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A Consistent Computation of Magnetization Reversal under a Circularly
Polarized Field and an Anisotropy Field

Chein-Shan Liu1

Abstract: In this paper the Landau-Lifshitz
equation is subjected to a circularly polarized field
in the plane, as well as both a dc field and an
anisotropy field along the vertical easy axis per-
pendicular to the plane. The representation of
Landau-Lifshitz equation in the Minkowski space
is a Lie-type system. By performing a computa-
tion through the Lie-group solvers we can develop
a consistent numerical method, which satisfies the
consistency condition exactly, and thus can retain
the invariant behavior. Then, we use the consis-
tent numerical method to investigate the magneti-
zation reversal, whose switching criterion is dis-
played through the minimum curve of the vertical
magnetization component as a function of excit-
ing frequency. When the anisotropy field is con-
sidered, the minimum curve may exhibit a dis-
continuity between reversal magnetization range
and non-reversal magnetization range. Without
exception, when the exciting frequency of the cir-
cularly polarized field is high, the magnetization
reversal will not occur.

Keyword: Landau-Lifshitz equation, Magneti-
zation reversal, Consistency condition, Consistent
numerical method, Lie-type system, Lie-group
solver

1 Introduction

Among the many physical important issues about
magnetization memory devices, the most subtle
process of magnetization motion perhaps is its
reversal of direction. Thirion, Wernsdorfer and
Mailly (2003) were experimentally identified that
in the presence of magnetic anisotropy, reversing
the magnetic field while simultaneously applying
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a polarized field at a right angle to the applied dc
field can significiantly lower the threshold value
for switching. Some theoretical analyses of a sim-
ilar case were given by Bertotti, Serpico and May-
ergoyz (2001). Those studies indicated that the
most effective frequency for small amplitude os-
cillations corresponded to the uniform-mode fer-
romagnetic resonance frequency.

Motivated by its great application potential in the
magnetic data storage and random access memo-
ries, the magnetization reversal in magnetic par-
ticles and thin films has been a continuously in-
teresting topic in the past several decades. In re-
cent years, it is possible to produce nano magnetic
sample with well-controlled shape and structure.
However, the magnetic anisotropy of these sam-
ples makes the dynamic magnetization processes
highly nonlinear, and a thorough understanding of
the micromagnetic dynamics is desirable, as many
efforts have already been made in this issue. In
order to simulate the magnetization reversal phe-
nomenon of ferromagnetic materials, we use the
following model as our investigating tool:

Ṁ = −γM×Heff − γα
Ms

M× (M×Heff), (1)

which was proposed by Landau and Lifschitz
(1935).

The effective field Heff is the sum of applied
field, demagnetizing field, anisotropy field and
exchange field. However, in this paper we only
consider the case of a uniformly magnetized sam-
ple. Therefore, by discarding the demagnetizing
field and the exchange field, the possible inter-
action of nonuniform modes is not taken into ac-
count here [Liu and Ku (2005)].

Throughout this paper, a dot between two vec-
tors stands for their scalar product, and ‖ • ‖ de-
notes the magnitude of vector. The two material
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parameters of γ > 0 and α ≥ 0 are, respectively,
the absolute value of gyromagnetic ratio and the
damping constant. From Eq. (1) it is apparent that
M · Ṁ = 0; hence, the magnitude of magnetiza-
tion vector M(t) is conserved, i.e., ‖M(t)‖= Ms,
where Ms is a constant saturation magnetization.
The above result shows that the magnetization de-
scribed by the Landau-Lishitz equation possesses
an invariant behavior, restricting the magnetizing
vector on a sphere with a radius Ms. When we cal-
culate the magnetization behavior by numerical
method, this point to keep the invariance is very
important. A numerical method that can exactly
preserve ‖M(t)‖ = Ms for all time will be called
a consistent numerical method, and the equality
‖M(t)‖= Ms is called a consistency condition.

