er-
ror is smaller than 10−5 for smooth parameter and
for discontinuous and oscillatory parameter the
accuracy is still in the order of 10−2. Although
the estimation is carried out under a large mea-
surement noise, the LGEM is also stable.

Keyword: Inverse problem, Parameter identi-
fication, Lie-group estimation method, Time-
dependent heat conductivity

1 Introduction

Present study aims to estimate as accurately as
possible the time-varying heat conductivity pa-
rameter by solving an inverse heat conduction
problem under an overspecified boundary data.
The estimation is based on a transient tempera-
ture gradient measurement undertaken by a ther-
mocouple on the boundary of a heat conducting
rod as schematically shown in Fig. 1.

Applications of inverse methods span over many
heat transfer related topics. Sometimes the tem-
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Figure 1: A schematic diagram of the inverse
problem to identify parameter through an internal
measurement of temperature or boundary temper-
ature gradient.

perature and heat flux data on the boundary are
known and one wants to determine the material
properties of the material investigated. Those
problems are often referred to as parameter iden-
tification problems in the literature [Beck and
Arnold (1997); Luce and Perez (1995)]. An
application to the determination of thermal heat
conductivity of thermo plastics under moulding
conditions was studied by Jurkowski, Jarny and
Delaunay (1997), and a parameter identification
problem for the determination of temperature de-
pendent heat capacity under a convection process
was carried out by Zueco, Alhama and González-
Fernández (2003). If temperature and heat flux
data are known then heat transfer coefficients un-
der the specified boundary conditions may be de-
termined. Some applications of these techniques
are given by Kim and Lee (1997) and Su and He-
witt (2004).

Most inverse problems belong to a family of prob-
lems that have inherited the property of being
ill-posed in the sense of Hadamard [Hadamard
(1953); Maz’ya and Shaposhnikova (1998)].
Since the interest in these methods begun with one
of the first published paper by Stolz (1960) in the
60’s, the applications nowadays range over many
scientific fields. Those fields include solid me-
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chanics, fluid dynamics and heat transfer to name
only a few.

The parameter determination in partial differen-
tial equations from overspecified boundary data
plays a crucial role in applied mathematics and
physics. These problems are widely encountered
in the modeling of physical phenomena [Chao,
Chen and Lin (2001); Dehghan (2005); Shamsi
and Dehghan (2007); Dehghan and Tatari (2007);
Huang and Shih (2007); Liu (2008a); Marin,
Power, Bowtell, Sanchez, Becker, Glover and
Jones (2008)]. Therefore, we consider an inverse
problem of finding an unknown parameter α(t)
in a one-dimensional heat conduction equation, of
which one needs to find the temperature distribu-
tion T (x, t) as well as the heat conductivity func-
tion α(t) that simultaneously satisfy

∂ 2T (x, t)
∂x2 =

1
α(t)

∂T (x, t)
∂ t

, 0 < x < �, 0 < t ≤ t f ,

(1)

T (0, t) = F0(t), T (�, t) = F�(t), (2)

T (x,0) = f (x). (3)

Because the above problem has an unknown func-
tion α(t), it cannot be solved directly. This point
is drastically different from the direct problem,
where α(t) is given. Here, � is a length of the
heat conducting rod, and t f is a terminal time.

A new method will be developed to estimate the
unknown heat conductivity α(t) of the above in-
verse problem, which is subjected to the above
boundary conditions and initial condition, as well
as an overspecified temperature gradient bound-
ary condition at x = �:

∂T (�, t)
∂x

= Fm(t). (4)

Sometimes the measurement of temperature gra-
dient may be a difficult task. Then we may replace
it by an internal measurement of temperature at
xm:

T (xm, t) = Tm(t). (5)

When the thermocouple is mounted as close as
possible to the right-boundary as shown in Fig. 1,

we can approximate the quantity in Eq. (4) by

∂T (�, t)
∂x

≈ T (�, t)−T(xm, t)
�−xm

. (6)

For this inverse problem, α(t) can be estimated,
provided that an extra measurement as that given
by Eq. (4) or Eq. (5) is available. For the prob-
lem governed by Eqs. (1)-(3) and (5) there are
many studies as can be seen from the papers by
Dehghan (2005) and Shamsi and Dehghan (2007)
and references therein.

Attempting here is to develop a new Lie-group es-
timation method (LGEM) for the inverse problem
of parameter identification governed by Eqs. (1)-
(4). If we consider the extra condition to be
Eq. (5), the measurement position xm is required
to be near the right-boundary, such that the ap-
proximation in Eq. (6) does not deviate the true
boundary value too much.

The parameter identification of α(t) is one of the
inverse problems for the applications in heat con-
duction engineering by considering thermal ag-
ing of materials. The inverse problems are those
in which one would like to determine the causes
for an observed effect. One of the characteriz-
ing properties of many of the inverse problems is
that they are usually ill-posed, in the sense that
a solution that depends continuously on the data
does not exist. For the present inverse problem of
parameter identification the observed effect is the
temperature gradient measurement ∂T (�, t)/∂x at
the boundary point x = � on the rod. We are in-
teresting to search the cause of the unknown co-
efficient α(t) in Eq. (1), which induces the effect
we observe through measurement. For the inverse
problems the measurement error may often lead
to a large discrepancy of the true cause.

