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An Adaptive Multi-resolution Method for Solving PDE’s
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Abstract: In this paper, we present a multi-
resolution adaptive algorithm for solving prob-
lems described by partial differential equations.
The technique is based on the collocation method
using Fup basis functions, which belong to a
class of Rvachev’s infinitely differentiable finite
functions. As it is possible to calculate deriva-
tion values of Fup basis functions of high de-
gree in a precise yet simple way, so it is possi-
ble to efficiently apply strong formulation proce-
dures. The mesh free method developed in this
work is named Adaptive Fup Collocation Method
(AFCM). The distribution of collocation points
within the observed area is changed adaptively,
depending on the character of the solution func-
tion and the accuracy criteria. The numerical
procedure is designed through a method of lines
(MOL). The basic characteristic of the method
is an adaptive multi-resolution approach in solv-
ing problems with different spatial and temporal
scales and with a desired level of accuracy using
the entire family of Fup basis functions. Good
performance of the proposed method is shown
through the numerical examples by using a few
general advection dominated problems. The re-
sults demonstrate that the method is very con-
venient for solving engineering problems which
require extensive computational resources, espe-
cially in describing sharp fronts or high gradients
and changes of narrow transition zones in space
and time.
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1 Introduction

Many physical and engineering problems are
characterized with zones of sharp gradients that
include existence of sharp interface and narrow
transition zones. Numerical modeling of such
processes usually encounters significant difficul-
ties in resolving numerical oscillations and dis-
persion. To overcome these difficulties requires a
very fine mesh or grid and small time steps, which
are taxing to computational resources.

Recent numerical approaches focus on developing
adaptive methods with low computational costs.
The first attempt in that direction was obtained
by using classical finite difference and finite el-
ement methods [Alves et al. (2002)]. The main
difficulty in applying these methods was finding
a stable solution at the transition between zones
having different discretization. Recently, there
have been many attempts to develop new adap-
tive procedures. Among others, special atten-
tion is paid to adaptive wavelet Galerkin meth-
ods [Beylkin and Keiser (1997), Chiavassa et
al. (2002)] and collocation methods [Bertoluzza
(1996), Bertoluzza and Naldi (1996), Vasilyev
and Paolucci (1997), Hesthaven and Jameson
(1998), Holmstrom (1999), Vasilyev and Bow-
man (2000), Cruz et al. (2001)]. Spline adap-
tive collocation methods are described in Ra-
machandran and Dudukovic (1984), Bhattacharya
and Joseph (1998), and Wang, Keast and Muir
(2004). The adaptive wavelet Galerkin meth-
ods have three potential difficulties: treatment of
general boundary conditions, treatment of non-
linearities, and solving problems with complex
domains. The first two difficulties can be suc-
cessfully solved using the collocation procedure,
while the third is still an open research topic.

In recent years, a number of mesh-free methods
have been developed for solving partial differen-
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tial equations. Mesh-free methods can be clas-
sified into the so-called “meshless methods” and
“truly meshless methods” categories. In the first
category, some background mesh is still neces-
sary for numerical integration of the weak form
(e.g. element-free Galerkin method [Belytschko,
Lu and Gu (1994)]). In truly meshless methods,
both interpolation and integration are performed
without a mesh (e.g. RBFN-based method [Kansa
(1990)], meshless local Petrov-Galerkin method
[(Atluri and Shen (2002), Lin and Atluri (2000)]).
The power and flexibility of the MLPG approach
were reported for elasto-static problems [Atluri,
Han and Rajendran (2004)], and elasto-dynamic
problems [Han and Atluri (2004)]. Mesh-free
methods based on radial basis functions (RBFs)
have recently gained much attention in many dif-
ferent applications in numerical analysis. Some
applications using RBFs for heat transfer prob-
lems and solution of the Navier-Stokes equations
were reported in [Mai-Duy (2004)], the numerical
simulation of two-phase flow in porous media in
[Iske and Käser (2005)], application to transport
phenomena in [Šarler (2005)].

