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Cracking and Creep Role in Displacements at Constant Load: Concrete
Solids in Compression

E. Ferretti1 and A. Di Leo1

Abstract: The main assumption on the basis of
the identifying model of the effective law, devel-
oped by the Author, is the impossibility of con-
sidering the specimen as a continuum, when an
identifying procedure from load-displacement to
stress-strain in uniaxial compression is attempted.
Actually, a failure mechanism with propagation
of a macro-crack was found to activate from the
very beginning of the uniaxial compression test
forth. This leads to considering the acquired dis-
placements as composed by two quotes: one con-
stitutive, due to the material strain, and one of
crack opening. Since the ratio between these two
quotes is not constant during the compression test,
the properties of the displacement field (which
attains to structural properties) cannot be trans-
posed to the strain field (which attains to mate-
rial properties) through a mere scale factor. In
this context, also creep takes on a different mean-
ing, in the sense that time-dependence is an ef-
fect observed in the displacement field that does
not necessarily correspond to a property of the
strain field, i.e., the creep. In other words, it
is not possible to exclude a-priori that the time-
dependence of displacements is induced by crack
propagation alone. A time-dependent motion of
crack opening could activate and affect the dis-
placements acquisition. The aim of the present
work is to investigate the role played in displace-
ment time-dependence both by creep and crack
propagation. Results of an experimental program
are presented here, stating the strict relationship
existing between the increasing of displacement
and the propagation of cracks at constant load.
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1 Introduction

The present study is part of a research on the iden-
tification of the constitutive parameters of con-
crete. As it is well known, the stress–strain re-
lationship of concrete in uniaxial compression is
traditionally derived from the experimental load–
displacement relationship, N–u, of concrete spec-
imens in uniaxial compression, where u is the rel-
ative displacement between the platens of the test-
ing machine, through a scale factor (Figure 1).
Actually, it is a common practice to define the
stress and strain at a point as the average stress
σ on the nominal area of the specimen, An, and
the average strain ε on the specimen height, L, re-
spectively:

σ = σ =
N
An

; (1)

ε = ε =
ΔL
L

=
u
L

. (2)

Consequently, the specimen is considered as uni-
formly stressed and strained. Nevertheless, large
reductions of the effective cross-sectional area
occur in a concrete specimen in uniaxial com-
pression, due to the propagation of macro-cracks
through the specimen from the very beginning of
the test [Ferretti (2001; 2004a)]. In cylindrical
specimens, these cracks isolate an inner core of
bi-conic shape (Figure 3).

The outer part of the specimen, the one located
around the inner core, is expelled along the radial
direction (scheme on the middle cross-section in
Figure 2). This results in splitting of the outer part
into several portions, with propagation of sub-
vertical macro-cracks on the external surface of
the specimen (Figure 2).
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Figure 1: Traditional identification of the σ − ε
relationship in uniaxial compression

Figure 2: Concrete specimen at
the end of the test, and splitting-
scheme on the middle cross-
section

Figure 3: Con-
crete specimen
at the end of
the test, after
removal of the
outer part

Due to the cylindrical geometry, each longitudi-
nal section of the specimen shown in Figure 2 is
subjected to plane strain and deforms as a com-
pressed plate. In Nemat-Nasser and Horii (1982),
it was suggested that axial splitting in uniaxially
compressed plates of brittle materials stems from
the formation of tension cracks developed at the

tips of pre-existing cracks, because of the relative
sliding of their faces. We can thus expect that the
bi-conic macro-cracks are tension cracks, which
grow as the compression load increases.
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direction crack orthogonal 
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Figure 4: Example of the validity (R1) and of non-
validity (R2) of the no relative slip assumption

In Ferretti (2003), the propagation of the bi-conic
macro-cracks has been modeled as a Mixed-Mode
crack propagation problem, with Mode I of crack
opening prevailing near the platens of the testing
machine and Mode II of crack sliding prevailing
near the crack tip. A friction model analogous to
that employed in Nemat-Nasser and Horii (1982)
is used to asses the forces acting across the crack
faces in Mode II loading. Relative slip can only
take place if the constraining reaction forces for
nodes in Mode II loading lie on the surface of the
friction cone (Figure 4). As can be seen in Figure
5b, a tensile state of stress originates in front of
the crack tip, supporting the idea that the splitting
process is more likely the product of a tensile than
of a shear process [Hallbauer Wagner and Cook
(1973); Nemat-Nasser and Horii (1982)]. Due to
splitting, the outer part of the specimen looses its
load-carrying capability, while the inner core con-
tinues to carry load as the bi-conic cracks propa-
gate. The final shape of the inner core, resulting
from removal of the non-collaborating material,
is shown in Figure 3. No evident crack propaga-
tion seems to afflict this core. Thus, it represents
the resistant structure at the end of the compres-
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Figure 5: a) Stress field after short cracking; b) Stress axes; c) Loading scheme and modeled domain

sion test. Since the propagation of bi-cone shaped
crack does not characterize the final stage only,
but progresses with load from the very beginning
of the test [Soga Mizutani Spetzler and Martin
(1978)], the resistant structure gradually evolves
from the one coinciding with the specimen and
the one in Figure 3. A qualitative representation
of the resistant structure at an intermediate step of
loading is given by the darker part of the longitu-
dinal section in Figure 5a.

