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An Inverse Approach to Determine the Mechanical Properties of
Elastoplastic Materials Using Indentation Tests
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Abstract: In this work, an inverse approach
based on depth-sensing instrumented indentation
tests is proposed to determine the Young’s modu-
lus, yield strength and strain hardening exponent
of the materials for which the elastoplastic part
of the stress-strain curve can be described using
a power function. Numerical verifications per-
formed on typical engineering metals demonstrate
the effectiveness of the new method. The sensi-
tivity of the method to data noise and some ex-
perimental uncertainties are also discussed, which
may provide useful information for the applica-
tion of the method in practice.
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1 Introduction

Depth-sensing instrumented indentation tests are
very attractive for probing the mechanical prop-
erties of materials at a local area and different
length scales. Using the classic method proposed
by Oliver and Pharr (1992), the Young’s modu-
lus and hardness of materials can be evaluated. In
recent years, much effort has been made to ob-
tain more material property information from in-
dentation tests, e.g. the full stress-strain curves
of elastoplastic materials [Giannakopoulos and
Suresh (1999), Dao et al (2001), Bucaille et
al (2003), Chollacoop et al (2003), Huber and
Tsakmakis (1999), Cao and Lu (2004b), Cao et
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al (2005, 2007), Ogasawara et al (2005)] and
the properties of film-substrate interfaces [Li and
Siegmund (2004)]. In order to use indentation
tests to determine the material properties, the key
issue is to accurately determine the correlation be-
tween the mechanical properties of materials and
the indentation response. Computational model-
ing based on continuum mechanics e.g. using
finite element method (FEM) and boundary ele-
ment method (BEM) [e.g. boundary element anal-
ysis based on the solution by Han et al. (2006)],
or multiscale simulations [Ma et al (2005, 2006a)]
can be used to deal with this issue. The present
study relies on finite element computations and
starts from the comprehensive work of Dao et al
(2001), in which a novel definition of the rep-
resentative strain was proposed and an inverse
approach constructed to determine the mechan-
ical properties of materials. Although their in-
verse approach is recognized to be sensitive to
data noise [Dao et al (2001), Capehart and Cheng
(2003)], the interesting definition of the repre-
sentative strain [Dao et al (2001)] provides the
chance to design more robust methods, such as the
dual sharp indenter method [Bucaille et al (2003),
Chollacoop et al (2003)] and dual or multi-depth
method [Cao and Lu (2004b)]. Recently, con-
sidering the limitation of the representative strain
defined by Dao et al. (2001), the authors have
proposed the energy-based definition of the repre-
sentative strain [Cao et al (2005)]. More recently,
following the spirit in Cao et al (2005), Cao and
Huber (2006) further presented several parameter-
dependent definitions of the representative strain
by taking the conical indenter of 70.3◦as an exam-
ple. The novel definitions [Cao and Huber (2006)]
permit to establish approximately one-to-one re-
lationships between the material properties (i.e.,
the representative stress or reduced modulus and
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representative stress) and the directly measurable
quantities in indentation tests, which basically are
valid for all the elastoplastic materials for which
the elastoplastic part of the stress-strain curve can
be described using a power function (power law
materials).

The intention of the present work is to establish
a systematic inverse approach to extract the me-
chanical properties of power law materials from
indentation tests by extending the results reported
by Cao and Huber (2006) from one conical in-
denter to dual sharp indenter. The advantages
of the present approach compared with the dual
sharp indenter method in Cao et al (2005) are two
fold: 1). Besides plastic properties of materials,
Young’s modulus can be determined by taking the
effects of piling-up and sinking-in into consider-
ation; 2). The method is applicable to a wider
material range, basically to all the power law ma-
terials.