In mesh-free methods, construction of basis func-
tions is the central issue. The domain for
field variable approximation (the support domain)
should be small compared with the entire problem
domain (compact support). Finite basis functions
which do not depend upon the type and degree of
the boundary-value problem shall be selected. To
avoid too much complexity in the numerical solu-
tion, it is necessary to calculate relatively simply
the values of the basis functions and their deriva-
tives as well as the scalar products of the function
with itself, its derivatives, and elementary func-
tions.

Apart from wavelets and splines, there is a rel-
atively less known class of atomic or Rb f basis
functions (Rvachev’s basis functions) [Rvachev
and Rvachev (1971), Gotovac (1986)]. Atomic
functions are classified between classic polyno-
mials and spline functions. However, in prac-
tice, their application as basis functions is closer
to splines or wavelets. Thus, the class of atomic
functions can be regarded as splines of an in-
finitely high degree. In the study by Gotovac

(1986), the existing knowledge on atomic func-
tions is systemized and basis functions are trans-
formed into a numerically applicable form. Pro-
cedures for calculation of function values are
given by Gotovac and Kozulić (1999) together
with an illustration of basic possibilities for their
application in practice. Recently, an application
of Fup basis functions has been shown (one type
of atomic basis functions) in signal processing
[Kravchenko et al. (2001), Zelkin et al. (2002)],
for initial value problems [Gotovac and Kozulić
(2002)], and in a non-adaptive collocation method
for boundary value problems [Kozulić and Goto-
vac (2000), Gotovac et al. (2003)].

A new adaptive collocation method, developed
by using Fup basis functions, is presented in this
paper. The numerical procedure is implemented
through a method of lines. Spatial discretiza-
tion and grid adaptation are obtained by Fup
collocation transform, while time integration is
obtained by solving the system of Differential-
Algebraic Equations (DAE). Fup basis functions
have good approximation properties as well as the
very important property of universality [Rvachev
and Rvachev (1979)], which means that the vec-
tor space of n-th dimension is contained within
the vector space of (n + 1) dimension. Numeri-
cally, it means that every new added basis func-
tion will improve the solution or at least maintain
the obtained accuracy. These functions support
a multi-resolution analysis and adaptive colloca-
tion approach in which universality and infinite
smoothness leads to an efficient solution with de-
sirable accuracy. An application of the presented
algorithm is demonstrated by a few numerical ex-
amples. The results obtained by these analyses
illustrate that the proposed Adaptive Fup Collo-
cation Method (AFCM) is well suited for solving
problems with sharp fronts and for dealing with
general boundary conditions and nonlinearities.

In the following sections we show a brief review
of Fup basis functions, description of the adaptive
numerical model with main features of the Fup
collocation transform, results of numerical exam-
ples, and conclusions.
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2 Fup basis functions

Atomic or Rvachev’s basis functions – Rb f have
a compact support and they are infinitely differ-
entiable functions [Gotovac and Kozulić (1999),
Rvachev and Rvachev (1971)]. They are clas-
sified between classical polynomials and spline
functions, but in practice their application as basis
functions is closer to splines and wavelets.

Atomic functions, y(.), are defined as solutions of
differential-functional equations of the following
type:

Ly(x) = λ
M

∑
k=1

Cky(ax−bk) (1)

where L is a linear differential operator with con-
stant coefficients, λ is a scalar different than zero,
Ck are coefficients of the linear combination, a >
1 is a parameter defining the length of the com-
pact support, and bk are coefficients which deter-
mine displacements of basis functions. The fact
that atomic basis functions are exact solutions of
differential-functional equations or linear combi-
nations of these exact solutions represents a key
difference from splines and wavelets which are
obtained from some types of mathematical trans-
forms.