In this paper we study the Landau-Lifshitz equa-
tion (1) under a circularly polarized field, a con-
stant dc field as well as an anisotropy field:

Heff = Ms(H0 cosωt,H0 sinωt,Hz +keffM3/Ms)T,

(2)

where H0 is a constant amplitude, and ω is
the excitation frequency. While the polarized
field Ms(H0 cosωt,H0 sinωt,0) is rotated coun-
terclockwisely in the (x,y) plane at an angular
frequency ω , Hz is a dc field in the vertical z-
direction. The term keffM3 presents an effective
anisotropy field along the vertical direction. We
shall consider the magnetization reversal of a uni-
formly magnetized ferromagnetic material with
uniaxial anisotropy. The easy axis is oriented
along the z-axis. The reversal of magnetization
means that under the effective field the magneti-
zation vector can rotate its direction with the value
of the vertical component changing from positive
to negative, or vice versa. Otherwise, it is a non-
reversal magnetization.

About the magnetization under the above field,
some analytical results were obtained by Bertotti,
Serpico and Mayergoyz (2001), Bertotti, Magni,
Mayergoyz and Serpico (2001) and Bertotti, May-
ergoyz and Serpico (2001, 2004) by assuming
the magnetic body exhibiting rotational symme-
try about the z-axis. Besides that very few ana-
lytic solutions are known for the nonlinear large
magnetization motions. Usually, the majority of

nonlinear studies are carried out by the numer-
ical methods [Serpico, Mayergoyz and Bertotti
(2001); Krishnaprasad and Tan (2001); Frank
(2004); Liu and Ku (2005); d’Aquino, Serpico
and Miano (2005)]. More recently, Rivkin and
Ketterson (2006) have studied the magnetization
reversal using various rf magnetic pulses, numeri-
cally showing that the magnetic switching is pos-
sible with simple sinusoidal pulses. Lee and Yuan
(2007) have used an oscillating field to study the
magnetization reversal, showing that the oscillat-
ing field reduces the coercivity significiantly.

The issue of developing a suitable time-stepping
technique for the Landau-Lifshitz equation that
preserves relevant properties has received much
attentions [Slodicka and Cimrak (2003); Cimrak
and Slodicka (2004); Banas and Slodicka (2005);
Frank (2004); Krishnaprasad and Tan (2001);
Lewis and Nigam (2003); and Sun, Ma and Qin
(2004)]. The general point of view of these contri-
butions is that the use of suitable geometrical inte-
grators designed to preserve the geometrical prop-
erties can help us to further understand the mag-
netization behavior. Some researchers have based
on the Lie group SO(3) to develop the numeri-
cal integrators for the Landau-Lifshitz equation,
for example, Frank (2004) and Lewis and Nigam
(2003). However, for the Landau-Lifshitz equa-
tion the Lie-group SO(3) is a coadjoint action, ex-
hibiting a nonlinear structure. Although there are
many existing numerical integration techniques
for the time stepping of the Landau-Lifshitz equa-
tion, some of them may corrupt the conserved
properties of magnetization dynamics. For these
reasons, it is important to develop a numerical
method based on the Lie group SOo(3,1) that can
retain the conserving properties automatically.

In Section 2 of this paper we first give an out-
line of the Lie-type representation of the Landau-
Lifshitz equation in the Minkowski space. The
Lie-type representation is important for getting
the closed-form solution as shown by Liu (2007)
for the magnetization under an AC field, of which
the Lie-type representation is a linear system.
Usually, it is a formidable task to find the analyti-
cal solution of the Landau-Lifshitz magnetization
equation including damping and/or other nonlin-
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ear effects. However, with the aid of the Lie-type
representation in a four-dimensional Minkowski
space and a new formula derived in Section 3, we
will derive an approximate solution of the magne-
tization motion in Section 4, which can satisfy the
consistency condition ‖M(t)‖ = Ms exactly, and
thus it is a consistent numerical method as just de-
fined in the above. In Section 5 we apply the con-
sistent numerical method to study the magnetiza-
tion reversal under the effective field in Eq. (2).
Finally, we draw conclusions in Section 6.