We may assume that, after each crack propaga-
tion, the material properties do not vary, while
the structural response can vary drastically, since
a lower amount of material collaborates to carry
the applied load. Actually, the modification of
resistant structure involves a decrease of the re-
sistant area, Ares, such as happens with steel ten-
sioned until softening [Candra Wright and Al-
brecht (2002)], which largely influences the struc-
tural behavior of the specimen. An identifying
model, and not a scale factor, is thus needed in
order to derive the σ −ε law, which attains to the
material, from the experimental N −u law, which
attains to the structure.

The main consequence of assuming that the σ −ε
and the N −u laws are not related by a scale fac-
tor is that these two curves may not be identical
in shape (Figure 6). In particular, the σ −ε curve
of displacement-controlled compression tests on
standard cylindrical specimens of concrete-like
materials (D = 15 cm; L = 30 cm) may not have

the softening behavior of the experimental N −u
curve, that is, the decline of load at increasing dis-
placement, after the maximum load is reached,
may not involve a decline of stress at increasing
strain. The actual shape of the σ − ε law in uni-
axial compression can only be known if the law
according to which the resistant area decreases is
known.

The need of evaluating a load-carrying reduced
area in concrete-like materials was pointed out
also in Bergan (1983), Hegemier and Read
(1983), Sandler and Wright (1983), Wu and Freud
(1983), Dresher and Vardoulakis (1982), Hudson
Brown and Fairhurst (1971). All these studies
share the common idea of the non constitutive
nature of strain-softening, that is, the decline of
stress at increasing strain. In particular, Hudson
Brown and Fairhurst (1971) explained the soft-
ening N − u (σ − ε) curves, observed for large
L/D ratios, on the basis of the slabbing and shear
failure, leading to large reductions in the effec-
tive cross-sectional area. In their opinion, strain-
softening is an apparent affect, due to scaling
the applied force by the original cross-sectional
(Eq. (1)) rather than the actual cross-sectional area
(Figure 7).

The monotonic non-decreasing behavior of the
N − u (σ − ε) curves of concrete-like solids
with small L/D ratios is in well agreement with
the assumptions of Hudson Brown and Fairhurst
(1971). Actually, for small L/D ratios the re-
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duction in cross-sectional area is very small and
the σ − ε curves are close to the true stress-
strain curves, that is, they are still monotonic
non-decreasing (Figure 7). Nevertheless, none of
the studies of the ‘70s and ‘80s mentioned above
related the problem of the existence of strain-
softening in concrete to experimental procedures.
They treated the problem from physical and math-
ematical points of view only, since it was es-
timated [Hegemier and Read (1983)] to be ex-
tremely difficult, if not impossible, to track the ef-
fective cross-sectional area experimentally at each
stage of the failure process.
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Figure 6: Scheme of the relationship between
load-displacement and stress-strain relationships

The impossibility of achieving a new constitutive
proposal was actually the main reason for which
this field of research rapidly fell out of favor. On
the contrary, in Ferretti (2001), the idea of the non
constitutive nature of strain-softening is supported
by a new identification proposal for constitutive
properties, the identifying model of the effective
law. A discussion on how the existence and math-
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Figure 7: Effect of stress definition on the shape
of the stress-strain curve, with A0 = An and σ0 =
σ [Hudson Brown and Fairhurst (1971)]

ematical well-posedness of strain-softening is still
an open question is provided in Ferretti (2005).

2 The identifying model of the effective law

2.1 Evaluation of effective stress and effective
strain

The aim of the identifying model of the effective
law is the evaluation of the load-carrying reduced
area, Ares, in order to identify the average stress
and strain acting on Ares. In accordance with the
experimental evidence (Section 1, Figure 3), the
model assumes that concrete cylinders in uniaxial
compression fail with propagation of the macro-
crack shown in Figure 8, isolating an inner core
of intact material [Ferretti (2001)].

As previously stated, it is extremely difficult to
track Ares experimentally at each stage of the fail-
ure process. More simple is to estimate the per-
centage decrease of Ares, d:

d =
An−Ares

An
. (3)

In Eq. (3), d is a scalar, continuously varying from
0 (virgin state) to 1 (failure). By means of Eq. (3),
the resistant area can be expressed as follows:

Ares = An (1−d) . (4)
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Figure 8: Failure model in concrete cylindrical
specimens

Eq. (4) is the same as the one proposed in the
scalar formulation of Continuum Mechanics with
damage. Nevertheless, the point of view has
changed. In Continuum Mechanics with scalar
damage, d is a damage and is a material property.
Here, d is a measure of how much crack propa-
gation affects the resistant area and is a structural
property. Moreover, d is not estimated by means
of analytical formulations, but is evaluated on the
basis of two experimental laws. The first law, d1

[Ferretti (2001)], relates d to the dissipated energy
at the current point, Wd, and the total dissipated
energy, Wd,t (Figure 9):

dW

N

u
Figure 9: Evaluation of Wd at the general load-
step

d1 =
Wd

Wd,t
. (5)

where Wd,t is the value of Wd at the final stage.
This quantity is used in Eq. (5) as reference value