The simplest function, which is most studied
among atomic basis functions, is the up(x) func-
tion (Fig. 1 and 2). Function up(x) is a smooth
function with compact support [-1,1], which is
obtained as a solution of a differential-functional
equation:

up′(x) = 2up(2x+1)−2up(2x−1) (2)

with the normalized condition:

∞∫
−∞

up(x)dx =
1∫

−1

up(x)dx = 1. (3)

Function up(x) can be expressed as an inverse
Fourier transform:

up(x) =
1

2π

∞∫
−∞

eitx
∞

∏
j=1

(
sin(t2− j)

t2− j

)
dt. (4)

Figure 2 shows the development of up(x) function
by a convolution process using an infinite number
of independent uniform probability density func-
tions (pdf) (Eq. 4). Every next convolution uses
a uniform pdf with double decreasing support. It
means that function up(x) can also be regarded as
a pdf function due to condition (3).

Since Eq. (4) represents the exact, but not math-
ematically suitable expression, Rvachev (1982)
and Gotovac and Kozulić (1999) provided a nu-
merically more adequate expression for calculat-
ing function up(x):

up(x) =

1−
∞

∑
k=1

(−1)1+p1+...+pk pk

k

∑
j=0

Cjk(x−0, p1 . . . pk) j

(5)

where coefficients Cjk are rational numbers deter-
mined according to the following expression:

Cjk =
1
j!

2 j( j+1)/2up(−1+2−(k− j));

j = 0,1, . . .,k; k = 1,2, . . .,∞ (6)

Calculation of the few first up(x) values in Eq.
(6), as well as all details regarding the calculation
of the function up(x) values, is provided in Goto-
vac and Kozulić (1999), and Gotovac and Kozulić
(2002). Argument (x − 0, p1 . . . pk) in Eq. (5)
is the difference between the real value of coor-
dinate x and its binary form with k bits, where
p1 . . . pk are the digits 0 or 1 of the binary develop-
ment of the coordinate x value. Therefore, the ac-
curacy of the coordinate x computation, and thus
the accuracy of the up(x) function in an arbitrary
point, depends upon computer accuracy.

From Eq. (2) it can be seen that the derivatives of
the up(x) function can be calculated simply from
the values of the function itself. The general ex-
pression for the derivative of the m-th degree is:

up(m)(x) = 2C2
m+1

2m

∑
k=1

δkup(2mx+2m +1−2k),

m ∈ N (7)

where C2
m+1 = m(m+1)/2 is the binomial coef-

ficient and δk are the coefficients with ±1 value
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Figure 1: Function up(x) and its derivatives
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which determine the sign of each term. They
change according to the following recursive for-
mulas:

δ2k−1 = δk, δ2k = −δk, k ∈ N, δ1 = 1. (8)

Figure 1 shows the up(x) function and its deriva-
tives. It can be observed that each derivative con-
sists of up(x) functions compressed to the interval
of 2−m+1 length with ordinates “extended” with
the 2C2

m+1 factor.

The Fupn(x) function can be defined as a linear
combination of the up(x) function. The general
form of the Fourier transform Fn(t) for the func-
tion Fupn(x) follows:

Fn(t) =
(

sint2−n−1

t2−n−1

)n+1 ∞

∏
j=n+2

sin t2− j

t2− j . (9)

Function Fupn(x) can be written as an inverse
Fourier transform:

Fupn(x) =
1

2π

∞∫
−∞

eitxFn(t)dt. (10)

Eq. (10) is not numerically suitable for the calcu-
lation of Fupn(x) function. It is numerically more
convenient to construct the Fupn(x) function in
the form of a linear combination of displaced
up(x) functions. Index n denotes the highest de-
gree of the polynomial which can be expressed
accurately in the form of a linear combination of
Fupn(x) basis functions displaced by a character-
istic interval 2−n. For n = 0, Fup0(x) = up(x),
since Fupn(x) function values are calculated us-
ing a linear combination of displaced up(x) func-
tions:

Fupn(x) =
∞

∑
k=0

Ck(n)up

(
x−1− k

2n +
n+2
2n+1

)
(11)

where coefficient C0(n) is:

C0(n) = 2C2
n+1 = 2n(n+1)/2 (12)

and other coefficients of a linear combination in
Eq. (11) are determined as Ck(n) = C0(n) ·C′

k(n),

where a recursive formula is used for calculating
auxiliary coefficients C′

k(n):

C′
0(n) = 1, when k = 0; i.e. when k > 0

C′
k(n) = (−1)kCk

n+1−
min{k;2n+1−1}

∑
j=1

C′
k− j(n) ·δ j+1

(13)

The Fupn(x) function support is determined ac-
cording to:

supp Fupn(x) =
[−(n+2)2−n−1; (n+2)2−n−1]

(14)

where supp denotes the length of the compact
support. Derivatives of the Fupn(x) function are
also obtained by a linear combination of deriva-
tives of displaced up(x) functions according to
Eq. (11). Fig. 3 shows the Fup2(x) function and
its first two derivatives.

Thus a quadratic polynomial on a characteristic
interval 2−n can be exactly expressed in the fol-
lowing way:

x2 = 2−6
2

∑
k=−1

(
k2 −5/18

)
Fup2 (x−k/4). (15)

Generally, n + 2 Fupn(x) or 2n + 1 up(x) basis
functions are needed for the development of an n-
order polynomial on a characteristic interval 2−n.
This clearly shows that Fupn(x) basis functions
are more suitable and efficient than up(x) basis
functions for numerical purposes. A more de-
tailed discussion about Fup and generally atomic
basis functions is given in Gotovac and Kozulić
(1999), and Gotovac and Kozulić (2002).

3 Adaptive Fup Collocation Method

This section presents a complete description of
the Adaptive Fup Collocation Method including
all necessary steps for its implementation.

3.1 Fup collocation transform

The Fup collocation transform (FCT) is an effi-
cient numerical tool for describing various types
of signals and functions using a linear combina-
tion of the Fup basis functions. It is a discrete
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Figure 3: Function Fup2(x) and its first two derivatives

type of transform, similar to the classic discrete
Fourier transform (DFT), where linear combina-
tion coefficients are called Fup coefficients. How-
ever, the main disadvantage of DFT lies in the fact
that unresolved location of important frequencies
has not been defined due to non–localized proper-
ties of classic trigonometric basis functions. Thus,
the essential problem with DFT becomes a natu-
ral advantage of a presented transform based on
the chosen basis function with a compact support
(Figure 1 and 3). In other words, the specific
frequencies are associated with a particular spa-
tial location, which is not possible in the classic
Fourier transform. Fup coefficients are associated
with a specific resolution level and location in the
space/time domain. This resolution level defines
the spatial discretization level prescribed by a spe-
cific number of collocation points used to describe
the given function. For example, a smooth func-

tion is presented only by a few frequencies in the
DFT or a few coarse resolution levels in the FCT.
On the other hand, for a function with sharp fronts
and large gradients, the DFT shows a wide range
of frequencies without any information on their
spatial locations, while the FCT adds higher reso-
lution levels and frequencies only in the front re-
gions and resolves all spatial scales and their lo-
cations. This procedure is also known as a multi-
resolution analysis. The transform is obtained
through a collocation procedure and therefore it is
called the Fup collocation transform. The high ef-
ficiency of the FCT lies in the transform property
that keeps only significant Fup coefficients which
accurately describe the chosen function. Other
Fup coefficients present a residual between a true
function and their Fup presentation which must be
less than the prescribed spatial threshold ε . This
threshold has a fundamental meaning for the FCT
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because it presents the Fup approximation accu-
racy or the FCT precision level. In this way, any
functions in a multi-resolution fashion are decom-
posed using only a few significant Fup basis func-
tions with appropriate scales (frequencies) and lo-
cations, a desired level of accuracy, and minimum
computational cost.