2 A Lie-type representation in the
Minkowski space

Let us define a unit vector

m :=
M

‖M‖ =
M
Ms

, (3)

as well as use a new time scale τ := γMst and a
new field

H :=
Heff

Ms
= (H0 cosωt,H0 sinωt,Hz +keffm3)T,

(4)

such that Eq. (1) can be rearranged to

m′ = Ĥm+αH−αH ·mm, (5)

where the prime denotes the differential with re-
spect to τ ,

Ĥ :=

⎡
⎣ 0 −H3 H2

H3 0 −H1

−H2 H1 0

⎤
⎦ (6)

is a skew-symmetric matrix, and Hi, i = 1,2,3, are
three independent components of H.

Liu (2004) has proved that the Landau-Lifshitz
equation (5) can be written as

X′ = AX (7)

in the four-dimensional Minkowski space with
X ∈ M

4 satisfying the cone condition of XTgX =
0, where T denotes the transpose and g is a
Minkowski metric given by

g =
[

I3 03×1

01×3 −1

]
, (8)

where I3 is the third order identity matrix. In
above, we have defined

X =
[

Xs

X0

]
=

⎡
⎢⎢⎣

X1

X2

X3

X0

⎤
⎥⎥⎦ := X0

[
m
1

]
(9)

as an augmented state vector, and

A :=

[
Ĥ αH

αHT 0

]

=

⎡
⎢⎢⎣

0 −H3 H2 αH1

H3 0 −H1 αH2

−H2 H1 0 αH3

αH1 αH2 αH3 0

⎤
⎥⎥⎦

(10)

as the system matrix, satisfying the Lie algebraic
property of ATg+gA = 0, which is known as the
Lie algebra for the Lorentz group SOo(3,1) [Liu
(2001)]. Eq. (7) is a Lie-type system, because A∈
so(3,1) is a Lie algebra element.

For this formulation the cone condition is very
crucial, because by Eqs. (9), (8) and (3) we can
derive

XTgX = 0 ⇔ ‖m‖= 1 ⇔ ‖M‖= Ms. (11)

Therefore, the preservation of the cone condition
is equivalent to the preservation of the consistency
condition.

The solution of Eq. (7) may be expressed by the
following state transition formula:

X(τ) = [G(τ)G−1(τi)]X(τi), (12)

where G(τ) is a transformation matrix satisfying

G′(τ) = A(τ)G(τ), G(0) = I4, (13)

and τi is an initial time. A Lie-group solver will
be developed in Section 4, which can enforce the
X calculated by Eq. (12) to satisfy Eq. (11) auto-
matically.

3 A useful formula

In this section we consider a special case of
Eq. (7) allowing the dimensions to be n and with

A =

[
0n×n Q

±QT 0

]
, (14)
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where

Q′(τ) = ΩΩΩQ(τ), (15)

and ΩΩΩ is a constant skew-symmetric matrix,
namely, ΩΩΩT = −ΩΩΩ.

Let

A1 =
[

ΩΩΩ 0n×1

01×n 0

]
,

A2 = A(0)−A1 =
[ −ΩΩΩ Q(0)
±QT(0) 0

]
.

(16)

Notice that both A1 and A2 are constant matrices,
but A is a time-dependent matrix.

It is not difficult to show that

A′ = A1A−AA1, A(τ) = eA1τA(0)e−A1τ , (17)

and that the solution of G′(τ) =
A(τ)G(τ), G(0) = In+1 is given by

G(τ) = eA1τeA2τ . (18)

It means that corresponding to the A given by
Eqs. (14) and (15), we have a closed-form solu-
tion of G(τ) as expressed by Eq. (18).