Figure 10: Test set-up for the acquisition of d2

for defining d. Thus, Wd,t must be a known
value, while it is difficult to acquire experimen-
tally. Consequently, a second law with a known
reference value is needed. The second law we
used is the microseismic law of Daponte and Oliv-
ito (1989):

d2 = 1− V
V0

, (6)

where V is the compressional wave velocity at the
current point and V0 is the initial velocity of the
compressional waves, in a microseismic analysis
performed during loading. The reference value is
V0, easily acquirable before the compression test
begins. In order to acquire d2 in continuum, two
probes for microseismic analysis have been glued
at the ends of a diameter of the middle cross-
section (Figure 10).

By comparison between the values of Ares eval-
uated by means of the energetic and microseis-
mic laws (Figure 11), it is possible to calibrate
Wd,t . The d1, d2 versus the average strain curves
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Figure 11: Comparison between the energetic (Eq. (5)) and microseismic (Eq. (6)) laws [Ferretti (2004a)]

are plotted in Figure 11. It can be appreciated
how a value of strain exists, beyond which the
noise due to crack propagation disturbs the mi-
croseismic survey so much that the variations of
the microseismic signal cannot be appreciated any
longer (Figure 11). This value of strain has been
termed the acceptability threshold of the added
noise. Due to the existence of an acceptability
threshold, the survey field of d2 is limited. On the
contrary, the survey field of d1 is not affected by
any limitation. Thus, only d1 is useful for iden-
tifying the effective properties, while d2 is used
for calibration. The law of the effective proper-
ties that follows from the calibration is highly re-
producible for each specimen geometry [Ferretti
(2001; 2004a)], with a low data dispersion.

The slope of the curves in Figure 11 gives the
rate of cracking with the average strain. The flex
points in Figure 11 correspond to the peak ax-
ial load [Ferretti (2004a)]. This means that, ac-
cording to the results given by optical microscopy,
acoustic emission, scanning electron microscopy,
and other methods (see Horii and Nemat-Nasser
(1985) for discussions and references), the iden-
tifying model of the effective law shows that, as
the load is increased up to the peak axial load, the
rate of cracking accelerates. The maximum rate
of cracking is reached just at the peak axial load.
The subsequent decreasing of cracking rate is due

to the specimen unloading.

Figure 12: Identification of the effective quanti-
ties starting from the average quantities [Ferretti
(2004a)]

The average stress acting on Ares, the effective
stress σe f f , results from the ratio between the ap-
plied load, N, and Ares (Figure 12):

σe f f =
N

Ares
=

N
An

An

Ares
= σ

An

Ares
. (7)

σe f f represents the actual stress at a point of the
material.

The effective strain at a point of the material, εe f f ,
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is defined as:

εe f f = σe f f /Es, (8)

where Es = Es (ε) = tanαe f f = An/Ares tanα is
the average slope of the unloading-reloading cy-
cle at the current point, in the σe f f − εe f f curve
(Figure 12). Es characterizes the effective in-
stantaneous stiffness of the material, since it can
be experimentally appreciated that no evolution
of the failure pattern occurs during unloading-
reloading [Ferretti (2004a)].

2.2 Main findings

The complete identification procedure for con-
crete and an experimental program on cylindrical
specimens of radius R and diameter D, for a L/D
ratio varying from 1.5 to 4 (Figure 13), have been
described in Ferretti (2001; 2004a). Here, we only
need to recall that:

• Ares starts to decrease as soon as the aver-
age strain becomes different from zero (Fig-
ure 11 and Figure 13). This confirms that
the macro-crack initiates at the very begin-
ning of the test [Soga Mizutani Spetzler and
Martin (1978)].

• d1 is size-effect sensitive since, the highest
is the L/D ratio, the highest is d1 for each
load-step (Figure 13).

• The identified effective law, σe f f − εe f f , is
monotonic non-decreasing (Figure 15), in
spite of the softening behavior of the σ − ε
curves (Figure 14).

• The curves of the effective properties are
size-effect insensitive (Figure 15), while not
the curves of the average properties (Figure
14), as it is well known.

• The ratio −εr/εl , with εr the radial strain
acquired into the inner core by means of
fiber optic sensors (FOSs; Figure 16) and
εl = ΔL/L the longitudinal strain, is con-
stantly close to the static Poisson’s ratio (ν =
−εr/εl; Figure 17). On the contrary, the tra-
ditional procedure for the identification of ν ,

with εr acquired as the average circumfer-
ential strain, εc, on the middle cross-section
(Figure 16),

εr = ΔR/R = 2πΔR/2πR = εc (9)

gives an increasing ν , which comes out of
the validity range (0 < ν < 0.5).

• The volumetric curve N − εϑ with the volu-
metric strain

εϑ = I1ε = ε1 +ε2 +ε3

= εl +εr +εc = εl +2εr (10)

obtained on the basis of the FOS-acquired
radial strain, is in the negative field (Figure
18). On the contrary, if εr is acquired as the
average εc, the curve N − εϑ is, mostly, in
the positive field [Brace Paulding and Scholz
(1966); Di Leo Di Tommaso and Merlari
(1979); Figure 18), involving volume in-
crease (dilatancy).