The following outline has been adopted in the
present paper. Section 2 contains the material
and computational models used in the present re-
search. In section 3, the representative strains and
corresponding dimensionless functions obtained
in the present work are provided. The results al-
low us to establish an inverse approach (as shown
in detail in section 4) to determine the mechan-
ical properties of power law materials from in-
dentation tests. In section 5, systematically nu-
merical experiments were performed to verify the
novel approach. Section 6 is a discussion of the
sensitivity of the inverse approach to data noise
and some experimental uncertainties frequently
encountered in practice. Section 7 summarizes
the main contributions made in the present re-
search.

2 Material and computational models

Plastic behavior of many pure and alloyed engi-
neering metals may be approximated by a power
function, as shown schematically in Fig. 1. The
true stress-true strain can be expressed as

σ = Eε(σ ≤ σy)
σ = Kεn(σ > σy)

(1)

where E, K, n, σy and εy are the Young’s mod-
ulus, strength coefficient, strain hardening expo-
nent, yield stress and yield strain respectively.
The total effective strain, ε , consists of two parts,
i.e., the elastic strain εe and plastic strain εp. The
elastoplastic part of the stress-strain curve given
by equation (1) can be rewritten as

σ = σ1−n
y (σ +Eεp)

n (2)

εe ε

σ

σ

εp

σy

εy

E

E

Figure 1: A schematic of power law material
model

Using the concept of the indentation-response
based definition of the representative strain [Cao
et al (2005), Cao and Huber (2006)], the repre-
sentative strain εr is defined as the plastic strain on
the uniaxial stress strain curve (see Fig. 1) and de-
pendent on the ratio between the reversible work
We and the total work Wt done by the indenter (see
Fig. 2).

To identify the representative strain, finite el-
ement computations were carried out using
ABAQUS. In the simulation, an axisymmetric,
two-dimensional model was adopted and a total of
10 000 four-node bilinear axisymmetric elements
with reduced integration and hourglass control
were used to model the semi-infinite solid. The
boundary conditions were such that the outer sur-
face nodes were traction-free with fixed lower sur-
face nodes. The size of the indented solid is taken
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Figure 2: A schematic of the indentation loading
curvature C, reversible work Weand total work Wt

to be large enough compared with the maximum
contact radius, thus the boundary conditions ba-
sically have no effect on the computational re-
sults. Dual sharp indenter with half-apex angles
of 70.3◦and 80◦are taken. Following previous re-
search [Cao and Huber (2006)], the indenter was
assumed to be rigid. The isotropic strain hard-
ening rule, the Von Mises yield criterion and the
large deformation formulations were applied. The
strain hardening exponent varies from 0 to 0.5.
The ratio of Young’s modulus to the yield strength
E/σy also varies in a wide range as shown in Ta-
ble 1. The material range in the present work
should include basically all the power law materi-
als.

3 Determination of representative strains
and dimensionless functions

Based on the computational results and using
least-squares method, the representative strains εr

corresponding to different tip apex angles, have
been identified and corresponding dimensionless
functions [Cao and Huber (2006)] Π constructed.

For θ1 = 70.3◦, the following expression of the
representative strain can be identified

εr1 = 0.05898− 0.04623(
1+e

wθ1−0.15043
0.11703

) (3)

which leads to a one-to-one relationship between
σr1/Cθ1 and wθ1 with a high level of accuracy

given by Fig. 3, and the following equation

σr1

Cθ1

= Πθ1 (wθ1) = 2.6888e

( wθ1
0.10243 −13.8155

)

+1.906e

( wθ1
0.666 −4.6052

)
+4.5537e

( wθ1
0.02278 −48.3543

)

−0.01032

(4)

where σr1 is the representative stress correspond-
ing to εr1, Cθ1 is the indentation loading curvature
corresponding to the half-apex angle θ1 = 70.3◦,
and wθ1 is the ratio of reversible work to total
work done by the indenter.