Our approach of the above inverse problem is
based on the numerical method of line, which is a
well-developed numerical method that transforms
the partial differential equations (PDEs) into a
system of ordinary differential equations (ODEs),
together with the group preserving scheme (GPS)
developed previously by Liu (2001) for ODEs.
Recently, Liu (2006a, 2006b, 2006c) has extended
the GPS technique to solve the boundary value
problems (BVPs), and the numerical results re-
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veal that the GPS is a rather promising method
to effectively calculate the two-point BVPs. In
the construction of the Lie group method for the
calculations of BVPs, Liu (2006a) has introduced
the idea of one-step GPS by utilizing the closure
property of Lie group, and hence, the new shoot-
ing method has been named the Lie-group shoot-
ing method (LGSM). The LGSM is also shown
effective on the second order general boundary
value problems [Liu (2006b)], the singularly per-
turbed BVPs [Liu (2006c)], and the backward
heat conduction problems [Chang, Liu and Chang
(2007a, 2007b)]. Recently, Liu (2008a) has em-
ployed the LGSM technique to solve accurately
the inverse heat conduction problems of identify-
ing the nonhomogeneous heat conductivity func-
tions.

On the other hand, in order to effectively solve the
backward in time problems of parabolic PDEs, a
past cone structure and a backward group preserv-
ing scheme have been successfully developed,
such that the new one-step Lie-group numerical
methods have been used to solve the backward in
time Burgers equation by Liu (2006d), and the
backward in time heat conduction equation by
Liu, Chang and Chang (2006a).

Liu (2006e, 2006f, 2007) has used the concept
of one-step GPS to develop the numerical es-
timation method for the unknown temperature-
dependent heat conductivity and heat capacity of
one-dimensional heat conduction equation. Be-
cause the Lie-group method possesses a certain
advantage than other numerical methods due to its
group structure, the Lie-group estimation method
(LGEM) is shown to be a powerful technique to
solve the inverse problems of parameters identi-
fication. However, the methodology of LGEM is
not yet applied to the identification of parabolic
type linear PDEs with time-dependent coefficient
in the open literature. It thus deserves our atten-
tion to develop an effective, accurate and stable
numerical method for this specific inverse prob-
lem and to investige the numerical behavior based
on the Lie-group properties.

The Lie-group method is originally used for the
boundary value problems as designed by Liu
(2006a, 2006b, 2006c) for direct problems. How-

ever, these methods are restricted only for the
two-dimensional ODEs, and here we will extend
them to the multi-dimensional problems. In a
series of papers by the author and his cowork-
ers, the Lie-group method reveals its excellent
behavior on the numerical solutions of different
boundary value problems, for example, Chang,
Chang and Liu (2006) to treat the boundary layer
equation in fluid mechanics, and Liu (2004), Liu,
Chang and Chang (2006a), and Chang, Liu and
Chang (2007a, 2007b) to treat the backward heat
conduction equation, and Liu, Chang and Chang
(2006b) to treat the Burgers equation. Under the
advantage of Lie-group method, Liu (2008b) has
extended it to solve the inverse Sturm-Liouville
problems, and also used the LGEM technique by
Liu (2008c) to solve the inverse vibrational prob-
lems.

It is interesting to note that the new method of
LGEM does not require any a priori regulariza-
tion when applying it to the inverse problem of
parameter identification, and also exhibits several
advantages than other methods. It would be clear
that the new method can greatly reduce the com-
putational time and is very easy to implement on
the calculations of inverse problem of parameter
identification. Especially, the present method of
LGEM would provide much better computational
results than others, which in turns greatly suggest
us to use the LGEM in these calculations of in-
verse problems of parameter identification.

2 The numerical procedures

We are going to solve the present inverse prob-
lem of parameter identification through two steps.
First, we solve the heat conduction problem in the
spatial interval of 0 < x < � by subjecting it to the
initial condition, and the Dirichlet boundary con-
ditions. For this purpose, as that done by Chang,
Liu and Chang (2005), Eq. (1) is transformed into
the following equations:

∂T (x, t)
∂x

= S(x, t), (7)

∂S(x, t)
∂x

=
1

α(t)
∂T (x, t)

∂ t
. (8)
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Then, by using a semi-discretization method to
discretize the quantities of T (x, t) and S(x, t) in the
time domain, we can obtain a system of ODEs for
T and S with x as an independent variable. Sec-
ond, the Lie-group estimation method as first de-
veloped by Liu (2006e) is thus extended and ap-
plied to the following discretized equations:

∂T i(x)
∂x

= Si(x), i = 1, . . .,n, (9)

∂Si(x)
∂x

=
T i+1(x)−T i−1(x)

2αiΔt
, i = 1, . . .,n−1,

(10)

∂Sn(x)
∂x

=
3T n(x)−4T n−1(x)+T n−2(x)

2αnΔt
, (11)

where Δt = t f /n is a uniform time increment, and
ti = iΔt are the discretized times of which the
measurement is sampling by a rate Δt. T i(x) =
T (x, ti), Si(x) = S(x, ti) and αi = α(ti) are the dis-
cretized quantities at the nodal points of time.