The size-effect insensitivity of the effective law
gives a strong validation to the identifying model
of the effective law.

As far as the findings on ν and εϑ are concerned,
they can be explained on the basis of the deformed
configuration shown in Figure 16, in the sense that
the term 2πΔR in Eq. (9) is composed by two
quotes: displacements due to the material strain
and rigid displacements due to crack openings.
Thus, the circumferential strain gauge does not
indeed provide a strain acquisition and the first
and third equalities in Eq. (9) are no longer valid
from the moment in which the macro-crack starts
to propagate forth. Since the macro-crack starts
to propagate soon after the test begins, Eq. (9)
ceases to be valid from the very beginning of the
compression test. Therefore, the variation of cir-
cumference length cannot be employed for deriv-
ing the relationship between radial strain and ap-
plied load. On the contrary, the acquisitions into
the inner core are quite representative of εr, since
they are not affected by crack openings. It may
be concluded that the Poisson’s ratio of concrete
does not change during loading.
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Figure 14: Softening behavior and size-effect for the σ −ε diagrams [Ferretti (2004a)]

Since the radial strain derived as the average εc

is affected by crack openings, while not the one
acquired into the inner core, even for the relation-
ship N −εϑ the curve following from FOS acqui-
sitions is more representative of the actual con-
crete behavior than the traditional curve is. In
this case, one can assert that concrete never ex-
hibits dilatancy. In accordance with the findings
of Brace Paulding and Scholz (1966), concrete di-

latancy is only an apparent effect, due to an exper-
imental technique, which inadequately evaluates
the influence on acquired data of a failure mech-
anism with crack openings. That is, concrete di-
latancy is a structural and not material effect. It
appears to be no real increase in the volume of a
concrete solid when the solid is placed under pres-
sure.
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Figure 15: σe f f −εe f f dispersion range for variable L/D ratio and average curve [Ferretti (2004a)]
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Figure 16: Positioning of strain gauge and FOS in
the concrete specimen

It is worth noting that also in Brace Paulding
and Scholz (1966) was assumed that part of the
observed dilatancy, particularly of brittle rocks,
might be due to splitting and open axial cracks,
with cracks forming in the axial direction at a
fraction of the maximum stress, leading to a vol-
ume increasing relative to elastic changes in a
first stage, and, then, to dilatancy. Moreover, in
Nemat-Nasser and Obata (1988), numerical re-
sults are provided, showing that crack growing
leads to substantial dilatancy which quickly off-
sets the elastic volumetric contraction, leading to
overall volumetric expansion as the axial com-
pressive load is increased.

3 Displacements at constant load

As discussed in Section 1, the σ − ε laws are
usually derived from the N − u laws by means
of a scale factor. Thus, the inelastic and time-
dependent behavior of u leads to an inelastic and
time-dependent behavior of ε . In particular, the
strain time-dependence at constant load, called
the creep, is explained on the basis of the slips
due to bond ruptures, with restorations at adja-
cent sites, in the hardened Portland cement paste
[Bažant (2001)]. With these assumptions, the dis-
placement time-dependence at constant load turns
out to be caused by a constitutive property of con-
crete alone, the creep. On the other hand, since
displacements consist in two quotes, one consti-
tutive, and one related to crack openings, even at
low stress levels (Section 2.2), the time-dependent
behavior of u cannot be related solely to the creep.
Crack openings surely play some role in the time-
dependence of u.

Several models which combine the effects of non-
linear viscous strain evolution and crack nucle-
ation and propagation have been developed in past
years [Xiexing and Zhida (1994); Zhaoxia (1994);
Zhou (1994); Bažant and Li (1997a; 1997b);
Ozbolt and Reinhardt (2001); van Zijl Borst and
Rots (2001); Barpi and Valente (2002); Maz-
zotti and Savoia (2003); Challamel Lanos and
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Casandjian (2004); Ruiz Muttoni and Gambarova
(2007)]. In the following Sections, results of an
experimental program for defining the role played
by cracking in the time-dependence of u are pre-
sented. The idea underlying the experimental pro-
gram is that creep too may, partly, be a structural
(and not the material) effect. That is, the time-
dependence of u could be caused, mostly, not by
material creep, but by crack propagation.

As it is well known, when the uniaxial compres-

sion test is interrupted, keeping the load con-
stant under a certain value Ns (modality in load-
control), the displacements do not cease to in-
crease: a time-dependent behavior is observed,
with the representative point P on the load-
displacement diagram moving parallel to the dis-
placement axis (Figure 19).

Two limit curves can be identified on the N − u
plane (Figure 20), the upper and the lower limit
curves. These curves differ from each other for
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Figure 19: Time-dependent displacement devel-
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the rate of displacement increasing during load-
ing: the lower limit curve is the locus of equi-
librium points for infinitely slow loading, while
the upper limit curve is the equilibrium curve ob-
tained for high-sustained load. The portion of
plane between the two limit curves defines the
equilibrium domain in the N − u space and the
two limit curves are the boundary of this domain.
Both the limit curves are softening for standard
cylindrical specimens (D = 15 cm; L = 30 cm),
with a maximum load equal to Nl for the lower
and Nu for the upper (Figure 20).

