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Cased Hole Flexural Modes in Anisotropic Formations
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Abstract: Based on the perturbation method,
for flexural wave in cased hole in anisotropic
formation, the alteration in the phase velocity
caused by the differences in elastic constants be-
tween anisotropic formation of interest and a ref-
erence, or unperturbed isotropic formation is ob-
tained. Assuming the cased hole is well bonded,
the Thomson-Haskell transfer matrix method is
applied to calculate the dispersion relation of flex-
ural wave in cased hole in unperturbed isotropic
formation. Both the cases of a fast and slow for-
mation are considered where the symmetry axis
of a transversely isotropic (TI) formation makes
an angle with the cased hole axis, the dispersion
of the phase velocity of the flexural mode in cased
holes is studied. The corresponding dispersion
curves of flexural wave in open hole are presented
simultaneously for comparison. The computa-
tional results indicate that because of the influence
of the casing, the flexural wave dispersion curves
in cased hole in both fast and slow TI formations
all almost tend toward an identical Stoneley wave
velocity at higher frequency. The casing and the
cement affect the form as well as the cut-off fre-
quency of flexural wave dispersion curves more
greatly in slow TI formation than in fast TI for-
mation. At a frequency high enough, the flexu-
ral and the Stoneley waves reach the appropriate
Scholte wave velocity in both the open hole and
cased hole situation.
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1 Introduction

The sonic logging is an important logging method
and has been widely applied in many fields such
as oil exploration, oil development and engi-
neering geophysics. In order to design and de-
velop an effective sonic logging instrument to ac-
quire the accurate information of formation as
well as the borehole from the sonic logging sig-
nal, the propagation of acoustic wave in bore-
hole has been and still is extensively studied.
In the past years, significant achievements have
been obtained in the field of borehole acoustics.
For isotropic elastic formation, the equations of
motion can be decoupled and solved analytically
by introducing displacement potential functions,
thus it has been studied thoroughly for the bore-
hole modes in isotropic formation. But usu-
ally, the formation is anisotropic, and the wave
propagation problem in general anisotropic solid
is complicated. The exact analytical solution
cannot be obtained, which brings much difficul-
ties to study the borehole waves in anisotropic
formation. Therefore, the approximate method
and pure numerical approach are very important.
For general homogeneous anisotropic medium,
an effective meshless method based on the local
Petrov-Galerkin approach is proposed by Sladek
[Sladek J, Sladek V, and Atluri (2004)] for solu-
tion elastodynamic problems. Subsequently, Al-
turi [Atluri, Liu, Han (2006)] developed a mixed
finite difference method within the framework
of the meshless local Petrov-Galerkin approach
for solving solid mechanics problems. Later, a
new numerical algorithm based on meshless lo-
cal Petrov-Galerkin approach and modified mov-
ing least square method was proposed by Gao
[Gao, Liu K, Liu Y (2006)] for analyzing the
wave propagation and dynamic fracture problems
in elastic media. For borehole problems, Ellef-
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sen [Ellefsen, Cheng, and Toksoz (1991)] inves-
tigated the dispersion curves of borehole modes
in weak anisotropic formation using perturba-
tion theory established on variational calculus and
Hamilton’s principle. Applying finite difference
method, Leslie and Randall [Leslie and Randall
(1992)], Liu and Sinha [Liu and Sinha (2003)]
computed and analyzed the full wave acoustic
fields in various complicated borehole model.
Considering borehole waves decay away from
the borehole, Sinha and Norris [Sinha, Norris,
and Chang (1994), Norris and Sinha (1996)] pro-
posed a perturbation integral procedure to study
the Stoneley and flexural wave dispersion curves
as well as excitation characters when the sym-
metry axis of the anisotropic formation makes an
angle with the borehole axis. Zhang and Wang
[Zhang and Wang (1996)] introduced three pertur-
bation variables to denote the deviation in elastic
constants between transversely isotropic (TI) for-
mation of interest and a reference isotropic forma-
tion. Using perturbation method, the exact zero-
order as well as the first-order approximate solu-
tions of the wave field outside and inside the bore-
hole is obtained when the symmetry axis of TI
formation is perpendicular to the borehole axis.
Subsequently, this method is further extended to
study the borehole wave in anisotropic two-phase
media [Zhang and Wang (2000)]. However, all of
the above studies is focused on the open hole case.
For the borehole modes in cased hole, the effects
of the casing and cement properties on modes
in isotropic formation have been extensively dis-
cussed by Tubman [Tubman, Cheng, and Tok-
soz (1984), Tubman, Cheng, Cole, and Toksoz
(1986)] and Schmitt [Schmitt (1988), (1993)].
Recently, Li et al. [Li, Wang, Liu, Cao, Lu, Xie,
Liu, and Lu (2006)] extended the perturbation in-
tegral method to the cased hole system and in-
vestigated the acoustoelastic effect on cased hole
guide waves in stressed formation, where the for-
mation is isotropic.