For the indenter of θ2 = 80◦, the representative
strain εr,θ2 is identified as

εr2 = 0.02602− 0.01787(
1+e

wθ2−0.14648
0.08306

) (5)

and the corresponding one-to-one relationship be-
tween σr2/Cθ2 and wθ2 (see Fig. 4) can be well
fitted using the following equation

σr2

Cθ2

= Πθ2 (wθ2) = −0.00299

+2.7744e

( wθ2
0.01573 −69.0776

)
+5.8275e

( wθ2
0.102 −16.1181

)

+0.0051e

( wθ2
0.71817

)

(6)

where σr2 is the representative stress correspond-
ing to εr2. The subscript “θ2” means that C, w and
Π are corresponding to θ2 = 80◦.

4 An inverse approach to determine the me-
chanical properties of power law materials

Using the results obtained in section 3, the follow-
ing inverse approach is established to determine
the mechanical properties of power law materials.

If Young’s modulus of the indented solid is
known, the strain hardening exponent n can be de-
termined directly from the following equation

n =
ln

(
σr2
σr1

)

ln
(

σt2
σt1

) (7)
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Table 1: The variation range of the ratio of E/σy used in the present analysis, (Poisson ratio v = 0.33)

Tip apex angle n=0.0 n=0.1 n=0.3 n=0.5

70.3◦
(E/σy)max = 3000 (E/σy)max = 3500 (E/σy)max = 20000 (E/σy)max = 200000
(E/σy)min = 4 (E/σy)min = 4.44 (E/σy)min = 5 (E/σy)min = 5

80◦
(E/σy)max = 3000 (E/σy)max = 3500 (E/σy)max = 20000 (E/σy)max = 100000
(E/σy)min = 6.67 (E/σy)min = 6.67 (E/σy)min = 8 (E/σy)min = 10

where σt1 = σr1 +Eεr1, σt2 = σr2 +Eεr2, εr1, σr1,
εr2 and σr2 are given by equations (3)–(6).

With the known n, the yield strength can be fur-
ther obtained, i.e.,

σy =
(

σr2

σn
t2

) 1
1−n

(8)

When Young’s modulus of the indented solid is
unknown, we suggest the following procedure to
determine Young’s modulus, yield strength and
the strain hardening exponent of materials using
the indentation response from dual sharp inden-
ter.

First, to determine Young’s modulus we invoke
the interesting work of Ma et al. (2004), i.e.,
they proposed an interesting method to evaluate
Young’s modulus of materials which is given by
the following simple equation

Hn

E∗ = f

(
We

Wt

)
(9)

Where Hn is the nominal hardness, E∗ is reduced
modulus. Subsequent studies [Ma et al (2006b),
Cao et al (2006)] show that the function f in equa-
tion (9) depends the strain hardening exponent be-
sides We/Wt , especially for highly plastic materi-
als. Bearing the analysis in Ma et al (2006b) and
Cao et al (2006) in mind, the relationship between
the parameters C/E∗ and We/Wt can be expressed
as the following equation

C
E∗ = φ

(
We

Wt
,n

)
(10)

For θ1 = 70.3◦, according to the computational
results in section 3, the dimensionless function φ
in equation (10) is obtained and given as follows

φ = (1−ϕ (wθ1 ))
n ψ (wθ1 ) (11)

where ϕ (wθ1) can be expressed as

ϕ (wθ1) = −0.0275+0.49115e

( −wθ1
0.36104

)
(12)

and ψ (wθ1) is given by

ψ (wθ1) =4.59912wθ1−7.68191(wθ1)
2

+15.55996(wθ1)
3−21.84057(wθ1)

4

+15.83966(wθ1)
5−4.58723(wθ1)

6

(13)

Using equations (7), (8) and (11)-(13), and the
results in section 3, the procedure to deter-
mine Young’s modulus, yield strength and the
strain hardening exponent of power law materi-
als can be summarized as the following flow chart
(Flowchart 1).

In Flowchart 1, a can be taken as a number in
the range of 0∼0.5, in the present algorithm, it
is taken as a=0.1, and δ is the error tolerance, in
the present work it is taken as 0.0001.