Depending on the value of Ns, when the represen-
tative point P of Figure 19 moves at constant load,
it can reach the lower or the upper limit curve.

If Ns < Nl , the representative point reaches the
ascending branch of the lower limit curve (Fig-
ure 21), the displacement stops to increase at con-
stant load, and a stable equilibrium condition is

N

u

lN

Stable equilibrium point

P

Figure 21: Trajectory of the representative point
P for Ns < Nl

N

u

lN

P

Figure 22: Trajectory of the representative point P
for infinitely slow loading, after load stabilization
under Ns < Nl

reached (displacement stabilized under the load
Ns < Nl). Further displacement increase is pos-
sible only if the load is increased. In this case, the
point P moves from the stable equilibrium point,
following a curve which depends on the rate of
displacement increasing once more: for infinitely
slow loading, the point P moves along the lower
limit curve (Figure 22), while, for high-sustained
load, the point P moves along a bifurcation soft-
ening curve, inside the stability domain (Figure
23).

If Ns ≥ Nl , the representative point reaches the
softening branch of the upper limit curve in a
point which is of unstable equilibrium (Figure
24): if the load-control modality is converted
to displacement-control modality as soon as P
reaches the upper limit curve and the load de-
creased, the point P moves along the softening
branch of the upper limit curve (Figure 24), and if
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it is not, the specimen is crushed (unstable equi-
librium condition).
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Figure 23: Trajectory of the representative point P
for high-sustained loading, after load stabilization
under Ns < Nl
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Figure 24: Trajectory of the representative point
P for Ns ≥ Nl

In conclusion, the time-dependent growth of dis-
placements is stable in the ascending branch and
unstable in the softening branch of an infinitely
slow loading curve. This, together with the fact
that, according to the findings of Nemat-Nasser
and Horii (1982), as the peak axial load is ap-
proached, the crack growth becomes unstable, due
to the small lateral tension at the crack tip follow-
ing from the mixed-mode crack propagation (Fig-
ure 5b), may let us suppose that time-dependency
of displacements at constant load is somehow
connected to cracking. Figure 11 too supports this
hypothesis: since the slope of the curve in Fig-
ure 11 gives the rate of cracking with the axial
displacement, we can appreciate how the rate of

cracking dramatically increases at the flex point
in Figure 11, which occurs just at the peak axial
load. The aim of the experimental program pre-
sented in the following Section is just to explore
the relationship between time-dependence of dis-
placements at constant load and cracking.

3.1 Experimental program

In order to investigate the role played by cracking
in displacement time-dependence, a compression
test in uniaxial loading has been performed, with
evaluation of the time-dependence of both the dis-
placements and the failure patterns, at two levels
of constant load, Ns1 and Ns2. Due to the low data
dispersion of the effective law (Section 2.2), the
compression test was performed on one specimen
only. A cylindrical specimen with a diameter of
15 cm and a high of 30 cm was used. The first
and second value of constant load, Ns1 and Ns2,
were fixed in order to reach the lower limit curve
and the softening branch of the upper limit curve,
respectively (Ns1 < Nl , Ns2 ≥ Nl).

The compression test was performed in five stages
(Figure 25):

1. The load was increased until the value Ns1,
(modality in displacement-control).

2. The load was kept equal to Ns1 until the
lower limit curve was reached (modality in
load-control).

3. An unloading-reloading cycle was per-
formed for the load Ns1. Afterwards, the
specimen was loaded until the value Ns2

(modality in displacement-control).

4. The load was kept equal to Ns2 until the soft-
ening branch of the upper limit curve was
reached (modality in load-control).

5. The softening branch of the upper limit curve
was followed until crushing (modality in
displacement-control).

In order to evaluate the nature of time-dependent
displacements, only acquisitions in the second
and forth stages are significant. In these two
stages, the acceptability threshold of the added
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noise (Figure 11) has not yet been reached, and
both d1 and d2 can be used for evaluating the
percentage decrease of resistant area (Eqs.(5) and
(6)).

The reloading branch of third stage intersects the
branch of second stage in its end point (Fig-
ure 25). That is, when the load Ns1 is recov-
ered, the displacement of third stage equals the
final displacement of second stage. This hap-
pens since the lower limit curve was actually
reached at the end of the second stage, and no
further time-dependent displacements developed
during the unloading-reloading cycle. During the
second stage, the time-dependent displacements
were stabilized under the load Ns1, and a stable
equilibrium condition was reached. Further time-
dependent displacements are only possible if a
load greater than Ns1 is charged on the specimen.
When the unloading-reloading cycle is performed
without leaving the displacement to stabilize be-
fore unloading, the reloading branch does not pass
through the unloading point. In this case, an addi-
tional displacement is measured when approach-
ing the unloading load. If the unloading point is
in the ascending branch of the load-displacement
diagram, the unloading load can be recovered.
If the unloading point is in the softening branch
of the load-displacement diagram, the reloading
branch intersects the load-displacement diagram

for a load that is lower than the unloading load. In
this case, the unloading load cannot be recovered
and the representative point can move on the load-
displacement diagram from the intersection point
on. Such a situation is schematized by the dotted
cycle in Figure 12.

