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Flexural-Torsional Buckling and Vibration Analysis of Composite Beams

E.J. Sapountzakis1 and G.C. Tsiatas2

Abstract: In this paper the general flexural-
torsional buckling and vibration problems of com-
posite Euler-Bernoulli beams of arbitrarily shaped
cross section are solved using a boundary ele-
ment method. The general character of the pro-
posed method is verified from the formulation of
all basic equations with respect to an arbitrary
coordinate system, which is not restricted to the
principal one. The composite beam consists of
materials in contact each of which can surround
a finite number of inclusions. It is subjected
to a compressive centrally applied load together
with arbitrarily transverse and/or torsional dis-
tributed or concentrated loading, while its edges
are restrained by the most general linear bound-
ary conditions. The resulting problems are (i)
the flexural-torsional buckling problem, which is
described by three coupled ordinary differential
equations and (ii) the flexural-torsional vibration
problem, which is described by three coupled
partial differential equations. Both problems are
solved employing a boundary integral equation
approach. Besides the effectiveness and accuracy
of the developed method, a significant advantage
is that the method can treat composite beams of
both thin and thick walled cross sections taking
into account the warping along the thickness of
the walls. The proposed method overcomes the
shortcoming of possible thin tube theory (TTT)
solution, which its utilization has been proven to
be prohibitive even in thin walled homogeneous
sections. Example problems of composite beams
are analysed, subjected to compressive or vibra-
tory loading, to illustrate the method and demon-
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strate its efficiency and wherever possible its ac-
curacy. Moreover, useful conclusions are drawn
from the buckling and dynamic response of the
beam.
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1 Introduction

Composite beams have been increasingly used in
recent years as structural members due to their
high strength/stiffness properties for light weight
materials. The design of such structures subjected
to compressive or vibratory loading, presents a
serious challenge and necessitates a reliable and
accurate analysis. This becomes much more
complicated in the case the beam’s cross section
centroid does not coincide with its shear center
(asymmetric beams), leading to the formulation of
the flexural-torsional buckling or vibration prob-
lem of composite beams, respectively.

The flexural-torsional buckling or vibration prob-
lem of thin-walled composite beams, based on
the assumptions of the thin tube theory, has been
studied by many researchers. Among them, Kol-
lar (2001a, b) and Sapkas and Kollar (2002) used
a simple closed form solution showing the ef-
fect of shear deformations, Chen (2003) devel-
oped the differential quadrature element method,
Bhaskar and Librescu (1995) based on a geomet-
rically non-linear thin-walled beam theory, Lee
and Kim (2001, 2002), Lee and Lee (2004) em-
ployed a displacement-based one-dimensional fi-
nite element model based on the classical lamina-
tion theory, and Shan and Qiao (2005) and Qiao,
Zou and Davalos (2003) presented a combined an-
alytical and experimental study for the buckling of
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pultruded fiber-reinforced plastic composite open
channel or cantilever I- beams using the Rayleigh-
Ritz method. Moreover, the flexural-torsional
buckling and vibration problems have been stud-
ied by many researchers in laminated compos-
ite beams, such as Matsunaga (2001) employ-
ing Hamilton’s principle, Vinogradov and Der-
rick (2000) based on analytic solutions and Song
and Waas (1997), Lellep and Sakkov (2006) in
stepped rectangular beams of simple boundary
conditions. However, the aforementioned for-
mulations concerning composite beams of thin
walled cross sections or laminated cross-sections
are analyzing these beams with respect to cross
section mid lines ignoring the warping along the
thickness of the walls. Moreover, they do not sat-
isfy the continuity conditions of transverse shear
stress at layer interfaces and assume that the trans-
verse shear stress along the thickness coordinate
remains constant, leading to the fact that kine-
matic or static assumptions cannot be always valid
(Karama, Afaq and Mistou, 2003; Reddy, 1989;
Touratier, 1992). To the authors’ knowledge pub-
lications on the solution to the general flexural-
torsional buckling or vibration problem of arbi-
trarily shaped composite cross sections do not ex-
ist.