4 Approximate solutions

4.1 A new system

In this section we consider an approximate solu-
tion of Eq. (7) under the field (2) with keff = 0.
Under this condition, Eq. (7) is a linear Lie-type
system.

For the purpose of deriving a new system let us
define a new excitation frequency

Ω =
ω

γMs
. (19)

Then, Eq. (7) can be written as

X′ = AX = (A3 +A4)X, (20)

where

A3 :=

⎡
⎢⎢⎣

0 −H3 0 0
H3 0 0 0
0 0 0 αH3

0 0 αH3 0

⎤
⎥⎥⎦ , (21)

A4 :=

⎡
⎢⎢⎣

0 0 M1 M2
0 0 −M3 M4

−M1 M3 0 0
M2 M4 0 0

⎤
⎥⎥⎦ . (22)

where

M1 = H0 sinΩτ M2 = αH0 cosΩτ
M3 = H0 cosΩτ M4 = αH0 sinΩτ .

Due to keff = 0, A3 is a constant matrix. Let

Y = exp(−A3τ)X, (23)

and then from Eq. (20) it follows that

Y′ = exp(−A3τ)A4 exp(A3τ)Y. (24)

In terms of

exp(A3τ) =⎡
⎢⎢⎣

cosH3τ −sinH3τ 0 0
sinH3τ cosH3τ 0 0

0 0 coshαH3τ sinhαH3τ
0 0 sinhαH3τ coshαH3τ

⎤
⎥⎥⎦ ,

(25)

and through a lengthy calculation we can obtain

Y′ =

⎡
⎢⎢⎣

0 0 a c
0 0 b d
−a −b 0 0
c d 0 0

⎤
⎥⎥⎦Y, (26)

where

a := H0 sin(Ω−H3)τ coshαH3τ
+αH0 cos(Ω−H3)τ sinhαH3τ , (27)

b := −H0 cos(Ω−H3)τ coshαH3τ
+αH0 sin(Ω−H3)τ sinhαH3τ , (28)

c := H0 sin(Ω−H3)τ sinhαH3τ
+αH0 cos(Ω−H3)τ coshαH3τ , (29)

d := −H0 cos(Ω−H3)τ sinhαH3τ
+αH0 sin(Ω−H3)τ coshαH3τ . (30)

The linear system (26) can be transformed to a
new system as follows:

Z′(τ) = B(τ)Z(τ), (31)
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where

B :=
[

03 U
UT 0

]
, (32)

Z :=
[

G−1
3 03×1

01×3 1

]
Y, (33)

in which G3 satisfies

G′
3 =

⎡
⎣ 0 0 a

0 0 b
−a −b 0

⎤
⎦G3, G3(0) = I3, (34)

and U is given by

U := G−1
3

⎡
⎣ c

d
0

⎤
⎦ . (35)

From Eq. (34), G3 is known to be a three-
dimensional rotation matrix, because the system
matrix is a 3× 3 skew-symmetric matrix. And
thus, we can replace G−1

3 by GT
3 .

4.2 Consistent numerical method

Regretably it is difficult to give an exact solution
of Eq. (31) even it is a linear differential equation,
because B is a rather complex matrix function of
τ . However, for the calculational purpose we can
adopt the following numerical method:

Z(�+1) = exp[ΔτB(�)]Z(�)

=

⎡
⎣ M5 M6

M7 M8

⎤
⎦Z(�). (36)

where

M5 = I3 +
cosh

(
Δτ
√

U(�)·U(�)
)
−1

U(�)·U(�)
U(�)UT(�)

M6 =
sinh

(
Δτ
√

U(�)·U(�)
)

√
U(�)·U(�)

U(�)

M7 =
sinh

(
Δτ
√

U(�)·U(�)
)

√
U(�)·U(�)

UT(�)

M8 = cosh

(
Δτ

√
U(�) ·U(�)

)
.