Note also that the reloading branch of third stage
does not exhibit a non-linear behavior approach-
ing Ns1 (Figure 25). On the contrary, the branch
of first stage approaches Ns1 in a non-linear man-
ner (Figure 25). The difference between these two
branches lies in the fact that, in the first stage,
the load is increased without leaving the displace-
ment to stabilize, while, in the third stage, a dis-
placement stabilization has occurred under the
unloading load. Thus, the development of time-
dependent displacements is exhausted in the third
stage, while not in the first stage. Consequently, in
the first stage, the time-dependent displacements
activated for a certain value of load superimpose
to the elastic and time-dependent displacements
due to load increasing. Comparing the non-linear
behavior of first stage (with displacements super-
imposition) with the linear behavior of third stage
(with no displacements superimposition), it can
be concluded that the non-linearity of first stage
is due to time-dependent effects. In the assump-
tion that time-dependence is due to crack prop-
agation, it finally follows that the non-linearity



72 Copyright c© 2008 Tech Science Press CMC, vol.7, no.2, pp.59-79, 2008

of first stage arises for crack initiation. Thus,
the non-linearity of first stage is not constitutive.
This does not mean that the non-linear consti-
tutive behavior of concrete does not exist. We
can only state that the crack-induced non-linearity
is predominant on the constitutive-induced non-
linearity of first stage.

3.2 Identification of the effective law

In Figure 26, the curve of the effective law, which
turned out to be monotonic non-decreasing, is
compared with the curve of the average values.
Also the correspondence between average and ef-
fective points is provided for the points delimiting
the five load stages and two points in the softening
branch of the average curve. For clarity of repre-
sentation, the effective law is plotted without the
unloading-reloading cycle of third stage.

Since the final strain is greater than the accept-
ability threshold of the added noise (Figure 11),
the effective curve in Figure 26 has been derived
by means of d1, (Eq. (5)).

From Figure 26, it can be appreciated that the first
stage of the effective law is quite linear. Thus,
the identifying procedure confirms that the non-
linearity of first stage is not constitutive, such
as was concluded on the basis of the reloading
branch of third stage (Section 3.1).

Since the load has been kept constant under the
values Ns1 and Ns2 until the lower and upper limit
curves have been reached, respectively, four dis-
continuities arise in the derivative of the aver-
age curve (Figure 26), due to the change of load-
carrying modality. No discontinuity in the con-
stitutive law is expected during the transition of
load-carrying modality, of course, since it can
be asserted that a properly consistent identifica-
tion procedure from load-displacement to stress-
strain should lead to a curve without discontinu-
ity points for transitions of load-carrying modal-
ity. As can be seen in Figure 26, no discontinuity
actually appears in the effective curve. This gives
a further validation to the proposed identification
procedure.

The absence of discontinuities in the transition
points of the effective curve comes from the sen-

sitivity of d1 to the load-carrying modality (Fig-
ure 27). In other words, the modality transition
is entirely charged by the law describing the de-
creasing of the resistant area. In Figure 27, the
discontinuity in the d1 law for the transition be-
tween the second and third and between the third
and fourth stages is well evident. When the effec-
tive stress is evaluated in accordance with Eq. (7),
the discontinuous behavior is discarded from the
law N = N (u) by means of the law Ares = Ares (u).

From Figure 27, it can also be appreciated that, in
the unloading branch of third stage, d1 (Ares) is in-
creasing (decreasing) at first, and then decreasing
(increasing). The decreasing behavior of d1 at the
end of the unloading can be explained on the ba-
sis of a partial crack closure, leading to compres-
sive stresses that are transmitted by the re-closed
crack edges and, thus, to a partial Ares recover-
ing. The crack edges re-open as soon as the load
(average strain) is re-increased, and the Ares re-
covering is lost. In Figure 27, it is clearly evi-
dent how Ares equals the lower Ares of unloading
as soon as the load-carrying process is inverted
and the load (average strain) re-increased. Af-
ter the crack edges re-opening, the value of Ares

remains constant until the load Ns1 is recovered
(Figure 27). The constancy of Ares from the re-
opening point up to the point in which Ns1 is re-
covered means that no crack propagation charac-
terizes this phase. On the other hand, this is also
the phase in which time-dependent displacements
have stabilized under the first value of load, Ns1.
That is, no crack propagation is accompanied by
no time-dependent displacements. Consequently,
it seems that a strict relationship exists between
crack propagation and time-dependent displace-
ments.

3.3 Acquisitions at constant load

For the stages at constant load, the displacement
versus time has been compared with the cracking
versus time, where the displacement is the rela-
tive displacement between the platens of the test-
ing machine, and the amount of cracking has been
evaluated as the percentage decrease of Ares, by
means of Eqs. (5) and (6). Since d1 and d2 are
directly proportional to the dissipated energy and
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the microseismic velocity, respectively, Wd and V
have been assumed as the representative parame-
ters of cracking to compare with displacements at
constant load.