When i = 1, the term T 0(x) appeared in Eq. (10)
is determined by the initial condition (3). While
the central difference is used in Eq. (10), we may
use the backward difference in Eq. (11) at the last
time point in order to maintain the same second-
order accuracy.

The two known boundary conditions are given by

T i(0) = F0(ti), i = 1, . . . ,n, (12)

T i(�) = F�(ti), i = 1, . . .,n, (13)

which are obtained from Eq. (2) by discretiza-
tions.

3 Mathematical backgrounds

We will develop a numerical method to estimate
the coefficients αi based on the numerical method
of line, which leads to a set of ODEs as already
shown above. In order to explore our new method
self-content, let us first briefly sketch the group-
preserving scheme (GPS) for ODEs and one-step
GPS in this section. The readers may refer the au-
thor’s papers listed in the References for a detailed
treatment.

3.1 The GPS

Let us write Eqs. (9)-(11) as in a vector form:

y′ = f(x,y), (14)

where the prime denotes the differential with re-
spect to x, and

y :=
[

T
S

]
, f :=

[
S

h(x,T)

]
, (15)

in which T = (T1, . . .,T n)t and S = (S1, . . . ,Sn)t .
The components of h represent the right-hand
sides of Eqs. (10) and (11). The dependence of
h on x is due to the dependence of initial condi-
tion (3) on x.

When both the vector y and its magnitude ‖y‖ :=√
yty =

√
y ·y are combined into a single aug-

mented vector

X =
[

y
‖y‖

]
, (16)

Liu (2001) has transformed Eq. (14) into an aug-
mented system:

X′ = AX :=

[
02n×2n

f(x,y)
‖y‖

ft (x,y)
‖y‖ 0

]
X, (17)

where A is an element of the Lie algebra so(2n,1)
satisfying

Atg+gA = 0, (18)

and

g =
[

I2n 02n×1

01×2n −1

]
(19)

is a Minkowski metric. Here, I2n is the identity
matrix, and the superscript t stands for the trans-
pose.

The augmented variable X can be viewed as a
point in the Minkowski space M

2n+1, satisfying
the cone condition:

XtgX = y ·y−‖y‖2 = 0. (20)

Accordingly, Liu (2001) has developed a group
preserving scheme (GPS) to guarantee that each
Xk locates on the cone:

Xk+1 = G(k)Xk, (21)



An LGEM to Identify Time-Dependent Heat Conductivity Function 85

where Xk denotes the numerical value of X at the
discrete xk, and G(k) ∈ SOo(2n,1) satisfies

GtgG = g, (22)

det G = 1, (23)

G0
0 > 0, (24)

where G0
0 is the 00-th component of G.

3.2 One-step Lie-group transformation

Throughout this paper we use the superscripted
symbols y0 to denote the value of y at x = 0, and
y� the value of y at x = �. Notice that y0 cannot
be a zero vector, i.e., ‖y0‖ > 0; otherwise, from
Eq. (14) it follows that y ≡ 0 for all x ∈ (0, �].
Applying scheme (21) on Eq. (17) with a spec-
ified left-boundary condition X(0) = X0 we can
compute the solution X(x) by the GPS. Assum-
ing that the spatial stepsize used in the GPS is
Δx = �/K, and starting from an augmented left-
boundary condition X0 = ((y0)t,‖y0‖)t 
= 0 we
will calculate the value X� = ((y�)t ,‖y�‖)t at the
right-boundary x = �.

By applying Eq. (21) step-by-step we can obtain

X� = GK(Δx) · · ·G1(Δx)X0. (25)

However, let us recall that each Gi, i = 1, . . .,K,
is an element of the Lie group SOo(2n,1),
and by the closure property of the Lie group,
GK(Δx) · · ·G1(Δx) is also a Lie group denoted by
G. Hence, from Eq. (25) it follows that

X� = GX0. (26)

This is a one-step transformation from X0 to X�.

It should be stressed that the one-step Lie-group
transformation property is usually not shared by
other numerical methods, because those methods
do not belong to the Lie-group schemes. This
important property has first pointed out by Liu
(2006d) and used to solve the backward in time
Burgers equation. After that Liu (2006e) has used
this concept to establish a one-step estimation
method to estimate the temperature-dependent
heat conductivity, and then extended to estimate
thermophysical properties of heat conductivity

and heat capacity [Liu (2006f); Liu (2007); Liu,
Liu and Hong (2007)].