In this investigation a boundary element method is
developed for the general flexural-torsional buck-
ling and vibration analysis of composite Euler-
Bernoulli beams of arbitrarily shaped cross sec-
tion. The composite beam consists of materi-
als in contact each of which can surround a fi-
nite number of inclusions. The general charac-
ter of the proposed method is verified from the
fact that all basic equations are formulated with
respect to an arbitrary coordinate system, which
is not restricted to the principal one. The beam is
subjected to a compressive centrally applied load
together with arbitrarily transverse and/or tor-
sional distributed or concentrated loading, while
its edges are restrained by the most general linear
boundary conditions. The resulting problems are
(i) the flexural-torsional buckling problem, which
is described by three coupled ordinary differential
equations and (ii) the flexural-torsional vibration
problem, which is described by three coupled par-

tial differential equations. Among many respec-
tive Boundary Element and Meshless Methods
such as the Meshless Regularized Integral Equa-
tion Method (MRIEM) (Liu, 2007), the Mesh-
less Local Petrov-Galerkin (MLPG) Method (An-
dreaus, Batra and Porfiri, 2005) and the Dual
Boundary Element Method (Purbolaksono and
Aliabadi, 2005) the authors applied the Analog
Equation Method (AEM) (Katsikadelis, 2002a)
for the solution of the aforementioned problems.
According to this method, the three coupled
fourth order differential equations are replaced
by three uncoupled ones subjected to fictitious
load distributions under the same boundary con-
ditions. Besides the effectiveness and accuracy
of the developed method, a significant advantage
is that the method can treat composite beams of
both thin and thick walled cross sections taking
into account the warping along the thickness of
the walls. The method overcomes the shortcom-
ing of possible thin tube theory (TTT) solution,
which its utilization has been proven to be pro-
hibitive even in thin walled homogeneous sections
(Sapountzakis and Tsiatas, 2007a). Moreover,
the method permits the inclusion of the torsion-
bending and flexural coupling stiffnesses which
play an important role in the response of the beam
and have to be taken always into account (Sa-
pountzakis and Tsiatas, 2007a). Example prob-
lems of composite beams are analysed to illus-
trate the method and demonstrate its efficiency
and wherever possible its accuracy. Moreover,
useful conclusions are drawn from the buckling
and dynamic response of the beam.

2 Statement of the problem

Let us consider an initially straight Euler-
Bernoulli beam of length l (Fig. 1), of con-
stant arbitrary cross-section of area A. The cross
section consists of materials in contact, each of
which can surround a finite number of inclu-
sions, with modulus of elasticity E j and shear
modulus G j, occupying the regions Ω j ( j =
1,2, . . .,K) of the y, z plane (Fig. 1). The mate-
rials of these regions are assumed homogeneous,
isotropic and linearly elastic. Let also the bound-
aries of the nonintersecting regions Ω j be denoted
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Figure 1: Prismatic element of an arbitrarily shaped constant cross section occupying region Ω (a) subjected
in bending, torsional and/or buckling loading (b).

by Γ j ( j = 1,2, . . .,K). These boundary curves
are piecewise smooth, i.e. they may have a fi-
nite number of corners. In Fig. 1a CY Z and Syz
are coordinate systems (not necessarily principal)
through the cross section’s centroid C and shear
center S, respectively. Moreover, yC, zC are the co-
ordinates of the centroid C with respect to Syz sys-
tem of axes. The beam is subjected to a compres-
sive centrally applied load together with arbitrar-
ily transverse and/or torsional distributed or con-
centrated loading, while its edges are restrained
by the most general linear boundary conditions.
The two considered problems are:

(i) The flexural-torsional buckling problem,
which is described by the following three coupled

ordinary differential equations

E1IZ
d4v
dx4 +E1IY Z

d4w
dx4 +P

(
d2v
dx2 − zC

d2θ
dx2

)

= pY (1)

E1IY
d4w
dx4 +E1IY Z

d4v
dx4 +P

(
d2w
dx2 +yC

d2θ
dx2

)

= pZ (2)

E1CS
d4θ
dx4 −G1It

d2θ
dx2

+P

(
i2ω

d2θ
dx2 − zC

d2v
dx2 +yC

d2w
dx2

)