In this paper, the perturbation method proposed
by Sinha and Norris [Sinha and Norris (1994)]
is applied to the situation of well bonded cased
hole for study of the dispersion of phase veloc-
ity of the flexural mode in anisotropic forma-

tion. Before computing the perturbation integral,
the Thomsen-Haskell transfer matrix method is
adopted to solve the dispersion relation of cased
hole flexural waves in reference isotropic forma-
tion. Numerical examples are provided for both
fast and slow TI formation where the symmetry
axis of a TI formation makes an angle with the
cased hole axis. The flexural wave dispersion
curve of cased hole in fast and slow formations
with different inclinations with respect to the TI
symmetry axis are presented. The computational
results show that the influence of the casing on
flexural wave dispersion in cased hole is greater in
slow TI formation than in fast TI formation. Com-
pare to the corresponding flexural modes in open
hole, the flexural waves in cased hole have the
higher cut-off frequency, and the high-frequency
asymptotes of dispersion curves all tend toward
an identical casing-fluid interface Stoneley wave
speed approximately. The flexural wave as well
as Stoneley wave both in open hole and cased hole
reach the appropriate Scholte wave velocity at the
high enough frequency.

2 Formulation

A fluid-filled cased hole is a radially layered struc-
ture composed of the coaxial casing and the ce-
ment sheath annuli surrounding a fluid cylinder.
A cylindrical coordinates is adopted as shown in
Figure 1. The origin of coordinates is in the cen-
ter of the cased hole. There are two interfaces:
the first one between the casing and the cement
sheath, and the second one between the cement
sheath and the formation, which are called as the
first and the second interface, respectively.

To the cased hole-formation system, the inner-
most fluid in the cased hole is the first layer, and
the outermost infinite anisotropic elastic forma-
tion is the fourth layer. Both the casing and the
cement sheath are isotropic. They are the second
and the third layer, respectively. ρi (i = 1,2,3,4)
and Ri (i = 1,2,3) are the density and outer radius
of each layer, respectively. The velocity of longi-
tudinal wave and shear wave in each layer is vpi

(i = 1,2,3) and vsi (i = 2,3), respectively, where
the subscript “i” denotes the layer number. As-
suming there is a m order multipole sonic source
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Figure 1: A fluid-filled cased hole model

in the center of the cased hole, the equations of
motion are satisfied in each layer.

For isotropic elastic media, introducing the dis-
placement potential functions, the displacements
are

u1 = ∇ϕ1, ui = ∇ϕi +∇×(χiẑ)+∇×∇×(ηi ẑ),
(i = 2,3) (1)

where ẑ is the axial unit vector, ϕi (i = 1,2,3) and
χi,ηi (i = 2,3) are displacement potential func-
tions.

Ignoring the body force, the wave equation in
fluid is

∇2ϕ1 +k2
p1ϕ1 = 0 (2)

for the casing and the cement sheath, the wave
equations are

∇2ϕi +k2
piϕi = 0, ∇2χi +k2

siχi = 0,

∇2ηi +k2
siηi = 0, (i = 2,3)

(3)

where

kp1 =
ω

vp1
, kpi =

ω
vpi

, ksi =
ω
vsi

, (i = 2,3)

(4)

in which kpi and ksi are wavenumber of longitu-
dinal wave and shear wave respectively, ω is the
angular frequency.

For anisotropic formation, the governing equa-
tions can not be decoupled by introducing the dis-
placement potential functions, the equations of
motion in term of displacements are

ci jkluk, jl = ρ4ui,tt (5)

where ci jkl is the elastic stiffnesses of anisotropic
formation, comma “,” represents the partial dif-
ferential with respect to its behind letter corre-
sponding geometric coordinates, the summation
convention on repeated subscripts is implied. The
subscript “, tt” means the second-order partial dif-
ferential with respect to time t.