As in usual transformations (e.g., Fourier) if the
Fup coefficients are known, the function can be
calculated and vice versa. For example, the multi-
resolution expansion of the u(x) function can be
expressed in the following way:

u(x) =
J→∞

∑
j=0

(2 jmin+ j+n/2)

∑
k=−n/2

d j
k ϕ j

k (x) (16)

where j shows the resolution level from zero to a
maximum level J, needed for the Fup presentation
(16), n is the Fup order, jmin is the resolution at
the zero level, d j

k are Fup coefficients, ϕ j
k are Fup

basis functions, and k denotes the location index
at the current level. We consider a set of dyadic
grids:

G j =
{

x j
k ∈ R : x j

k = 2− jk, k ∈ Z
}

, j ∈ Z (17)

where x j
k are the grid collocation points. Note that

an even numbered collocation point of G j+1 al-
ready exists in G j (x j+1

2k = x j
k). It implies the re-

lation G j ⊂ G j+1. The example of a dyadic grid
is displayed in Fig. 4. We use regular grid termi-
nology for a grid containing all possible points at
all levels. The grid is irregular if at least one col-
location point, at any resolution level, is omitted.

LE
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4

X2X1

Figure 4: Example of the regular dyadic grid

If we define the domain Ω = [X1,X2], then the
characteristic interval at each level is equal to

the scale or distance between adjacent collocation
points:

Δx j =
X2−X1

2 jmin+ j . (18)

For demonstrating FCT, consider the following
test function:

f (x) = − tanh

(
x−2/3

0.02

)
(19)

with a relatively high threshold of ε = 0.07 which
implies that the residual between the Fup ap-
proximation and function (19) must be less than
the prescribed threshold. Other parameters are
jmin=2, X1=0, X2=2, and n = 4. Figure 5 shows
the location of internal and external basis func-
tions and corresponding collocation points. Basis
functions are characterized by vertices or peaks
where they have maximum values. All basis func-
tions whose vertices are located inside the domain
are called internal basis functions. Other func-
tions are external basis functions and only their
influence within the domain is considered (bold
parts of the external basis functions in Fig. 5).

The best choice for locations of the collocation
points are vertices of the internal basis func-
tions as proven numerically for splines in Prenter
(1989), for wavelets in Vasilyev and Paolucci
(1997), and for Fup basis functions in Gotovac
and Kozulić (1999).

Moreover, the main difficulty in transformations
with localized basis functions is the special treat-
ment of the boundary. For a complete Fup ap-
proximation in each characteristic interval Δx j,
we need n + 2 Fupn(x) basis functions (i.e. Eq.
15) which exactly develops an n-order polyno-
mial. This request is violated near the boundary
if external basis functions are not used and if the
level of accuracy is less than inside the domain
(Fig. 5). If external basis functions are used, then
a problem arises when defining locations of addi-
tional collocation points and consistent conditions
for their implementation in the collocation proce-
dure. Bertoluzza and Naldi (1996) reported three
possible solutions for solving this problem: 1)
without external basis functions that leads to a sta-
ble but inaccurate solution, as mentioned above,
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2) by constructing internal basis functions near
the boundary of higher order accuracy than other
internal basis functions, and 3) by replacing ad-
ditional collocation points at the locations which
belong to higher levels near the boundary [Vasi-
lyev and Paolucci (1997)].

Another approach has been employed in this pa-
per which arises from the properties of the Fup
basis function. For all n/2 external basis func-
tions at the left and right boundaries, the colloca-
tion points are located at the boundary (at X1 and
X2) as shown in Fig. 5.

The approximation for internal and external ba-
sis functions should satisfy the function values in
corresponding collocation points and the first n/2
derivatives in boundary collocation points (at X1

and X2), respectively. The location of each basis
function is actually determined by the location of
the vertices and defined by b j

k = X1 +kΔx j .