= mx + pZyC − pY zC (3)
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subjected to the following boundary conditions

α1v(x)+α2RY (x) = α3 (4a)

α1
dv(x)

dx
+α2MZ(x) = α3 (4b)

β1w(x)+β2RZ(x) = β3 (5a)

β 1
dw(x)

dx
+β 2MY (x) = β 3 (5b)

γ1θ (x)+ γ2Mt(x) = γ3 (6a)

γ1
dθ (x)

dx
+ γ2Mb(x) = γ3 (6b)

at the beam ends x = 0, l, where v = v(x), w =
w(x) are the deflections of the shear center along
y, z axes, respectively; θ (x) is the angle of twist
of the cross-section about the shear center S; IY ,
IZ , IY Z are the moments and the product of inertia
with respect to the centroid C given as

IZ =
K

∑
j=1

E j

E1
IZ j, (7a)

IY =
K

∑
j=1

E j

E1
IY j, (7b)

IY Z =
K

∑
j=1

E j

E1
IY Z j, (7c)

with IY j, IZ j , IY Z j ( j = 1,2, . . .,K) are the mo-
ments and the product of inertia of the materials,
while, iω is the polar radius of inertia with respect
to the shear center S (Kollar, 2001a)

i2ω = z2
C +y2

C +
E1IZ +E1IY

K
∑
j=1

E j

E1
A j

(8)

Moreover,

CS =
K

∑
j=1

E j

E1
CS j, (9a)

It =
K

∑
j=1

G j

G1
It j (9b)

are the warping and torsion rigidities of the
composite cross section, with CS j and It j , ( j =

1,2, . . .,K), the corresponding constants of the Ω j

region, respectively, (Sauer, 1980) which are es-
tablished using a BEM procedure (Katsikadelis,
2002b).

In the boundary conditions (4), (5) RY , MY and
RZ , MZ are the reactions and bending moments
with respect to Y and Z axes, respectively, given
as

RY = −P
dv(x)

dx
−E1IZ

d3v(x)
dx3 −E1IY Z

d3w(x)
dx3

(10)

MY = −E1IY
d2w(x)

dx2 −E1IY Z
d2v(x)

dx2 (11)

RZ = −P
dw(x)

dx
−E1IY

d3w(x)
dx3 −E1IY Z

d3v(x)
dx3

(12)

MZ = E1IZ
d2v(x)

dx2 +E1IY Z
d2w(x)

dx2 (13)

(ii) The flexural-torsional vibration problem,
which is described by the following three coupled
partial differential equations

E1IZ
∂ 4v
∂x4 +E1IY Z

∂ 4w
∂x4 +ρ1A

(
∂ 2v
∂ t2 − zC

∂ 2θ
∂ t2

)

= pY (14)

E1IY
∂ 4w
∂x4 +E1IY Z

∂ 4v
∂x4 +ρ1A

(
∂ 2w
∂ t2 +yC

∂ 2θ
∂ t2

)

= pZ (15)

E1CS
∂ 4θ
∂x4 −G1It

∂ 2θ
∂x2 +ρ1IS

∂ 2θ
∂ t2

+ρ1A

(
−zC

∂ 2v
∂ t2 +yC

∂ 2w
∂ t2

)

= mx + pZyC − pY zC (16)

subjected to the following boundary conditions

α1v(x, t)+α2RY (x, t) = α3 (17a)

α1
∂v(x, t)

∂x
+α2MZ(x, t) = α3 (17b)

β1w(x, t)+β2RZ(x, t) = β3 (18a)

β 1
∂w(x, t)

∂x
+β 2MY (x, t) = β 3 (18b)
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γ1θ (x, t)+ γ2Mt(x, t) = γ3 (19a)

γ1
∂θ (x, t)

∂x
+ γ2Mb(x, t) = γ3 (19b)

at the beam ends x = 0, l, where v = v(x, t), w =
w(x, t) are the deflections of the shear center along
y, z axes, respectively; θ (x, t) is the angle of twist
of the cross-section about the shear center S; A is
the cross-sectional area and IS the polar moment
of inertia with respect to the shear center S given
as

A =
K

∑
j=1

ρ j

ρ1
A j, (20a)

IS =
K

∑
j=1

ρ j

ρ1
IS j (20b)

with ρ j, A j ( j = 1,2, . . .,K) being the mass densi-
ties and the areas of the materials, respectively.