The remaining problem is how to calculate G.
While an exact solution of G is not available, we
can calculate G through a numerical method by
a generalized mid-point rule, which is obtained
from an exponential mapping of A by taking the
values of the argument variables of A at a gener-
alized mid-point. The Lie group generated from
such an A ∈ so(2n,1) by an exponential mapping
is

G =

⎡
⎢⎣ I2n + (a−1)

‖f̂‖2 f̂f̂t bf̂
‖f̂‖

bf̂t

‖f̂‖ a

⎤
⎥⎦ , (27)

where

ŷ = ry0 +(1− r)y�, (28)

f̂ = f(x̂, ŷ), (29)

a = cosh

(
�‖f̂‖
‖ŷ‖

)
, b = sinh

(
�‖f̂‖
‖ŷ‖

)
. (30)

Here, we use the left-side y0 = (T(0),S(0)) and
the right-side y� = (T(�),S(�)) through a suitable
weighting factor r to calculate G, where r ∈ (0,1)
is a parameter to be determined and x̂ = r�. To
stress its dependence on r we denote this G by
G(r).

3.3 A Lie-group mapping between two points
on the cone

Let us define a new vector

F :=
f̂

‖ŷ‖ , (31)

such that Eqs. (27) and (30) can also be expressed
as

G =

⎡
⎣ I2n + a−1

‖F‖2 FFt bF
‖F‖

bFt

‖F‖ a

⎤
⎦ , (32)

a = cosh(�‖F‖), b = sinh(�‖F‖). (33)

From Eqs. (16), (26) and (32) it follows that

y� = y0 +ηF, (34)

‖y�‖ = a‖y0‖+b
F ·y0

‖F‖ , (35)
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where

η :=
(a−1)F ·y0 +b‖y0‖‖F‖

‖F‖2 . (36)

Substituting F in Eq. (34) written as

F =
1
η

(y�−y0) (37)

into Eq. (35) and dividing both the sides by ‖y0‖
by noting ‖y0‖ > 0, we obtain

‖y�‖
‖y0‖ = a+b

(y�−y0) ·y0

‖y�−y0‖‖y0‖ , (38)

where, after inserting Eq. (37) for F into Eq. (33),
a and b are now written as

a = cosh

(
�‖y�−y0‖

η

)
, b = sinh

(
�‖y�−y0‖

η

)
.

(39)

Let

cosθ :=
(y�−y0) ·y0

‖y�−y0‖‖y0‖ , (40)

�y := �‖y�−y0‖, (41)

where 0≤ θ ≤ π is the intersection angle between
vectors y� − y0 and y0, and thus from Eqs. (38)
and (39) it follows that

‖y�‖
‖y0‖ = cosh

(
�y

η

)
+cosθ sinh

(
�y

η

)
. (42)

Upon defining

Z := exp

(
�y

η

)
, (43)

from Eq. (42) we obtain a quadratic equation for
Z:

(1+cosθ )Z2 − 2‖y�‖
‖y0‖ Z +1−cos θ = 0. (44)

Because the following condition is satisfied (see
Appendix A):

(‖y�‖
‖y0‖

)2

−1+cos2 θ ≥ 0, (45)

the solutions of Z are found to be

Z =
(‖y�‖
‖y0‖

)±1

, if cosθ = ±1, (46)

Z =

‖y�‖
‖y0‖ +

√( ‖y�‖
‖y0‖
)2 −1+cos2 θ

1+cosθ
, (47)

if −1 < cosθ < 1.

From Eqs. (43) and (41) it follows that

η =
�‖y�−y0‖

lnZ
. (48)

Therefore, we come to an important result that be-
tween any two points (y0,‖y0‖) and (y�,‖y�‖) on
the cone, there exists a Lie group element G ∈
SOo(2n,1) mapping (y0,‖y0‖) onto (y�,‖y�‖),
which is given by

[
y�

‖y�‖
]

= G
[

y0

‖y0‖
]
, (49)

where G is uniquely determined by y0 and y�

through the following equations:

G(�) =

⎡
⎣ I2n + a−1

‖F‖2 FFt bF
‖F‖

bFt

‖F‖ a

⎤
⎦ , (50)

a = cosh(�‖F‖), b = sinh(�‖F‖), (51)

F =
1
η

(y�−y0) =
lnZ
�

y�−y0

‖y�−y0‖ . (52)

In view of Eqs. (46), (47) and (40), it can be seen
that G is fully determined by y0 and y�.

It should be stressed that the above G is differ-
ent from the one in Eq. (27). In order to feature
its property as a Lie-group mapping between the
quantities spanned a whole length � we write it
to be G(�). Conversely, G(r) is a function of r.
However, these two Lie group elements G(r) and
G(�) are both indispensable in our development
of the Lie-group estimation method in the next
section for the inverse problem of parameter iden-
tification.
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4 The Lie-group estimation method

From Eqs. (9)-(13) it follows that

T′ = S, (53)

S′ = h(x,T), (54)

T(0) = T0, T(�) = T�, (55)

S(0) = S0, S(�) = S�, (56)

where T0 and T� are known from Eqs. (12) and
(13), and S� is obtained from the measurement in
Eq. (4), but S0 is an unknown vector.