The calculation of basis function values and their
derivatives at a general characteristic interval Δx j

should be done in the following form with respect
to a basic characteristic interval 2−n:

ϕ j
k
(m)

(x) =
1

(2nΔx j)
(m) Fup(m)

n

(
x−b j

k

2nΔx j

)
(20)

where m is the order of the derivative. The com-
pact support of the basis function at each level has
the (n+2)Δx j length.

Figure 6 presents the adaptive multi-resolution
Fup collocation transform for the chosen function
(19). Figure 6a shows an adaptive grid for all lev-
els and internal basis functions for the zero and

the first level. Each next level includes two times
more internal basis functions with two times less
support and scale (Eq. 18). Note that smaller
scales at higher levels involve higher frequencies
and detailed approximation properties which are
particularly important for zones with large gradi-
ents. Zero level is the starting (coarsest) level that
is always present in the grid. The FCT satisfies
function values in all collocation points and for
the first two derivatives in boundary points (Fig-
ure 6b). The key step of the FCT is the trans-
fer from the current level to the next level. The
residual between the true function and the pre-
vious level approximation is checked and points
where residual is below the prescribed threshold
are dropped from the grid (Figure 6c). This pro-
cedure presents an a priori adaptive criterion for
defining the new collocation points at the next
level (different from a classical a posteriori crite-
rion in the adaptive finite element method). Note
that residuals are always zero for even collocation
points. Each retained point must be surrounded
by n+2 basis functions which enable a consistent
approximation for the transfer to the next level. In
addition, external basis functions should be added
if points near the boundary are present in the grid.

For the first and for each subsequent level, the col-
location algorithm should only satisfy the resid-
ual between the true function and the previous
level approximation. Boundary derivatives for the
first and every next level are homogeneous (zero
value) since they are satisfactory at the zero level.

Higher levels include only higher frequencies and
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Figure 6: Multi-resolution approximation of the function (19), a) adaptive grid development and internal ba-
sis functions, b) FCT approximation and function (19), and c) a priori adaptive criterion for new collocation
points based on residual between function (19) and their FCT approximation.
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show a more detailed description of the chosen
function. The collocation points are added only
around the front where the residual from the pre-
vious level is greater than the prescribed threshold
(Figure 6b). Finally, a residual between the true
function and the Fup approximation up to five
levels is less than the threshold within the entire
domain. In this way, we can decompose any func-
tion in a multi-resolution fashion by employing
only a few significant Fup basis functions with ap-
propriate scales (frequencies) and locations, with
a desired level of accuracy and a near minimum
computational cost.

Finally, the meaning of the threshold is twofold:
a) it presents an a priori adaptive criterion in such
a way that points can be dropped from the grid
where the residual between the real function and
the Fup approximation is less than the threshold,
and b) it defines accuracy of the approximation
because final absolute difference between the Fup
approximation and the real function must be less
than the threshold.

In general, the Fup collocation transform modifies
Eq. (16) in order to use the adaptive procedure
and can be presented by:

uJ(x) =
J

∑
j=0

∑
k∈Z j

d j
kϕ j

k (x) (21)

where Z j is the irregular grid containing only
the significant collocation points and the Fup ba-
sis functions obtained using the above presented
adaptive procedure (Fig 5). The function values
are satisfied in collocation points:

∑
k∈Z j

d j
kϕ j

k (x j
p) = Δ j(x j

p), p ∈ Z j : 0 ≤ p ≤ 2 jmin+ j;

j = 0, . . .,J (22)

The boundary derivatives are satisfied in points X1

and X2:

∑
k∈Z j

d j
kϕ j

k

(i)
(Xb) = Δ(i)

j (Xb), i = 1, . . . ,n/2;

b = 1,2; j = 0, . . . ,J

(23)

The residual vector has the following form:

Δ j(x j
p) = f (x j

p), p ∈ Z j : 0 ≤ p ≤ 2 jmin+ j;

j = 0

f (x j
p)−u j−1(x j

p), p ∈ Z j : 0 ≤ p ≤ 2 jmin+ j;

j = 1, . . .,J

Δ(i)
j (Xb) = f (i)(Xb), j = 0; b = 1,2

0, j = 1, . . .,J

(24)

3.2 Adaptive numerical algorithm

The main idea of the numerical model presented
here is to employ the FCT spatial description in
an adaptive algorithm for solving PDEs. Thus,
the adaptive Fup collocation method was cre-
ated. The main feature of the method is adaptive
changes of the grid in space and time according to
different spatial and temporal scales determined
during the adaptation procedure. In this way, the
grid follows the system dynamics.