Here, Δτ is a small increment of τ , Z(�) denotes
the numerical value of Z at the �-th step, i.e.,

Z(τ�), and the value of U(�) means that U(�) =
U((�+1/2)Δτ). Upon Z is available, we can use
Eq. (33) to calculate Y, and then Eq. (23) to cal-
culate X.

Therefore, we come to a new integration method
for X:

X(�+1) = G(�+1, �)X(�)

:= exp[A3τ�+1]
[

G3(�+1) 03×1

01×3 1

]

· exp[ΔτB(�)]
[

GT
3 (�) 03×1

01×3 1

]
· exp[−A3τ�]X(�).

(37)

Notice that each matrix on the right-hand side is
an element of the Lorentz group SOo(3,1). There-
fore, by using the closure property of the Lie
group we can conclude that the state transition
matrix G(�+ 1, �) as a product of these matrices
is also an element of the Lorentz group SOo(3,1),
which has an important property [Liu (2001)]:

GTgG = g, (38)

where g was defined by Eq. (8).

Now, by using Eqs. (37) and (38) we can prove
that the cone condition can be preserved exactly
by

XT(�)gX(�) = 0 =⇒ XT(�+1)gX(�+1) = 0,

(39)

which by means of Eq. (11) can be written as

‖M(�)‖= Ms =⇒ ‖M(�+1)‖= Ms. (40)

The above equation indicates that the consis-
tency condition can be preserved for all time if
‖M(0)‖ = Ms holds initially. Therefore, we can
claim that the present numerical method is a con-
sistent numerical method as defined in Section 1.
The success for such a development of consistent
numerical method is that we can derive the Lie-
group solutions as these revealed by five matrices
given in Eq. (37).
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4.3 A particular case of H3 = 0

In this section we consider a special case of H3 =
0, i.e., Hz = keff = 0, such that from Eqs. (27) and
(28) we have

a := H0 sinΩτ , (41)

b := −H0 cosΩτ . (42)

It is obvious that

d
dτ

[
a
b

]
=

[
0 −Ω
Ω 0

][
a
b

]
, (43)

and in view of Eqs. (15) and (16) it follows that

A1 =

⎡
⎣ 0 −Ω 0

Ω 0 0
0 0 0

⎤
⎦ ,

A2 =

⎡
⎣ 0 Ω 0

−Ω 0 −H0

0 H0 0

⎤
⎦ .

(44)

By using the method in Section 3 we can derive

G3

=

⎡
⎣cosΩτ −sinΩτ 0

sinΩτ cosΩτ 0
0 0 1

⎤
⎦

⎡
⎣ M9 M10 M11

M12 M13 M14
M15 M16 M17

⎤
⎦

=

⎡
⎣M18 M19 M20

M21 M22 M23
M15 M16 M17

⎤
⎦ , (45)

where m =
√

Ω2 +H2
0 ,

M9 =
Ω2

m2 cosmτ +
H2

0

m2 M10 =
Ω
m

sinmτ

M11 =
H0Ω
m2 cosmτ − H0Ω

m2 M12 = −Ω
m

sinmτ

M13 = cosmτ M14 = −H0

m
sinmτ

M15 =
H0Ω
m2 cosmτ − H0Ω

m2 M16 =
H0

m
sinmτ

M17 =
H2

0

m2 cosmτ +
Ω2

m2

and

M18 =
Ω2

m2 cosmτ cosΩτ +
H2

0

m2 cosΩτ

+
Ω
m

sinmτ sinΩτ

M19 =
Ω
m

sinmτ cosΩτ −cosmτ sinΩτ

M20 =
H0Ω
m2 cosmτ cosΩτ − H0Ω

m2 cosΩτ

+
H0

m
sinmτ sinΩτ

M21 =
Ω2

m2 cosmτ sinΩτ +
H2

0

m2 sinΩτ

− Ω
m

sinmτ cosΩτ

M22 =
Ω
m

sinmτ sinΩτ +cos mτ cosΩτ

M23 =
H0Ω
m2 cosmτ sinΩτ − H0Ω

m2 sinΩτ

− H0

m
sinmτ cosΩτ .