As previously shown, in the second stage dis-
placements have stabilized under the first value of
load, Ns1. This means that the incremental dis-
placement at infinity time for the load Ns1 is equal
to zero. Thus, the lower limit curve is reached at
infinity time. Waiting for a displacement stabi-

lization at infinity time is impossible, of course.
Thus, it is necessary to fix a control range of time
as the minimum time range during which a dis-
placement must remain constant (within a cer-
tain tolerance) in order to consider it as stabi-
lized. The control range of time depends on the
single test. It can be estimated to be within an
order of hours. A very long acquisition time is
then needed in the second stage, if compared to
the acquisition time needed in the other stages.
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This may lead to saturation of the data acquisi-
tion board. Moreover, the rate of displacement
increasing in the second stage is slower than in
the other stages, the closer one gets to the lower
limit curve. It follows that a lower acquisition rate
is needed in the second stage, the closer one gets
to the lower limit curve. In order to avoid satu-
ration problems and optimize acquisition, the op-
erator is requested to change the acquisition rate
in the second stage, decreasing it the closer one
gets to the lower limit curve. For deriving repre-
sentative laws of data time-evolving, the acquired
points have been equally spaced out on a modified
axis of time. Such a type of modified axis of time
is scaled from the axis of the acquisition step. All
diagrams presented in this paragraph are plotted
as acquired datum versus acquisition step.

The comparisons between displacement and dis-
sipated energy and between displacement and mi-
croseismic velocity have been plotted in Figure
28 and Figure 29, respectively. In Figure 28, the
number of acquisition steps is greater than in Fig-
ure 29, since the acquisition of the microseismic
velocity was stopped as soon as the acceptabil-
ity threshold of the added noise was reached (fifth
stage). The scales of displacements, dissipated
energy and microseismic velocity have been cal-
ibrated in order to compare the laws of displace-
ments, dissipated energy and microseismic veloc-
ity directly on the plot. For clarity of representa-
tion, only data relative to the range Ns1 ≤ N ≤ Ns2

have been plotted in the third stage.

The first stage in Figure 28 (Figure 29) is the
stage in which displacements increase in accor-
dance with the constitutive law. No crack initia-
tion characterizes this stage, apart from the very
end of the stage itself. The value of dissipated
energy and microseismic velocity is, thus, almost
constant, while displacements increase with the
acquisition step. The final part of the first stage
is affected by crack initiation and propagation. In
the third stage, with Ns1 ≤N ≤ Ns2, displacements
increase in accordance both with the constitutive
law and the failure process. In this stage too, thus,
we cannot expect to find a relationship between
the increase (decrease) of dissipated energy (ve-
locity) and the increase of displacement.

In the second stage, increases of displacement
for load increasing do not occur. Thus, displace-
ments only increase for crack propagation (struc-
tural effect) and creep (constitutive effect). In this
stage, the two diagrams in Figure 28 and Figure
29 are close to each other. Also in the fourth
stage, displacements only increase for crack prop-
agation and creep. The two diagrams would su-
perimpose in the fourth stage too, with adequate
scale re-calibration. We cannot have a contem-
porary superimposition in the second and fourth
stages, due to the displacement for load increas-
ing that occurred in the third stage. This displace-
ment afflicts the law of displacement versus ac-
quisition step, while not the laws of dissipated en-
ergy and velocity versus acquisition step, modi-
fying the scale factor between displacement and
dissipated energy and between displacement and
velocity. This means that it is possible to bring
in direct relationship displacement and dissipated
energy (velocity) both in the second and fourth
stages. That is, when displacements increase with
time at constant load, also the dissipated energy
(velocity) increases (decreases) with time, and the
two laws are directly related to each other. Thus,
each increase of displacement is directly related
to a proportional increase (decrease) of dissipated
energy (velocity). No change in displacements
occurs if no change in dissipated energy (velocity)
occurs and any change of displacement is directly
related to a change of dissipated energy (velocity).

Due to the direct relationship between Wd and d1

(Eq. (5)) and between V and d2 (Eq. (6)), it can
finally be stated that it is possible to bring time-
dependent displacements and resistant area in di-
rect relationship to each other. In other words,
if the creep is the time-dependence at constant
load of the average strain (and, thus, of the ax-
ial displacement), as usual, it can be stated that
it is possible to establish a direct relationship be-
tween creep and cracking. This is in total agree-
ment with the experimental program of Meyers,
Floyd and Slate (1969), where the relationship be-
tween crack length and average strain at constant
load was found to be linear. In Meyers, Floyd and
Slate (1969), the linear relationship between crack
length and average strain at constant load was
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explained as the increase in cracking caused by
creep. Here, we propose to interpret the same ex-
perimental result as the increase in displacements
at constant load caused by cracking, where the
displacements increase at constant load not only
for the creep, but also for the voids originated by
the cracking itself. That is, creep is mostly an
apparent and not constitutive effect, induced by
cracking at constant load. The propagation of in-
ternal microcracks with increasing creep is also
confirmed by the experimental program on the ef-
fective Poisson’s ratio of Zhaoxia (1994).