5 Numerical verification

To verify the effectiveness of the methods re-
ported in this work, numerical verification was
carried out using the properties of nine types of
power law materials as listed in Table 2. Using the
properties in Table 2, finite element analysis was
performed; and the parameters C and w = We/Wt

obtained from FE computations were used as the
inputs of the inverse approach given by Flowchart
1. The identified results are given in Table 3.
A comparison of the identified results in Table 3
with the exact solutions in Table 2 shows that the
novel method works very well. Here it should
be pointed out that in practice the elastoplastic
parts of the stress-strain curves of many metal-
lic materials can not be exactly described using
power functions. Thus, the power law description
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No
Yes

Carry out indentation tests using the
dual sharp indenter (θ1=70.30,
θ2=800), and obtain the indentation
loading-unloading curves 

start 

End 

Extract We/Wt and the indentation
loading curvature C

Take m=1 and the initial value of the
strain hardening exponent , nm=a

Determine Young’s modulus by using 
equations (11)-(13) and the known nm

can be obtained 

Calculate εr1, σ r1, εr2 and σ r2  by 
adopting equations (3)-(6) 

Determine the strain hardening 
exponent n and yield strength σ y by 
using equations (7)-(8) 

mn n δ− ≤

m=m+1, 
nm=n

 Results at the last iteration
step are taken as the
mechanical properties of
the material

Flowchart 1: Dual sharp indenter method to de-
termine Young’s modulus, yield strength and the
strain hardening exponent of engineering materi-
als.

is only an approximation. It should also be noted
that the representative strains and the dimension-
less functions are constructed in the present work
for power law materials. Therefore, for the ma-
terials whose plastic behaviour significantly de-

Table 2: Material properties used to verify the
representative strains and dimensionless functions
proposed in the present work, v=0.33

Materials E (GPa) σy(MPa) n
Al 70 20 0.15
Gold 79 38 0.22
Iron 180 300 0.25
Lead 16 10 0.05
Ti-6Al-4V 110 830 0.15
Silicon 107 6000 0.025
Silver 83 60 0.27
Tungsten 411 550 0.005
Titanium 120 230 0.12

Table 3: The identified elastoplastic properties of
materials

Materials E (GPa) σy(MPa) n
Al 72.0 18.8 0.16
Gold 78.0 37.0 0.23
Iron 182.5 296.3 0.25
Lead 16.2 9.33 0.07
Ti-6Al-4V 111.6 848.3 0.14
Silicon 108.2 5895 0.064
Silver 83.8 60.5 0.27
Tungsten 419.7 531.9 0.017
Titanium 120.8 213.0 0.146

viates from the power law description, the errors
in the identified mechanical properties, especially
the plastic properties, might be large according
to our experience [Qian et al (2007)]. To high-
light this issue, the following numerical experi-
ment was carried out. First, finite element analy-
sis was performed for the indentation into a ma-
terial for which Young’s modulus, E = 120 GPa,
and the elastoplastic part of the stress-strain curve
can be well fitted using a linear function instead
of a power function. Second, the obtained in-
dentation response was used as the inputs of the
method given in flow chart 1. A comparison of
the identified stress-strain curve with the real one
is given in Fig. 5. From the figure, it can be seen
that although the identified stress-strain curve fits
the real one well at some points, the error be-
tween the identified yield strength and the real so-
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lution is large. This big discrepancy shows the
limitation of the present method (i.e., it is estab-
lished based on power material model). From
the present example, however it is interesting to
find that the identified Young’s modulus using
the novel method (120.2 GPa) fits the real value
(120Gpa) remarkably well, although the results in
equations (10)-(13) are also obtained for power
law materials.