Inserting the above G3 and c and d defined in
Eqs. (29) and (30) into Eq. (35), and then in-
serting that U into Eq. (36) we obtain a numer-
ical solution for this problem. When Z is avail-
able, we can use Eq. (33) to calculate Y, and then
Eq. (23) to calculate X. As mentioned, this nu-
merical method is a consistent one.

4.4 Small damping case

Usually, the damping constant α is smaller than
one. Here, we further suppose that the damping
coefficient α is much smaller than one. Under
this condition we can neglect the time variations
of these two terms coshαH3τ and sinhαH3τ in
Eqs. (27) and (28). Such that we still have a simi-
lar equation for a and b as that given by Eq. (43),
but merely replacing the Ω by Ω − H3 for the
present case. Therefore, when we replace all the
Ω in G3 by Ω−H3, and follow a similar proce-
dure as that for the above case, we can obtain a
consistent numerical method for this problem.

When the anisotropy field was taken into account,
Eq. (7) becomes nonlinear because of the de-
pendence of A on m3. However, the numerical
method can still be applied for this case but with
the value of m3 being taken as a constant at each
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time step in the numerical computation. Simul-
taneously, for a stable reason the time stepsize
needs to be shortened, for example, Δτ=0.005.

5 Magnetization reversal

In order to test the performance of our numeri-
cal method, we first calculate a simple numerical
example under the following parameters H3 = 0,
H0 = 0.4, Ω = 1.5 and α = 0.001. The initial
values of m are taken to be m1 = m2 = m3 =
1/

√
3. The time stepsize used in this calculation

was fixed to be Δτ = 0.01. For the magnetiza-
tion problem, it is utmost important that the nu-
merical method can preserve the magnitude with
‖m‖= 1. In Fig. 1(a) we plot the numerical error
of magnitude defined by |‖m‖− 1|, i.e., the ab-
solute value of ‖m‖−1, from which we can see
that the present numerical method can preserve
the quantity ‖m‖ = 1 very well. Even, for a very
long history of the magnetization motion the mag-
nitude error is still much smaller than 10−12. It is
also interesting that the time history of the verti-
cal component of the magnetization m3 as shown
in Fig. 1(b) does not change its direction, keeping
in the positive value for all time, i.e., no magneti-
zation reversal.

Then, we calculate a more complex case under
the following parameters H0 = 0.9, Hz = 0.5, Ω =
0.4, α = 0.001 and keff =−2. The initial values of
m are taken to be m1 = m2 = −m3 = 1/

√
3. The

time stepsize used in this calculation was fixed to
be Δτ = 0.005. We plot the numerical error of
magnitude in Fig. 1(a) as shown by the dashed
line, from which we can see that the present nu-
merical method can preserve the quantity ‖m‖ =
1 very well. Even, for a very long history of the
magnetization motion the magnitude error is still
much smaller than 10−14. For this nonlinear ex-
ample our consistent numerical method performs
better than the above linear case in the preserva-
tion of ‖m‖= 1. It is also interesting that the time
history of the vertical component of the magneti-
zation m3 as shown in Fig. 1(c) changes its di-
rection rapidly, which is very different from the
above example as shown in Fig. 1(b), and the
magnetization direction switches with a highly
oscillating motion in the range of −1 < m3 < 1. In

Figs. 2 and 3 we plot the magnetization motions
for the above two numerical examples. It is ob-
vious that the first example is of the non-reversal
magnetization, while the second example is of the
reversal magnetization.