In following displacement and stress components,
the superscript indicates layer number and the
subscript denotes the corresponding components.
At the cased hole wall r = R1, both the normal
displacements and stresses are continuous while
the tangential stresses are zero, i.e.,

u2
r(R1) = u1

r(R1), σ2
rr(R1) = σ1

rr(R1) = −p1(R1),

σ2
rθ (R1) = 0, σ2

rz(R1) = 0

(6)

where p1(R1) is the acoustic pressure of the direct
wave and the reflected wave in fluid at the cased
hole wall.

In this paper, we assume that the cased hole is
well-bonded. In this case, the interface between
the casing and the cement sheath as well as the
interface between the cement sheath and the for-
mation can be considered as a fixed connection
surface. The displacements and the stresses com-
ponents are continuous at the interface r = Ri

(i = 2,3)

σn
rr(Rn) = σn+1

rr (Rn), σn
rθ (Rn) = σn+1

rθ (Rn),

σn
rz(Rn) = σn+1

rz (Rn), un
r (Rn) = un+1

r (Rn),

un
θ (Rn) = un+1

θ (Rn), un
z (Rn) = un+1

z (Rn),
(n = 2,3)

(7)

Therefore, the whole problem can be generalized
as to solve the governing equations (2), (3) and
(5) under the boundary condition (6) and (7). Ow-
ing to the difficulty to solve the equations of mo-
tion in general anisotropic formation analytically,
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the approximation method is applied here. Actu-
ally, what we concern in sonic logging is borehole
modes such as Stoneley wave and flexural wave.
The perturbation integral procedure can be em-
ployed to calculate the changes in eigenfrequency
of modes caused by the anisotropy of the forma-
tion. This method is first proposed by Sinha and
Norris [Sinha and Norris (1994)] to aim at the
open hole case, it is also suitable for the cased
hole [Li, Wang, Liu, Cao, Lu, Xie, Liu, and Lu
(2006)].

Here we present a simple derivation of a pertur-
bation model specifically adapted for the waves
propagating along a cased hole. Before consider-
ing the specific problem of the cased hole, some
general results are presented for an arbitrary vol-
ume V of anisotropic elastic material bounded by
the surface S. The steady-state form of the motion
equations in anisotropic medium of interest is

ci jkluk, jl +ρω2ui = 0 (8)

where ci jkl is the elastic stiffnesses and ρ is the
mass density of the anisotropic medium in per-
turbed state. Assuming the corresponding equa-
tions in unperturbed reference model is

c0
i jklu

0
k, jl +ρ0(ω0)2u0

i = 0 (9)

where c0
i jkl is the elastic stiffnesses of unperturbed

or reference model with density ρ0, u0
i denotes

a harmonic solution at frequency ω0. The sub-
script “0” refers all quantities to the unperturbed
reference state. The parameters and solutions of
the anisotropic model of interest in perturbed state
may be expressed as those of the reference model
in unperturbed state plus a small perturbation

ci jkl = c0
i jkl +εc′i jkl, ρ = ρ0 +ερ ′,

ui = u0
i +εu′i, ω = ω0 +εω ′ (10)

where ε is a small perturbation parameter, de-
fined by the relative difference between the per-
turbed elastic stiffnesses ci jkl and unperturbed
elastic stiffnesses c0

i jkl . Differing from weak ma-
terial anisotropy as defined by Thomsen [Thom-
sen (1986)], the small perturbation parameter in
this context depends on the choice of the unper-
turbed elastic constants and it can be made pro-
gressively smaller by selecting the unperturbed

elastic constants closer to the perturbed constants
[Sinha and Norris (1994)].