By using Eq. (15) for y we have

y0 =
[

T0

S0

]
, y� =

[
T�

S�

]
, (57)

and further inserting them into Eq. (37) yields

F :=
[

F1

F2

]
=

1
η

[
T� −T0

S� −S0

]
. (58)

From Eqs. (40), (46)-(48) by inserting Eq. (57) for
y0 and y� we obtain

cosθ :=

(T�−T0) ·T0 +(S� −S0) ·S0√
‖T� −T0‖2 +‖S� −S0‖2

√‖T0‖2 +‖S0‖2
,

(59)

Z =

(√
‖T�‖2 +‖S�‖2√‖T0‖2 +‖S0‖2

)±1

, if cosθ = ±1,

(60)

Z =

√
‖T�‖2+‖S�‖2√
‖T0‖2+‖S0‖2

+
√

‖T�‖2+‖S�‖2

‖T0‖2+‖S0‖2 −1+cos2 θ

1+cosθ
,

(61)

if −1 < cosθ < 1,

η =
�
√‖T�−T0‖2 +‖S� −S0‖2

lnZ
. (62)

Comparing Eq. (58) with Eq. (31) and by
Eqs. (15) and (57), we can obtain

T� = T0 +
η
‖ŷ‖ Ŝ, (63)

S� = S0 +
η
‖ŷ‖ ĥ, (64)

where

‖ŷ‖ =
√
‖T̂‖2 +‖Ŝ‖2

=
√
‖rT0 +(1− r)T�‖2 +‖rS0 +(1− r)S�‖2,

(65)

ĥ = h(x̂, T̂). (66)

For the later use ĥ is written explicitly as

ĥ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

T̂2−T̂0

2α1Δt

...
T̂ n−T̂ n−2

2αn−1Δt

3T̂ n−4T̂ n−1+T̂ n−2

2αnΔt

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (67)

where T̂ i = rT i(0)+(1−r)T i(�) = rF0(ti)+(1−
r)F�(ti), i = 1, . . .,n, and T̂ 0 = f (x̂). We shoud
stress that ĥ is an unknown vector due to the ap-
pearence of the unknown coefficients αi.

The above governing equations (63) and (64) are
obtained by letting the two F’s in Eqs. (31) and
(52) be equal, which in terms of the Lie group
elements G(r) and G(�) is essentially identical to
the specification of G(r) = G(�). In this sense we
call our method the Lie-group estimation method
(LGEM).

As mentioned in the above S0 and ĥ are two un-
known vectors but the three vectors T0, T�, and S�

are known, given by

T0 =

⎡
⎢⎣

F0(t1)
...

F0(tn)

⎤
⎥⎦ , T� :=

⎡
⎢⎣

F�(t1)
...

F�(tn)

⎤
⎥⎦ ,

S� :=

⎡
⎢⎣

Fm(t1)
...

Fm(tn)

⎤
⎥⎦ .

(68)

Although S0 and ĥ are unknowns we can evaluate
them as follows. By using

Ŝ = rS0 +(1− r)S�, (69)

from Eqs. (63) and (64) we can solve S0 and ĥ as
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follows:

S0 =
‖ŷ‖
η

(T�−T0)− (1− r)η
‖ŷ‖ ĥ, (70)

ĥ =
‖ŷ‖
η

(S�−S0). (71)

Because T0, T� and S� are all available, for a
specified r, we can use Eqs. (70) and (71), start-
ing from an initial guess of (S0, ĥ), for example,
(S0, ĥ) = (0,0), to generate the new (S0, ĥ), until
they converge according to a given stopping crite-
rion:√
‖S0

i+1 −S0
i ‖2 +‖ĥi+1 − ĥi‖2 ≤ ε , (72)

which means that the norm of the difference be-
tween the i+1-th and the i-th iterations of (S0, ĥ)
is smaller than ε .

If the new ĥ is available, then by Eq. (67) we can
calculate αi by

αi =
F̂(ti+1)− F̂(ti−1)

2Δtĥi
, i = 1, . . .,n−1, (73)

αn =
3F̂(tn)−4F̂(tn−1)+ F̂(tn−2)

2Δtĥn
, (74)

where ĥi denotes the i-th component of ĥ and
F̂(ti) = rF0(ti) + (1 − r)F�(ti) is known for the
specified r.

Under the above new left-boundary condition S0

together with the known boundary condition of
T0 and the new coefficients αi, we can return to
Eqs. (9)-(11) and integrate them to obtain T(�)
and S(�). The above process can be done for all
r in the interval of r ∈ (0,1). Among these solu-
tions we can pick up the best r, which leads to the
smallest error of

min
r∈(0,1)

√
‖T(�)−T�‖2, (75)

such that the right-boundary condition specified
by Eq. (2) can be fulfilled as best as possible.