Therefore, we attempt to know what parameters
values will cause the magnetization direction re-
versal. To investigate the magnetization reversal
we assume that the magnetization initially along
the positive z-direction with m1 = m2 = 0, m3 = 1.
Then, within one-period of the input, i.e., τ ≤
2π/Ω, we search the minimal value of m3. Fig. 4
shows the minimum of m3 as a function of Ω for
three different values of (H0,α) = (0.6,0.001),
(H0,α) = (0.8,0.001) and (H0,α) = (0.8,0.02).
It can be seen that under the same damping con-
stant value of α = 0.001, the case with H0 = 0.8
has a larger range of exciting frequencies which
allow the magnetization reversal than the case
with H0 = 0.6. For the last two cases under the
same H0 = 0.8, a larger damping constant with
α = 0.02 will produce a larger reversal than the
smaller one with α = 0.001; however, the damp-
ing constant α makes little influence of the mini-
mum curve on the non-reversal portion.

In Fig. 5 we compare five different curves of
the minimum of m3 with respect to Ω in the
range of Ω ∈ (0,2) under five different values
of (H0,Hz,α ,keff) = (0.6,0.5,0.001,−2),
(H0,Hz,α ,keff) = (0.9,0.5,0.001,−2),
(H0,Hz,α ,keff) = (0.6,0,0.001,−2),
(H0,Hz,α ,keff) = (0.6,0,0.001,−0.5) and
(H0,Hz,α ,keff) = (0.6,0,0.001,0). First, we can
observe that the present curves with keff nonzero
are very different from those curves in Fig. 4
and the curve in Fig. 5 under keff = 0, where the
major features are that these curves in Fig. 5 with
nonzero keff all have a big jump (discontinuity)
at a certain exciting frequency. Then, under the
same values of (Hz,α ,keff) = (0.5,0.001,−2),
the larger case with H0 = 0.9 than the case with
H0 = 0.6 produces a larger range of exciting fre-
quencies which allow the magnetization reversal
and also has a larger reversal value. Without
considering the dc field in the vertical direction,
i.e., Hz = 0, the range of exciting frequencies
to allow the magnetization reversal becomes
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Figure 1: For these two numerical examples considered here: (a) showing the numerical errors of mag-
netization magnitude, (b) the non-reversal magnetization time history of the first example, (c) the reversal
magnetization time history of the second example.
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Figure 2: The magnetization motion of the first
example.
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Figure 3: The magnetization motion of the sec-
ond example.
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Figure 5: The minimum curves of the vertical component vs. exciting frequency for the cases of H3 �= 0.
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very narrow near to the left end with Ω = 0 as
shown by the dashed line in Fig. 5. The last three
minimum curves compare the effect of different
keff; when the absolute value of keff is smaller the
range of exciting frequencies which allow the
magnetization reversal is larger. For keff zero, the
minimum curve is a smooth convex function of
Ω. Even we do not calculate the minimum curves
to a higher value of excitation frequency, from
Figs. 4 and 5 it can be seen that when the exciting
frequency of the circularly polarized field is high,
the magnetization reversal is impossible.

6 Conclusions

According to the Lie-type representation of the
Landau-Lifshitz equation, we have derived a con-
sistent numerical method for computing the mag-
netization by subjecting to a circularly polarized
field, a dc field and an anisotropy field along the
vertical direction of easy axis. The new con-
sistent method can be used to correctly simulate
the switching of magnetization direction and the
magnetization reversal of a magnetic thin film.
We proposed a minimum curve of the vertical
component to detect the magnetization reversal
as varying the circularly polarized exciting fre-
quency. Then, the influences of parameters values
on the magnetization reversal were studied. To as-
sist the magnetization reversal, a dc field along the
easy axis is necessary. Then, a larger amplitude
of the circularly polarized exciting field will give
rise a more large range of exciting frequency for
magnetization reversal. When the anisotropy field
is included, the minimum curves exhibit discon-
tinuities between the reversal magnetization and
non-reversal magnetization. Without exception,
for higher exciting frequency of the circularly po-
larized field, the magnetization reversal does not
happen.
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