Note that the stabilization of displacements in the
second stage is accompanied by stabilization of
resistant area. Actually, both displacements and
dissipated energy (velocity) admit an horizontal
asymptote when approaching the end of the sec-
ond stage (Figure 28, Figure 29). Since displace-
ment stabilization occurs for any point of the first
stage, it seems that a stable crack propagation
characterizes this stage (N < Nl). That is, for
N < Nl a crack propagation activates, leading to
a new equilibrium configuration. This propaga-
tion seems to be the major element responsible for
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the increasing of displacements with time, when
N < Nl , since the law of dissipated energy (ve-
locity) versus acquisition step can be superim-
posed on the law of displacement versus acqui-
sition step. The superimposition persists in the
fourth stage, after adequate shifting, confirming
the strict bond existing between time-dependent
displacements and crack propagation. Anyway,
this second time crack propagation is not stable,
and structural instability arises when the upper
limit curve is reached. Instability arising is evi-
dent from Figure 28 and Figure 29, since a more
than proportional displacement increasing is ap-
preciated in the fifth stage.

It may now be argued that the microseismic ve-
locity could be sensitive to the viscosity flow. In
this case, a variation of velocity at constant load
could be related to creep and not to crack propa-
gation. That is, at constant loads Eq. (6) could not
provide a measure of resistant area, but of creep.
Nevertheless, since the law of velocity decreasing
at constant load is the same as the law of the en-
ergy increasing at constant load, we can state that
a resistant area is actually measured from the ve-
locity decreasing at constant load.

The relationship between crack propagation and
displacement increasing is difficult to define.
Anyway, after adequate scale calibration, the
curves in Figure 28 and Figure 29 superimpose in
the stages at constant load, the second and fourth
stages, with variations of displacement strictly re-
lated to variations of resistant area and contempo-
raneous stabilization of displacements and crack
propagation. This is sufficient to state that the
time-dependence is strictly related to crack prop-
agation.

These results do not allow evaluation of the vis-
cous nature of concrete. Neither is it possible to
answer the question of whether creep really exists
or not. Anyway, the superimposition allows one
to state that, if creep exists in concrete, its contri-
bution to the time-dependent behavior at constant
load is not significant. Quantitatively, any dis-
placement increase due to creep is much smaller
than the displacement increase due to crack open-
ings.

4 Conclusions

Studies by previous Author’s on constitutive pa-
rameters identification seem to indicate that the
final stage in compressed concrete specimens is
mostly characterized by propagation of a macro-
crack, rather than by crushing. This failure mech-
anism leads to reconsider the traditional identi-
fication of stress-strain and volumetric diagrams,
attributing these diagrams to a structural and not
to a constitutive behavior. Actually, the prop-
agation of the macro-crack involves a disconti-
nuity in the displacement field, with rigid dis-
placements due to crack openings. For such a
type of model it is no longer possible to consider
the specimen as uniformly stressed and strained.
Therefore, it is no longer possible to identify the
constitutive properties from the experimental data
through mere scale factors. All the average quan-
tities loose their physical significance. In particu-
lar, the relative displacement between the platens
is a quantity related to the specimen, which be-
haves as a structure. The relative displacement is
composed by two quotes, one related to material
and one related to crack openings. Thus, there is
no physical sense in dividing this displacement by
the distance between the platens, in order to derive
a material property. The division gives a quantity
that is not related to material only, that is, is not
a strain. In this context, speaking of strain time-
dependence at constant load (creep) may not be
correct.

The experimental time-dependence of displace-
ments is an evidence. Nevertheless, speaking
of strain time-dependence is only possible if
the identification process from displacements to
strains is known. In other words, if the idea of uni-
form stress and strain is abandoned, creep must be
put on new foundations. The existence of creep it-
self may be under question.

An experimental program has been performed, in
order to get a better understanding of the phe-
nomena involved in the time-dependent behavior
of concrete. To this aim, attention has been fo-
cused on data acquisition for two values of con-
stant loads. For these values of load, displace-
ment and microseismic velocity have been ac-
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quired until the limit curves have been reached.
Also the dissipated energy has been computed.
The dissipated energy and the microseismic ve-
locity have been put in relationship with the de-
creasing of resistant area, due to crack propaga-
tion. This allowed comparison between displace-
ment and crack propagation at constant load. The
increasing of displacement at constant load has
been found to be very close to the decreasing of
resistant area at constant load. Time-dependence
seems thus to be strictly related to crack prop-
agation, rather than to creep. Also comparison
between displacements and resistant area in the
unloading-reloading cycles confirms the strict re-
lationship between time-dependent displacements
and crack propagation.

The existence of concrete creep is not confuted
by these results, especially as far as the long-term
mechanical response of reacting concrete is con-
cerned [Suter and Benipal (2006)]. Anyway, these
results are sufficient to conclude that creep plays
a very limited role in the short- and medium-
term mechanical response of non-reacting con-
crete. Displacement time-dependence in concrete
specimens is mainly a structural effect due to
crack propagation, which is stable for the ascend-
ing and unstable for the softening branches of
the load-displacement diagram. Creep is a ma-
terial property that has no significant effect on the
macroscopic behavior.
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