Taking the inner product in both sides of equa-
tion (8) with u∗i , integrating over the volume V ,
using the perturbational expressions in equations
(10), applying the traction free boundary condi-
tions that borehole waves decay away from the
borehole in both unperturbed and perturbed state
[Sinha and Kostek (1996)], and keeping terms up
to the first-order approximation about ε , we ob-
tain

ω ′ =
∫

V c′i jklu
0
k,l(u0

i, j)
∗dV

2ω0
∫

V ρ0u0
i (u0

i )∗dV
− ω0 ∫

V ρ ′u0
i (u0

i )
∗dV

2
∫

V ρ0u0
i (u0

i )∗dV
(11)

where ∗ denotes complex conjugate. For a cased
hole, the volume integral in equation (11) should
be carried out layer by layer. If let ρ = ρ0, then
ρ ′ = 0, the second term of the right-hand side in
equation (11) vanishes. The alteration in phase
velocity caused by anisotropic formation can be
gained according to the relation v = ω/k. Con-
sidering the displacement can be written as vari-
able separable form u0(r,θ , z)= û0(r,θ )eikz, the z
integral may be eliminated in equation (11). At
last, the equation (11) can be expressed explicitly
in the cylindrical coordinates as

v′

v0 =
v−v0

v0 =
ω ′

ω0

=

∫ ∞
R3

rdr
∫ 2π

0 dθ [c′i jkl û
0
k,l(û0

i, j)
∗]

2(ω0)2
4
∑

n=1

∫ Rn
Rn−1

rdr
∫ 2π

0 dθ [ρ0û0
i (û0

i )∗]

(12)

where R0 = 0 is the inside radius of the fluid in
cased hole, R4 = ∞ is the outer radius of the for-
mation, v0 and v are phase velocity of zero-order
cased hole mode in unperturbed and perturbed
state respectively. Because only the anisotropic
formation contributes to the alterations in phase
velocity of cased borehole waves, the integral is
carried out merely in the formation for the numer-
ator of equation (12).

Before applying equation (12), the elastic con-
stants of the ideal model in unperturbed or ref-
erence state should be determined. Consider-
ing both the casing and the cement sheath are
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isotropic, their elastic constants in unperturbed
state are completely identical with those in per-
turbed state. The equivalent isotropic elastic con-
stants μ and λ of reference formation in unper-
turbed state can be obtained from the plane wave
velocities along cased hole axis in anisotropic for-
mation. For the qSH and qSV polarized flexural
waves propagating along the cased hole axis, the
equivalent isotropic elastic constants of reference
formation in unperturbed state are given respec-
tively as [Sinha and Norris (1994)]

μqSH = ρ4V
2
qSH, λqSH = ρ4(V 2

qP−2V 2
qSH)

μqSV = ρ4V
2
qSV, λqSV = ρ4(V 2

qP−2V 2
qSV)

(13)

where VqP, VqSV and VqSH are plane wave ve-
locities along the cased hole axis in anisotropic
formation. The subscript qSH and qSV denote
the equivalent isotropic elastic constants for the
qSH and qSV polarized flexural wave in cased
hole, respectively. These equivalent isotropic pa-
rameters serve to define the flexural wave solu-
tions in the reference or unperturbed state. Any
contribution to the dispersion of cased hole flex-
ural waves because of the differences in the elas-
tic constants of the anisotropic and the equivalent
isotropic formation is accounted for in the pertur-
bation model discussed earlier. This choice of
equivalent isotropic elastic constants may make
the perturbative correction minimal, which results
in high accuracy of perturbed solution [Sinha and
Norris (1994)].

In this paper, the Thomsen-Haskell transfer ma-
trix method is adopted to calculate the dispersion
relations of flexural waves in cased hole in un-
perturbed or reference isotropic formation firstly
before using equation (12).

3 Numerical computation and results

At last, we provide a numerical example. A
schematic of a cased hole and the global coordi-
nate system xyz are shown in Figure 2. The cas-
ing and the cement sheath are isotropic and the TI
symmetry axis of the formation is in xz plane and
makes an angle ϕ with the cased hole axis z. Es-
tablishing the local Cartesian coordinate x′y′z′ in

formation, z′ axis coincides with the TI symme-
try axis and y′ axis is parallel to y axis in global
coordinate system.

z z′

x

x′

The formation

The cement sheath 

The casing 

Fluid

Figure 2: A fluid-filled cased hole in TI formation

The elastic modulus matrix of formation in local
Cartesian coordinate system is

Clocal =

⎛
⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C11−C12

2

⎞
⎟⎟⎟⎟⎟⎟⎠

(14)

where C11, C12, C13, C33 and C44 are five inde-
pendent elastic stiffnesses for TI formation. The
elastic modulus matrix in global Cartesian coordi-
nate can be obtained by coordinate transformation
through introducing a 6×6 transformation matrix
M [Auld, (1973)]