The initial conditions are

v(x,0) = v0(x) (21a)

v̇(x,0) = v̇0(x) (21b)

w(x,0) = w0(x) (22a)

ẇ(x,0) = ẇ0(x) (22b)

θ (x,0) = θ 0(x) (23a)

θ̇ (x,0) = θ̇ 0(x) (23b)

In the boundary conditions (17), (18) RY , MY and
RZ , MZ are the reactions and bending moments
with respect to Y and Z axes, respectively, given
as

RY (x, t) = −E1IZ
∂ 3v(x, t)

∂x3 −E1IY Z
∂ 3w(x, t)

∂x3

(24)

MY (x, t) = −E1IY
∂ 2w(x, t)

∂x2 −E1IY Z
∂ 2v(x, t)

∂x2

(25)

RZ(x, t) = −E1IY
∂ 3w(x, t)

∂x3 −E1IY Z
∂ 3v(x, t)

∂x3

(26)

MZ(x, t) = E1IZ
∂ 2v(x, t)

∂x2 +E1IY Z
∂ 2w(x, t)

∂x2 (27)

while in Eqns. (6) and (19) Mt and Mb are the tor-
sional and warping moments, respectively, given
as (Sapountzakis and Tsiatas, 2007a) (in the buck-
ling case the time is excluded)

Mt(x, t) = −E1CS
∂ 3θ (x, t)

∂x3 +G1It
∂θ (x, t)

∂x
(28)

Mb(x, t) = −E1CS
∂ 2θ (x, t)

∂x2 (29)

Finally, αk, αk, βk, β k, γk, γk (k = 1,2,3) are func-
tions specified at the beam ends x = 0, l. Eqns. (4-
6) and (17-19) describe the most general linear
boundary conditions associated with the problem
at hand and can include elastic support or restrain.
It is apparent that all types of the conventional
boundary conditions (clamped, simply supported,
free or guided edge) can be derived form these
equations by specifying appropriately these func-
tions (e.g. for a clamped edge it is α1 = β1 = γ1 =
1, α1 = β 1 = γ1 = 1, α2 = α3 = β2 = β3 = γ2 =
γ3 = α2 = α3 = β 2 = β 3 = γ2 = γ3 = 0).

3 Integral representations – numerical solu-
tion

3.1 The flexural-torsional buckling problem

The flexural-torsional buckling problem of a com-
posite beam reduces in establishing the displace-
ment components v(x), w(x) and θ (x) having con-
tinuous derivatives up to the fourth order satisfy-
ing the coupled governing Eqns. (1)-(3) inside the
beam and the boundary conditions (4)-(6) at the
beam ends x = 0, l.

Eqns. (1)-(3) are solved using the Analog Equa-
tion Method as it was developed for ordinary
differential equations in (Sapountzakis and Kat-
sikadelis, 2000; Katsikadelis and Tsiatas, 2005;
Sapountzakis and Tsiatas, 2007b). This method is
applied for the problem at hand as follows. Let
v(x), w(x) and θ (x) be the sought solution of the
boundary value problem described by Eqns. (1)-
(3) and (4)-(6). Setting as u1(x) = v(x), u2(x) =
w(x), u3(x) = θ (x) and differentiating these func-
tions four times yields

d4ui

dx4 = bi(x) (i = 1, 2, 3) (30)
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Eqns. (30) indicate that the solution of Eqns. (1)-
(3) can be established by solving Eqns. (30) un-
der the same boundary conditions (4)-(6), pro-
vided that the fictitious load distributions bi(x)
(i = 1, 2, 3) are first established. These distribu-
tions can be determined using BEM.