The AFCM is designed by a method of lines using
the separation between spatial and temporal evo-
lution. After each time step, the space discretiza-
tion on a dyadic grid is obtained by the Fup collo-
cation transform and corresponding spatial adap-
tive strategy. Time integration is obtained by solv-
ing the system of differential-algebraic equations
written in a general form suitable for many engi-
neering problems:

A(t,u)
∂u
∂ t

= F
(

t,x,u,u(m)
)

(25)

0 = G
(

t,x,u,u(m)
)

(26)

where u is the solution, m is the order of deriva-
tives and A, F, and G are linear or nonlinear
operators depending upon the considered prob-
lem. Equation (25) represents time–dependent
partial differential equations which describe time
evolution of the solution while algebraic equa-
tion (26) presents boundary conditions (Dirich-
let, Neumann, or Chauchy mixed type). Figure
7 presents a flow chart of the adaptive Fup collo-
cation method. In this paper, we mainly focus on
the spatial approximation, while temporal integra-
tion is solved using the classic multistep routines.
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Figure 7: Flow chart for the AFCM

The general numerical algorithm consists of
three commonly used basic steps [Cruz et al.
(2001), Vasilyev and Bowman (2000), Wang et al.
(2004)]:

1. Spatial grid adaptation procedure.

2. Calculation of spatial derivatives.

3. Time integration procedure.

Subsequently, the above steps are described in de-
tail.

3.2.1 Spatial grid adaptation

The spatial grid adaptation procedure means
changing the grid in order to resolve different spa-
tial scales. The spatial adaptive procedure is per-
formed after each time step according to the pre-

scribed FCT and the corresponding adaptive strat-
egy. This procedure dynamically changes the grid
and significantly reduces the computational cost.
The main part of the spatial adaptation strategy is
the Fup collocation transform or the approxima-
tion of the solution from the initial conditions or
previous time step. All FCT points are called ba-
sic points since they create the basic grid. Apart
from basic points (which are related to an a pri-
ori adaptive criterion), we need additional points
which enable consistent approximation of the sys-
tem dynamics (temporal solution changes) during
the calculated adaptive time step Δt. Basic and
additional points create the total grid needed for
the description of the system dynamics from time
T to time T + Δt. The basic hypothesis behind
the algorithm (during the time step Δt) is that the
solution does not “move” outside the border of
the adapted non–uniform grid. However, the to-
tal grid is not appropriate for time integration be-
cause of the repetition of some collocation points
at different levels. Thus, the total grid needs to
be transformed into an effective grid suitable for
time integration.

The spatial grid adaptation strategy consists of
commonly used steps [Cruz at al. (2003), Hes-
thaven and Jameson (1998), Vasilyev and Bow-
man (2000)]. Their modification and adjustment
to the AFCM are summarized below:

a) Knowing the function values from the initial
conditions or from previous time steps, we
perform the FCT solution. In this way we ob-
tain the basic grid (based on the a priori adap-
tive criterion) required for the Fup approxima-
tion with a desired solution accuracy defined
by threshold ε . Furthermore, we get a contin-
uous solution and all derivatives in the form
of a linear combination of the Fup basis func-
tions. These basic points describe the solution
at time T , but additional points are needed for
the description of possible solution changes
between T and T +Δt.