6 Discussion on the stability of the method
and the experimental uncertainties

The input data noise can not be avoided in prac-
tice. Thus, the stability of the solution to an
inverse approach is very important. A lack of
the stability might lead to the identified solutions
using an inverse approach having nothing to do
with the true solutions. For the determination of
Young’s modulus, the analysis on the stability of
the solution can be referred to Cao et al (2006).
In the present approach, the stability of the identi-
fied flow stresses is critical because they form the
basis to further determine the plastic properties of
materials. For θ1 = 70.3◦, the stability of the iden-
tified flow stresses has been examined in detail in
the previous work [Cao and Huber (2006)]. For
θ2 = 80◦, following to the analysis in Cao and Lu
(2004a) and Cao and Huber (2006), the sensitivity
of the solution to the errors in w is determined by
using the following equation and plotted in figure
8.

Cond(w) =
w
F0

(
dF0

dw

)
(14)

Using the condition number shown in Fig. 6, the
sensitivity of the solution to the errors in w can
be clearly identified. For the high elastic material,
such as when w ≥ 0.95, the condition number of
representative stress is larger than 4.9, the stability
of the identified solution is poor.

The data noise mentioned above may come from
the following aspects according to the authors’ ex-
perience. 1). Surface roughness. Surface rough-
ness is always encountered in practice, which
can significantly affect the indentation response
when the indentation depth is comparable with the
height of the asperity [Zhang et al (2004), Herbert
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et al (2006), Cao et al (2007)]. 2). Tip defects.
In the simulation above, the indenter is assumed
to be ideally sharp. In practice, this is not pos-
sible to achieve, and when the tip radius is not a
small value compared with the indentation depth,
the indentation response might significantly devi-
ate from that corresponding to the ideally sharp
indenter [Cheng and Cheng (1998)]. 3). Surface
layer. In the preparation of the samples, a surface
layer might be produced whose properties can be
apparently different from the bulk [Bucaille et al
(2004)]. 4). Geometrically necessary disloca-
tions (GNDs). GNDs-induced indentation size
effect has been widely investigated [Nix and Gao
(1998), Begley and Hutchinson (1998), Elmustafa
et al (2000), Chen et al (2002)]. It is shown that
when the indentation depth is at micron or sub-
micron, the effect of GNDs on the indentation
loading curve can be very significant [Cao and
Lu (2005)]. 5). Surface energy. Zhang and
Xu (2002) have systematically investigated the ef-
fect of surface work and reported that it could
lead to depth-dependent indentation hardness. In
this case the indentation loading curvature may
also be depth-dependent due to the surface work.
In order to make the errors from above sources
negligible, the indentation depth should be much
larger than the height of the asperity for the rough
surface, tip radius of a non-ideally sharp inden-
ter, thickness of the surface layer and the mate-
rial characteristic length corresponding to GNDs.
The indentation depth should also be much larger
than the critical depth in order to overcome the
effect of surface work according to Zhang and Xu
(2002).

7 Conclusions

Base on the concept of the indentation response-
based definition of the representative strain [Cao
et al (2005), Cao and Huber (2006)], simple and
explicit expressions of the relationship between
the material properties and the directly measur-
able quantities from indentation tests are obtained
for dual sharp indenter. Using these relations,
an inverse approach to extract Young’s modulus,
yield strength and the strain hardening exponent
of materials using dual sharp indenter is proposed.
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Figure 6: A plot of the condition number

The performance of the method is carefully veri-
fied by numerical experiments. The results show
that for power law materials, the present method
can provide a very good estimation on the me-
chanical properties. But it should be noted that
the power law model is just an approximation and
in practice the complexity of the materials [Ma
et al. (2006c), Zaafarani et al. (2006)] might
lead to a macroscopic stress-strain curve far from
the power law description. We have highlighted
that the identified plastic properties might contain
significant errors in the case that the plastic be-
haviour of a material significantly deviates from
the power law description. However, it is inter-
esting to find from the present numerical exam-
ple, that the identified Young’s modulus using the
present method is reliable even the elastoplastic
part the stress-strain curve of the material can not
be well fitted using a power function. Further sys-
tematic investigation of this interesting finding is
necessary and important and will be performed in
the near future. Stability of the inverse approach
and the experimental uncertainties are also dis-
cussed which provides useful information for the
application of the method in practice.
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