Following the numerical procedure analytically
described in (Sapountzakis and Katsikadelis,
2000; Katsikadelis and Tsiatas, 2005) and em-
ploying the constant element assumption, the dis-
cretized integral form of the solution of Eqns. (30)
and their derivatives at the N collocation points is

ui = C4bi − (E1ûi +E2ûi,x +E3ûi,xx +E4ûi,xxx)
(31a)

ui,x = C3bi − (E1ûi,x +E2ûi,xx +E3ûi,xxx) (31b)

ui,xx = C2bi − (E1ûi,xx +E2ûi,xxx) (31c)

ui,xxx = C1bi −E1ûi,xxx (31d)

ui,xxxx = bi (31e)

where C j ( j = 1,2,3,4) are N ×N known matri-
ces; E j ( j = 1,2,3,4) are N ×2 also known ma-
trices and ui, ui,x, ui,xx, ui,xxx, ui,xxxx are vectors
including the values of ui(x) and their derivatives
at the N nodal points. Moreover,

ûi = {ui (0)ui (l)}T , (32a)

ûi,x =
{

dui (0)
dx

dui (l)
dx

}T

(32b)

ûi,xx =
{

d2ui (0)
dx2

d2ui (l)
dx2

}T

, (32c)

ûi,xxx =
{

d3ui (0)
dx3

d3ui (l)
dx3

}T

(32d)

are vectors including the two unknown boundary
values of the respective boundary quantities and
bi =

{
bi

1 bi
2 . . .bi

N

}T (i = 1, 2, 3) is the vector in-
cluding the N unknown nodal values of the ficti-
tious load.

Employing the aforementioned numerical proce-
dure for the coupled boundary conditions (4), (5)

the following set of linear equations is obtained

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D11 D12 0 D14 0 0 0 D18

0 D21 D22 0 0 0 D27 0
E31 E32 E33 E34 0 0 0 0
0 E42 E43 E44 0 0 0 0
0 0 D53 0 D55 D56 0 D58

0 0 D63 0 0 D66 D67 0
0 0 0 0 E31 E32 E33 E34

0 0 0 0 0 E42 E43 E44

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

û1

û1,x

û1,xx

û1,xxx

û2

û2,x

û2,xx

û2,xxx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ααα3

ααα3

0
0

βββ 3

βββ 3
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

F3

F4

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b1 +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

F3

F4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b2

(33)

while for the boundary conditions (6) we have

⎡
⎢⎢⎣

E11 E12 0 E14

0 E22 E23 0
E31 E32 E33 E34

0 E42 E43 E44

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

û3

û3,x

û3,xx

û3,xxx

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

γγγ3
γγγ3
0
0

⎫⎪⎪⎬
⎪⎪⎭

+

⎡
⎢⎢⎣

0
0

F3

F4

⎤
⎥⎥⎦b3 (34)

where D11, D12, D14, D18, D21, D22, D27, D53,
D55, D56, D58, D63, D66, D67, E22, E23, E1 j,
( j = 1,2,4) are 2× 2 known square matrices in-
cluding the values of the functions a j, aj, β j, β j

( j = 1,2) of Eqns. (4)-(6); ααα3, ααα3, βββ 3, βββ 3, γγγ3, γγγ3
are 2 × 1 known column matrices including the
boundary values of the functions a3, a3, β3, β 3,
γ3, γ3 of Eqns. (4)-(6); E jk, ( j = 3,4, k = 1,2,3,4)
are square 2×2 known coefficient matrices result-
ing from the values of the kernels at the beam ends
and F j ( j = 3,4) are 2×N rectangular known ma-
trices originating from the integration of the ker-
nels on the axis of the beam.

Eqns. (31) after eliminating the boundary quanti-
ties employing Eqns. (33) and (34), can be written
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as

ui = Tibi + ti, (35a)

ui,x = Tixbi + tix (35b)

ui,xx = Tixxbi + tixx, (35c)

ui,xxx = Tixxxbi + tixxx, (35d)

ui,xxxx = bi (35e)

where Ti, Tix, Tixx, Tixxx are known N ×N ma-
trices and ti, tix, tixx, tixxx are known N ×1 matri-
ces. It is worth here noting that for homogeneous
boundary conditions (α3 = α3 = β3 = β 3 = γ3 =
γ3 = 0) it is ti = tix = tixx = tixxx = 0.