M =⎛
⎜⎜⎜⎜⎝

cos2 ϕ 0 sin2 ϕ 0 sin2ϕ 0
0 1 0 0 0 0

sin2 ϕ 0 cos2 ϕ 0 −sin2ϕ 0
0 0 0 cosϕ 0 −sinϕ

− 1
2 sin2ϕ 0 1

2 sin2ϕ 0 cos2ϕ 0
0 0 0 sinϕ 0 cosϕ

⎞
⎟⎟⎟⎟⎠

(15)

then, the elastic modulus matrix of formation in
global Cartesian coordinate system is

Cglobal = MClocalM
T (16)

where MT is the transpose of matrix M.
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The cylindrical coordinate is always adopted for
the borehole problem. Therefore, the elastic mod-
ulus matrix of formation in global Cartesian coor-
dinate should be transformed into cylindrical co-
ordinate, the transformation matrix Mcylindrical
is

Mcylindrical =
⎛
⎜⎜⎜⎜⎝

cos2 θ sin2 θ 0 0 0 sin2θ
sin2 θ cos2 θ 0 0 0 −sin2θ

0 0 1 0 0 0
0 0 0 cosθ −sinθ 0
0 0 0 sinθ cosθ 0

− 1
2 sin2θ 1

2 sin2θ 0 0 0 cos2θ

⎞
⎟⎟⎟⎟⎠

(17)

the elastic modulus matrix of formation in cylin-
drical coordinate can be expressed as

Ccylindrical = McylindricalCglobalM
T
cylindrical

(18)

According to equation (18), the elastic matrix of
formation in cylindrical coordinate has a com-
plex relation with angle θ if the TI symmetry
axis is not parallel to the cased hole axis, which
can be said in a simpler way that with a tilted
axis of symmetry, the formation is azimuthally
anisotropic. That is the main reason that the equa-
tions of motion in anisotropic media cannot be
solved analytically.

The material and geometric parameters of cased
hole and TI formation are listed in Table 1 and
Table 2.

The procedure to compute the dispersion curves
of cased hole flexural waves in anisotropic for-
mation is: (1) calculate the plane-wave velocities
in anisotropic formation and obtain the equivalent
elastic constants of reference isotropic formation
from the equation (13); (2) compute the disper-
sion relation of cased hole flexural waves in un-
perturbed or reference isotropic formation using
transfer matrix method, and the displacement so-
lutions in unperturbed state is also obtained simul-
taneously; (3) calculate the changes in phase ve-
locity of cased hole flexural waves in anisotropic
formation according to equation (12), then the
dispersion curves can be obtained.

According to the computational parameters in Ta-
ble 1 and Table 2, Figures 3 and 4, respectively,
show qP, qSV and SH wave velocities in fast and
slow TI formation as a function of propagation di-
rection from the TI symmetry axis.

Figures 5 and 6 illustrate the dispersion curves of
qSV and SH polarized case hole flexural waves
in fast and slow TI formation respectively for
four different inclinations of the cased hole with
respect to the TI symmetry axis of formation.
The corresponding dispersion curves of open hole
flexural waves are displayed in Figures 7 and Fig-
ure 8 for comparison. Here the dispersion curves
in Figure 7 are perfectly agreement with the cor-
responding curves obtained by Sinha and Norris
[Sinha and Norris (1994)], which indicates the
computational results in this paper are correct.

Comparing Figure 5 with 7, and Figure 6 with 8,
the form of dispersion curves for cased hole and
open hole are similar in fast TI formation while
much different in slow TI formation. In addi-
tional, the cut-off frequency for flexural waves
in cased hole is always higher than that for open
hole, especially in slow TI formation. That means
the influence of the casing and the cement sheath
on dispersion curves of flexural wave is much
greater in slow TI formation than in fast TI for-
mation.

In the open hole situation, from Figure7, both
qSV and SH polarized flexural wave dispersion
curves for the different borehole inclinations in
fast TI formation coalesce gradually with the fre-
quency increase and tend toward a definite value
at higher frequencies. While from Figure 8, both
qSV and SH polarized flexural waves in slow
TI formation exhibit a rather uniform spread at
higher as well as lower frequencies. Unlike the
open hole, in the cased hole case, from Figures
5 and 6, the velocity of all the qSV and SH po-
larized flexural waves in both fast and slow TI
formation approach a definite value uniformly at
higher frequencies. At the same frequency arbi-
trary, the velocity of flexural waves in cased hole
is always greater than the corresponding flexural
wave velocity in open hole.