When the process terminates, by inserting the best
r and ĥi into Eqs. (73) and (74) we can estimate
the time-dependent coefficient α(t) at the dis-
cretized time ti. As a byproduct we can also ob-
tain the unknown left-boundary condition of S0,
i.e., the left-boundary value of temperature gradi-
ent ∂T (0, t)/∂x, and the temperature distribution
in the whole rod can be calculated by our method.

5 Numerical examples

Now, we are ready to apply the LGEM on the
estimations of α(t) through the tests of numer-
ical examples. When the input measured tem-
perature gradient data ∂T (�, t)/∂x are contami-
nated by random noise, we are very concerned
with the stability of LGEM, which is investigated
by adding different levels of random noise on the
measured data:

F̂m(ti) = Fm(ti)+ sR(i), (76)

where Fm(ti) is the exact data, and s speci-
fies the level of noise. We use the function
RANDOM−NUMBER given in Fortran to gener-
ate the R(i), which are random numbers in [−1,1].
Then, the noisy data F̂m(ti) is used as input in the
calculations.

5.1 Example 1

Let us first consider a simple inverse problem with
an exact solution of α = 1 + t, where T (x, t) is
given by

T (x, t) = x2 +(1+ t)2, (77)

with boundary conditions

T (0, t) = (1+ t)2, T (�, t) = �2 +(1+ t)2, (78)

and initial condition

T (x,0) = 1+x2. (79)

The data Fm(ti) is supposed to be the exact value
given by Fm(ti) = 2�.

We consider � = 0.1 and t f = 1. The other param-
eters used in this calculation were Δt = 0.02 and
Δx = 0.002.

Before employing the numerical method of
LGEM to calculate this example we use it to
demonstrate how to pick up the best r as spec-
ified by Eq. (75). In the calculation we were
fixed the stopping criterion used in Eq. (72) to be
ε = 10−10. We plot the error of mis-matching the
target with respect to r in Fig. 2(a) in a fine range
of 0.4 < r < 0.6. It can be seen that there is a min-
imum point. Under this r the left-boundary condi-
tion and the calculated αi derived from the LGEM



An LGEM to Identify Time-Dependent Heat Conductivity Function 89

provide the best match to the right-boundary con-
dition. Then we can use the given T0 and the es-
timated S0 to calculate the whole temperature in
the rod. In Fig. 2(b) we compare the exact α with
the numerical one, of which the numerical error
as shown in Fig. 2(c) is very small in the orders
from 10−8 to 10−7. One may appreciate the high
accuracy of the present method of LGEM.

When the length of the rod is increased to � = 1,
the numerical error increases to the order of 10−4

as shown in Fig. 2(c) by the dashed line. The ac-
curacy is limited by (Δt)2 of the same order. In
the case when Fm(ti) is contaminated by a random
noise with level s = 0.005 the numerical result as
shown in Fig. 2(b) by the dashed line fitted with
solid points is slightly deviating from the exact re-
sult.

5.2 Example 2

In order to compare our numerical results with
that calculated by Dehghan (2005), let us consider
the following example with T (x, t) given by

T (x, t) = exp
( x

2

)[1+2t3

1+ t3 + sin
t
2

]
. (80)

Simple calculations give

T (0, t) =
[

1+2t3

1+ t3 + sin
t
2

]
,

T (�, t) = exp

(
�

2

)[
1+2t3

1+ t3 + sin
t
2

]
, (81)

T (x,0) = exp
(x

2

)
, (82)

∂T (�, t)
∂x

=
1
2

exp

(
�

2

)[
1+2t3

1+ t3 + sin
t
2

]
, (83)

α(t) =
2
[
6t2 +(1+ t3)2 cos t

2

]
(1+ t3)

[
1+2t3 +(1+ t3) sin t

2

] . (84)

Dehghan (2005) had made a mistake to write the
term (1 + t3) in the denominator of Eq. (84) as
(1 + t)3. However, this mistake has been later
corrected by Shamsi and Dehghan (2007), but not
mentioned that mistake.

In the calculation of this example the length is
taken to be � = 1 and Δx = 0.02 as that used
by Dehghan (2005); however, the time stepsize
Δt = 0.001 is ten times large than Δt = 0.0001
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Figure 2: For Example 1: (a) plotting the error
of mis-matching the target with respect to r in a
fine interval, (b) comparing the numerical results
under s = 0 and s = 0.005 with exact result, and
(c) displaying the numerical errors for different
lengths.

used by Dehghan (2005). The data Fm(ti) is sup-
posed to be the exact value given by Eq. (83).
Under these parameters values, in Fig. 3(a) we
compare the numerical solution of α with the ex-
act one given by Eq. (84) in the time interval of
t ∈ [0,1]. These two curves are almost coinci-
dent, and the error is plotted in Fig. 3(b), which
is smaller than 4×10−6.