In the conventional BEM, the load vectors bi are
known and Eqns. (35) are used to evaluate ui and
their derivatives at the N nodal points. This, how-
ever, can not be done here since bi are unknown.
For this purpose, 3N additional equations are de-
rived, which permit the establishment of bi. These
equations result by applying Eqns. (1)-(3) to the
N collocation points, leading to the formulation
of the following set of 3N simultaneous equations

(A+PB)

⎧⎨
⎩

b1

b2

b3

⎫⎬
⎭=

⎧⎨
⎩

pY

pZ

mx+pZyC−pY zC+GIt t3xx

⎫⎬
⎭

−P

⎧⎨
⎩

t1xx − zCt3xx

t2xx +yCt3xx

−zCt1xx +yCt2xx + i2ω t3xx

⎫⎬
⎭ (36)

In the above set of equations the matrices A and
B are evaluated from the expressions

A =

⎡
⎣ E1IZ E1IY Z 0

E1IYZ E1IY 0
0 0 E1CS −G1ItT3xx

⎤
⎦ (37)

B =

⎡
⎣ T1xx 0 −zCT3xx

0 T2xx yCT3xx

−zCT1xx yCT2xx i2ω T3xx

⎤
⎦ (38)

where E1IY , E1IZ , E1IY Z , E1CS, G1Itare N ×
N diagonal matrices including the values of the
E1IY , E1IZ , E1IY Z , E1CS, G1It quantities, respec-
tively, at the N nodal points. Moreover, pY , pZ

and mx are vectors containing the values of the
external loading at these points.

Solving the linear system of Eqns. (36) for the fic-
titious load distributions b1, b2, b3 the displace-
ments and their derivatives in the interior of the
beam are computed using Eqns. (35).

Buckling equation

In this case it is α3 = α3 = β3 = β 3 = γ3 = γ3 =
0 (homogeneous boundary conditions) and pX =
pY = mx = 0. Thus, Eq. (36) becomes

(A+PB)

⎧⎨
⎩

b1

b2

b3

⎫⎬
⎭ = 0 (39)

The condition that Eq. (39) has a non-trivial solu-
tion yields the buckling equation

det (A+PB) = 0 (40)

3.2 The flexural-torsional vibration problem

The solution procedure to the vibration problem
of homogeneous beams has been described in de-
tail in (Sapountzakis and Tsiatas, 2007a). How-
ever, for the completeness of the paper we present
the semidiscretized equation of motion, which for
the case of the composite beam takes the form

M

⎧⎨
⎩

b̈1

b̈2

b̈3

⎫⎬
⎭+K

⎧⎨
⎩

b1

b2

b3

⎫⎬
⎭ = f (41)

with

M =

⎡
⎣ ρ1AT1 0 −ρ1AzCT3

0 ρ1AT2 ρ1AyCT3

−ρ1AzCT1 ρ1AyCT2 ρ1IST3

⎤
⎦ (42)

K =

⎡
⎣ E1IZ E1IYZ 0

E1IY Z E1IY 0
0 0 E1CS −G1ItT3xx

⎤
⎦ (43)

f =

⎧⎨
⎩

pY

pZ

mx +pZyC −pY zC +G1Itt3xx

⎫⎬
⎭ (44)

playing the role of the generalized mass matrix,
stiffness matrix and force vector, respectively.

Eq. (41) can be solved numerically, using any
time step integration technique, to establish the
time dependent vectors b1, b2, b3. Subsequently,
the displacements as well as the stress resultants
are computed at any cross-section of the beam.
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Figure 2: Composite cross section of the beam of Example 1.
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Figure 3: Composite slab-and-beams cross section of the beam of Example 2.