The above results indicate that the high-frequency
flexural wave velocity in both open hole and cased
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Table 1: The cased hole model parameters

Parameter vp/(m/s) vs/(m/s) ρ (Kg/m3) Rn−1/(m) Rn/(m)
The fluid 1500 1000 0 0.0635
The casing 6098 3354 7500 0.0635 0.0715
The cement 2823 1729 1920 0.0715 0.1016

Table 2: The TI stratum parameters

Parameter C11/(GPa) C12/(GPa) C13/(GPa) C33/(GPa) C44/(GPa) ρ (Kg/m3)
Fast stratum 40.9 10.3 8.5 26.9 10.5 2230
Slow stratum 20.58 10.68 5.04 11.2 4.75 2200
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Figure 3: The plane wave velocity in fast TI formation as a function of propagation direction from the TI
symmetry axis. (a) qP wave velocity, (b) qSV and SH wave velocity
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Figure 4: The plane wave velocity in slow TI formation as a function of propagation direction from the TI
symmetry axis. (a) qP wave velocity, (b) qSV and SH wave velocity
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Figure 5: Dispersion curves for cased hole flexural waves in fast TI formation with different inclinations (a)
qSV polarized cased hole flexural wave, (b) SH polarized cased hole flexural wave
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Figure 6: Dispersion curves for cased hole flexural waves in slow TI formation with different inclinations
(a) qSV polarized cased hole flexural wave, (b) SH polarized cased hole flexural wave
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Figure 7: Dispersion curves for open hole flexural waves in fast TI formation with different inclinations (a)
qSV polarized open hole flexural wave, (b) SH polarized open hole flexural wave
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Figure 8: Dispersion curves for open hole flexural waves in slow TI formation with different inclinations (a)
qSV polarized open hole flexural wave, (b) SH polarized open hole flexural wave

hole are all close to their coressponding Stone-
ley wave speed. Because the Stoneley wave is
a interface wave, in the open hole condition, the
interface is the one between the borehole liquid
and anisotropic formation. Since the Stoneley
wave velocity in open hole in fast formation es-
sentially approach to the compressional speed in
the liquid when the frequency is high enough, all
these flexural wave dispersion curves will close
together gradually with the frequency increase.
Whereas the Stoneley wave velocity in open hole
in slow formation relates to the anisotropic con-
stants of the surrounding formation, the high-
frequency asymptotes of the flexural wave disper-
sion curves for the different borehole inclination
are also dissimilar.

In the cased hole situation, the interface for Stone-
ley wave is the one between the borehole liquid
and the casing. The casing is the fast medium, so
the Stoneley wave velocities at higher frequencies
in slow TI formation are almost equal to those in
fast TI formation, which are compressional speed
in the liquid and independent of the inclination
of the borehole respect to the TI symmetry axis.
Therefore, the high-frequency asymptotes of the
flexural wave velocities of cased hole are also
nearly identical both in fast and slow TI forma-
tion. For the Stoneley wave in cased hole, in-
tegrate the properties of the casing whatever the
frequency and is thus faster than in the open hole.
Thus, the flexural wave velocity in cased hole is

always higher than the corresponding velocity in
open hole at same frequency.

In both the open hole and cased hole, at a fre-
quency high enough, the phase velocity of both
Stoneley and the flexural modes tend toward that
of the appropriate Scholte wave.

4 Conclusion

Based on the perturbation method and the
Thomson-Haskell transfer matrix method, the
flexural wave dispersion curves of well-boned
cased hole in anisotropic formation are investi-
gated. The numerical results show that compar-
ing to the open hole situation, the existence of the
casing and the cement sheath makes the cut-off
frequency of flexural waves in cased hole move
to higher frequency, especially in slow formation.
Integrating the properties of the casing, the flex-
ural wave in cased hole is always faster than in
the open hole at arbitrarily same frequency. Un-
like the open hole situation, the high-frequency
asymptotes of the flexural wave dispersion curves
in both fast and slow TI formation with differ-
ent inclinations are all almost close to an identi-
cal fluid-casing interface Stoneley wave velocity.
The flexural wave and Stoneley wave in both open
hole and cased hole reach the appropriate Scholte
wave velocity at a frequency high enough.
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