The exact values and the so-called exact values by
Dehghan (2005) are compared in Table 1, from
which it can be seen that the errors due to the
above mentioned mistake are about in the order
of 10−1. Therefore, as compared our numerical
errors with the corrected numerical errors of De-
hghan (2005) for α at different times, we can
say that the present method can produce about
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Table 1: For Example 2 the comparison of present results with the results by Dehghan (2005)

t exact α α [Dehghan (2005)] error of Dehghan (2005) present error
0.1 2.0145622 1.9796344 3.2×10−3 3.6×10−6

0.2 2.2228619 2.0145622 3.3×10−3 3.0×10−6

0.3 2.5528873 2.0982827 3.3×10−3 1.7×10−6

0.4 2.9043892 2.2228619 3.4×10−3 2.3×10−8

0.5 3.1712532 2.3783814 3.5×10−3 1.6×10−6

0.6 3.2802085 2.5528873 3.6×10−3 2.5×10−6

0.7 3.2151758 2.7328931 3.9×10−3 2.6×10−6

0.8 3.0100474 2.9043892 3.8×10−3 2.1×10−6

0.9 2.7212903 3.0541794 3.8×10−3 1.3×10−6

1.0 2.4022955 3.1712532 3.8×10−3 1.3×10−6
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Figure 3: For Example 2: (a) comparing the nu-
merical results using data (83) and (85) with exact
result, and (b) displaying the numerical error.

105 times accuracy than that calculated by De-
hghan (2005). Recently, Shamsi and Dehghan
(2007) have employed the pseudospectral Legen-
dre method to calculate the same example, whose
accuracy is also in the order of 10−6. However,
the LGEM is much easy to implement than the
above method.

In the case of replacing the exact boundary data

(83) by an approximation with

∂T (�, t)
∂x

≈ T (�, t)−T(xm, t)
�−xm

=
exp
(

�
2

)−exp
( xm

2

)
�−xm

[
1+2t3

1+ t3 + sin
t
2

]
, (85)

we have computed the α(t) under the same pa-
rameters values as given in the above, but supple-
mented with an extra measurement of temperature
at a position xm = 0.99. In this case the numerical
result as shown in Fig. 3(a) by the dashed line fit-
ted with solid points is slightly deviating from the
exact result. The numerical result is acceptable.

5.3 Example 3

Let us consider the following example with T (x, t)
given by

T (x, t) = exp(x)
2+3t3

1+ t3 . (86)

Simple calculations give

T (0, t) =
2+3t3

1+ t3 , T (�, t) = exp(�)
2+3t3

1+ t3 , (87)

T (x,0) = 2exp(x), (88)

∂T (�, t)
∂x

= exp(�)
2+3t3

1+ t3 , (89)

α(t) =
3t2

2+5t3 +3t6 . (90)

Again, in order to claim the accuracy of his
numerical method being third-order, Dehghan
(2005) intentionally made a mistake to write an
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Table 2: For Example 3 the comparison of present results with the results by Dehghan (2005)

t exact α α [Dehghan (2005)] error of Dehghan (2005) present error
0.1 0.01496257 0.00374883 4.9×10−3 4.9×10−5

0.2 0.05881799 0.01496257 4.8×10−3 4.2×10−5

0.3 0.12633429 0.03346705 4.8×10−3 2.6×10−5

0.4 0.20580649 0.05881799 4.9×10−3 6.4×10−7

0.5 0.28070175 0.09019378 4.9×10−3 2.5×10−5

0.6 0.33540706 0.12633429 5.1×10−3 4.2×10−5

0.7 0.36136164 0.16554876 5.1×10−3 4.5×10−5

0.8 0.35911801 0.20580649 5.0×10−3 3.7×10−5

0.9 0.33566675 0.24490672 5.0×10−3 2.5×10−5

1.0 0.3 0.28070175 4.9×10−3 2.7×10−5

incorrect exact data as shown in Table 4 therein
and in Table 2 of the present paper. For example
at t = 1 the calculation by Eq. (90) is 0.3 obvi-
ously, but Dehghan (2005) wrote 0.2807017544,
and claimed that the accuracy was 4.9×10−3 as
shown in Table 2. However, the accuracy of the
results by Dehghan (2005) is at most in the order
of 10−1.

In our calculation of this example the length is
taken to be � = 0.1 and use Δx = 0.02 as that
used by Dehghan (2005); however, the time step-
size Δt = 0.01 is one hundred times large than
Δt = 0.0001 used by Dehghan (2005). The data
Fm(ti) is supposed to be the exact value given
by Eq. (89). Under these parameters values, in
Fig. 4(a) we compare the numerical solution of α
with the exact one given by Eq. (90) in the time
interval of t ∈ [0,1]. These two curves are almost
coincident, and the error is plotted in Fig. 4(b),
which is smaller than 5 × 10−5. Therefore, as
compared our numerical errors with the corrected
numerical errors of Dehghan (2005) for α at dif-
ferent times, we can say that the present method
can produce about 104 times accuracy than the
method by Dehghan (2005).