4 Numerical examples

On the basis of the analytical and numerical pro-
cedures presented in the previous sections, a com-
puter program has been written and representa-
tive examples have been studied to demonstrate
the efficiency, wherever possible the accuracy
and the range of applications of the developed
method. The program, based on the numerical
implementation described in the previous, can be
used with no modifications for both homogeneous
(Sapountzakis and Tsiatas, 2007a) and compos-
ite beams of arbitrary cross section, subjected to
any linear boundary conditions and to an arbitrar-
ily dynamic loading.

Example 1

For comparison reasons, the composite beam of
Fig. 2, with length l = 1.0 m, ν1 = ν2 = 0.2,

ρ1 = ρ2 = 2500 kg/m3, b1 = h1 = 0.4 m has been
studied. Three different types starting from a
thin-walled and ending with a thick-walled cross-
section are considered, that is (i) b2 = h2 = 0.02
m (ii) b2 = h2 = 0.08 m and (iii) b2 = h2 = 0.20
m. In Table 1 the computed values of the buckling
load P for the cases of hinged-hinged (HH), fixed-
hinged (FH) and fixed-fixed (FF) boundary con-
ditions are presented. From the obtained results it
can be concluded that the influence of the bound-
ary conditions on the buckling load is significant,
while the buckling load is increasing monotoni-
cally with the ratio E2/E1. Moreover, in Tables
2 through 4 the first seven eigenfrequencies of
the aforementioned beam (hinged-hinged bound-
ary conditions) are presented for various values
of the ratio E2/E1 as compared with those pre-
sented in (Sapountzakis and Tsiatas, 2007a) for
E2/E1 = 1 and found to be in excellent agreement.
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Table 1: Buckling load P of the composite beam of Example 1.

b2 = h2 0.02m 0.08m 0.20m
E2/E1 HH FH FF HH FH FF HH FH FF

0.5 648 776 1008 34710 46046 60766 213968 425148 710847
1 992 1157 1462 54931 67326 84864 349988 678619 917804
2 1747 1991 2441 92100 107058 130933 513241 1048796 1166912

Table 2: Eigenfrequencies of the composite HH beam of Example 1 (b2 = h2 = 0.02 m).

b2 = h2 0.02m
E2/E1 0.5 1 2

Present study Present study (Sapountzakis and Tsiatas, 2007a) Present study
ω1 2.204 2.500 2.500 3.029
ω2 5.507 6.075 6.075 7.158
ω3 10.407 11.284 11.284 13.026
ω4 14.529 16.983 16.983 20.910
ω5 17.095 18.349 18.349 21.633
ω6 19.475 21.681 21.681 23.720
ω7 25.639 27.354 27.354 30.922

Table 3: Eigenfrequencies of the composite HH beam of Example 1 (b2 = h2 = 0.08 m).

b2 = h2 0.08m
E2/E1 0.5 1 2

Present study Present study (Sapountzakis and Tsiatas, 2007a) Present study
ω1 7.891 9.768 9.768 12.027
ω2 15.812 18.285 18.285 22.194
ω3 18.526 20.336 20.336 22.709
ω4 21.132 24.280 24.280 28.535
ω5 39.552 44.475 44.475 51.527
ω6 56.476 69.411 69.411 82.225
ω7 64.292 71.529 71.529 88.798

Table 4: Eigenfrequencies of the composite HH beam of Example 1 (b2 = h2 = 0.20 m).

b2 = h2 0.20m
E2/E1 0.5 1 2

Present study Present study (Sapountzakis and Tsiatas, 2007a) Present study
ω1 13.351 17.080 17.080 20.682
ω2 17.866 19.025 19.025 22.887
ω3 24.446 27.132 27.132 30.063
ω4 47.682 55.362 55.362 64.421
ω5 58.005 70.978 70.978 82.748
ω6 71.478 76.117 76.117 92.123
ω7 81.240 91.556 91.556 107.400
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Figure 4: Time history of the displacements for the hinged-hinged beam of Example 2.

Figure 5: Time history of the displacements for the fixed-hinged beam of Example 2.

Figure 6: Time history of the displacements for the fixed-fixed beam of Example 2.
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Table 5: Buckling load P of the composite beam of Example 2.