In the case by adding a noise with a level s = 0.01
on the input data, we plotted the numerical result
in Fig. 4(b) by the dashed line fitted with solid
points. It can be seen that the present method is
robust against the noise. Even under a large noise
the accuracy is still better than the order of 10−2.
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Figure 4: For Example 3: (a) comparing the nu-
merical results under s = 0 and s = 0.01 with ex-
act result, and (b) displaying the numerical error.

5.4 Example 4

In order to test the present method on the estima-
tion of discontinuous and oscillatory heat conduc-
tivity, let us consider

α(t) =

⎧⎨
⎩

2 t ∈ [0,0.3],
4 t ∈ (0.3,0.6),
2+ sin(10πt) t ∈ [0.6,2].

(91)

Here we let t f = 2. Subjecting to the boundary
conditions:

T (0, t) = 2t, T (�, t) = 2t +�, (92)
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and the initial condition

T (x,0) = x, (93)

we can apply the LGEM to calculate this example.

The data Fm(ti) is obtained by applying a numer-
ical method, for example the fourth-order Runge-
Kutta method, on the corresponding direct prob-
lem, supposing that α(t) is known from Eq. (91).
In this identification of α(t) we have fixed Δx =
0.01 and Δt = 0.02. In Fig. 5(a) we compare the
numerical solution of α(t) with exact solution.
The errors are rather small in the order of 10−2.
From this example one may appreciate the accu-
racy of the LGEM provided here even for iden-
tifying a highly discontinuous and oscillatory pa-
rameter α(t) in the above. In this case the accu-
racy is not so good as the previous three examples,
whose reason is attributed to that the present func-
tion of α(t) is more difficult to estimate, and the
input data Fm(ti) is not exact.
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Figure 5: For Example 4: (a) comparing the nu-
merical result with exact result, and (b) displaying
the numerical error.

6 Conclusions

In order to estimate the time-dependent heat con-
ductivity under an extra measured temperature

gradient on boundary, we have employed the
LGEM to derive algebraic equations and solved
them by iteration process, where the construc-
tion of one-step Lie-groups G(r) and G(�), and
the full use of the n + 1 equations (34) and (35)
are utmost important, the latter of which are the
Lie-group transformation between left- and right-
boundary temperature and temperature gradient in
the augmented Minkowski space.

Numerical examples were worked out, which
show that our LGEM is applicable even under a
large noise on the measured data. Through this
study, we can conclude that the new estimation
method is accurate, effective and stable. Its nu-
merical implementation is simple and the com-
putational speed is fast. When an internal mea-
surement of temperature is promoted, the LGEM
is also workable by putting the measuring posi-
tion near the boundary. According to these facts,
the present LGEM can be used in practice as an
accurate and effective mathematical tool to esti-
mate the unknown time-dependent heat conduc-
tivity function.

Acknowledgement: Taiwan’s National Science
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Appendix A

In this appendix we prove Eq. (45), which can be
written as(‖y�‖
‖y0‖

)2

− sin2 θ ≥ 0. (A1)

For this purpose we need to verify

‖y�‖ ≥ ‖y0‖sinθ . (A2)

When θ = 0 and θ = π , the above inequality holds
obviously. Then, we consider 0 < θ < π , and di-
vide the discussions into three cases: θ = π/2,
0 < θ < π/2 and π/2 < θ < π as shown in Fig. 6.

(a)

�

�
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y� − y0
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Figure 6: The proof of Eq. (45) by considering
three cases: (a) θ = π/2, (b) 0 < θ < π/2, and
(c) π/2 < θ < π .

Because the length and intersection angle are ge-
ometric invariants independent of coordinates ro-
tation, we can choose some special simple coor-
dinates to simplify our proof.

For the first case the vertical axis is parallel to y0

and we have

‖y�‖2 = ‖y0‖2 +‖y�−y0‖2. (A3)

Because of ‖y�−y0‖2 ≥ 0 and θ = π/2, Eq. (A2)
follows directly.

For the second case as shown in Fig. 6(b), we
choose the horziontal axis parallel to y� − y0.
Then parallel to the sides y0 and y�−y0 we make
a parallelogram oabc. The dashed line ac′ is the
projection of y0 in the vertical direction, such that
the length of ac′ is ‖y0‖sinθ because the angle
of ∠aoc′ is θ . There are three possible cases: the
perpendicular foot c′ is on the left-side of c, c′

and c are coincident, and c′ is on the right-side
of c. We only show the first case in Fig. 6(b).
No matter which case is, it is easy to see that
‖ac′‖ < ‖cb‖ < ‖ob‖. Thus, ‖y0‖sinθ < ‖y�‖
is proved, and Eq. (A2) follows readily.

For the third case as shown in Fig. 6(c), we choose
the vertical axis parallel to y� − y0. Because of
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‖y0‖sin(π −θ ) = ‖y0‖sinθ , it is easy to see that
the projection of y0 on the horziontal axis has a
length ‖y0‖sinθ as marked in the figure. There-
fore, it is easy to see that ‖y0‖sinθ < ‖y�‖, and
Eq. (A2) follows.