(HH) (FH) (F-FTS) (F-FTS) (F-FTS) (FF)
kR = 105 kR = 3×105 kR = 5×105

1013656 1750987 1464110 2121313 2738484 2998312

Table 6: Eigenfrequencies of the composite beam of Example 2.

(HH) (FH) (F-FTS) (F-FTS) (F-FTS) (FF)
kR = 107 kR = 108 kR = 109

3.146 4.500 5.640 6.070 6.112 6.117
3.248 4.915 7.132 7.132 7.132 7.132
9.816 13.364 12.869 15.900 16.202 16.235
10.824 15.263 19.666 19.666 19.666 19.666
12.588 15.932 21.787 22.094 22.099 22.100
23.328 27.147 22.602 29.956 31.170 31.290
28.334 33.254 37.241 38.569 38.569 38.569

From the aforementioned tables it can be pointed
out that all eigenfrequencies are increasing also
monotonically with the ratio E2/E1.

Example 2

The composite beam of length l = 40.0 m hav-
ing a cross section consisting of a concrete
C20/25 rectangular part stiffened by three con-
crete C35/45 beams (Fig. 3) has been stud-
ied. The data are E1IY = 1.64321× 108 kNm2,
E1IZ = 1.17524× 109 kNm2, E1Cs = 9.96332×
108 kNm4, G1It = 4.46380× 106 kNm2, A =
6.40092 m2, IS = 60.38196 m4, ρ1 = ρ2 = 2.5
ton/m3, zC = 1.48902 m. Three types of boundary
conditions, namely hinged-hinged (HH), fixed-
hinged (FH) and fixed-fixed (FF) are considered,
as well as a fixed-fixed with a torsional elas-
tic support (F-FTS) at x = l (all coefficients in
boundary conditions are set to zero except from
α1 = β1 = α1 = β 1 = 1 at x = 0, l, γ1 = γ1 = 1 at
x = 0 and γ1 = kR, γ2 = γ1 = 1 at x = l). In Ta-
bles 5 and 6 the buckling load P and the first seven
eigenfrequencies of the aforementioned beam are
presented. Moreover, the forced vibrations aris-
ing from the application of the dynamic loading
pZ(t) = pZ0 and pY (t)= pY 0 with zero initial con-
ditions are examined. In Figs. 4 through 6 the
time histories of the displacements at the cross-
section x = 20.0 m, for the three aforementioned

types of boundary conditions and pY 0 = 50 kN/m,
pZ0 = 25 kN/m are presented. The influence of
the boundary conditions on the buckling load, the
eigenfrequencies and the response of the beam is
pronounced.

5 Conclusions

In this paper a boundary element method is de-
veloped for the general flexural-torsional buck-
ling and vibration analysis of composite Euler-
Bernoulli beams of arbitrarily shaped cross sec-
tion. The composite beam consists of materials in
contact each of which can surround a finite num-
ber of inclusions. It is subjected to a compres-
sive centrally applied load together with arbitrar-
ily transverse and/or torsional distributed or con-
centrated loading, while its edges are restrained
by the most general linear boundary conditions.
The main conclusions that can be drawn from this
investigation are:

a. The general character of the proposed method
is verified from the fact that all basic equations
are formulated with respect to an arbitrary co-
ordinate system, which is not restricted to the
principal one.

b. The proposed method can treat composite
beams of both thin and thick walled cross sec-
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tions taking into account the warping along the
thickness of the walls.

c. The developed method overcomes the short-
coming of a possible thin tube theory (TTT)
solution, which its utilization has been proven
to be prohibitive even in thin walled homoge-
neous sections.

d. The method permits the inclusion of the
torsion-bending and flexural coupling stiff-
nesses which play an important role in the re-
sponse of the beam and have to be taken al-
ways into account.

e. The influence of the boundary conditions on
the buckling load is significant, while the
buckling load is increasing monotonically with
the ratio E2/E1.

f. All eigenfrequencies are increasing also
monotonically with the ratio E2/E1.

g. The computer program, based on the numer-
ical implementation described above, can be
used with no modifications for both homoge-
neous and composite beams of arbitrary cross
section, subjected to any linear boundary con-
ditions and to an arbitrarily dynamic loading.
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