b) For each basic point x j
k, we add a certain

number of additional points to the left and
right at the same level (x j

k+i, i =−NL, . . . ,NR).
These points are included to guarantee an
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accurate approximation of a possible move-
ment of sharp solution features during the
time step. For advection dominated problems,
the maximum allowed time step must be re-
lated to the maximum velocity in the follow-
ing way [Cruz, Mendes and Magalhes (2001)],
Δtadapt = max(NL,NR)Δx jmax/vmax, in order to
guarantee that the front will not move beyond
a distance max(NL,NR)Δx jmax at the finest res-
olution level. Note that we chose an arbitrary
number of additional points (NL,NR) which
are directly connected with size of the time
step.

c) For each basic point x j
k, we add ad-

ditional points at the arbitrary num-
ber (M) for higher resolution levels
(x j+l

2l(k−NU
L )−2l+1

, . . .,x j+l
2l(k+NU

R )+2l−1
, l =

1, . . .,M). Note that parameters NU
L and

NU
R must be less or equal to NL and NR,

respectively, since it is impossible to add
points at higher levels without the existence
of corresponding points at lower levels. These
points are included to guarantee an accurate
approximation if the solution becomes steeper
in this part of the domain during the time step.
For these additional points and for the number
of higher resolution levels (M), there is no
exact calculation due to a priori unknown
steepness of the solution during the next
time step. Numerical experiments show that
M = 1 is usually sufficient for most problems,
but it generally depends on numerical and
physical characteristics and should be tested
for all kinds of problems [Cruz, Mendes
and Magalhes (2001), Vasilyev and Bowman
(2000)]. In this paper, we employ M = 1 as a
sufficient number for very accurate modeling
of the advection dominated problems.

d) Create the total grid by adding basic and ad-
ditional points. In the case of more dependent
variables (each one having its own grid) create
the union of all particular grids.

e) The effective grid is constructed from the to-
tal grid in the following way. At the zero res-
olution level, all collocation points belong to
the effective grid, but at higher levels only odd

numbered collocation points are kept. Thus,
this procedure reduces the number of colloca-
tion points (approximately 50% for 1-D, but
25% for 2-D and only 12.5% for 3-D prob-
lems).

This adaptive procedure can be utilized by differ-
ent criteria for the grid adaptation. Apart from the
analysis of function values, the procedure can use
function derivatives or some other physical crite-
ria (Peclet number) or a combination of different
numerical and physical criteria.

3.2.2 Calculation of spatial derivatives

The time integration algorithm (DAE system
(25)-(26)) requires numerous calculations of spa-
tial derivatives on an adaptive grid in operators F
and G. An efficient algorithm requires fast and
accurate calculation of spatial derivatives from
the function values at collocation points. Hence
we apply a standard procedure and construct the
finite difference (FD) operator on an adaptive
non–uniform grid [Cruz, Mendes and Magalhes
(2001), Vasilyev and Bowman (2000)]. Note that
the Fup order is closely related to the order of
the FD operator. If we use the same order for
Fup basis functions and for the FD operator, the
calculated spatial derivatives on an adaptive non–
uniform grid should be very similar.

3.2.3 Time integration

Time integration is obtained by solving the system
of the differential – algebraic Eqs. (25)-(26) with
initial conditions obtained either from original
initial conditions (first time step) or from the pre-
vious time step. After each time step, the system
(25)-(26) changes as a result of the applied spatial
grid adaptation and contains all points from the
adapted grid. During the time step, the adaptive
grid and the system (25)-(26) remain unchanged.

By applying the collocation procedure to the sys-
tem (25)-(26) and using the described FD operator
for spatial derivatives and backward differential
formulas (BDF) for temporal derivatives, a dis-
crete implicit form of the DAE system can be ob-
tained, which can be solved for a given time step
by public domain subroutine DASPK [Ascher and
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Petzold (1998)]:

0 = H
(

tn,un,
∂un

∂ t

)
= H

(
tn,un,

k

∑
j=0

α (1)
j un− j

)

(27)

where α (1)
j are BDF coefficients, n is the index of

the current time step, and k represents the order of
the method.

DASPK uses the implicit Petzold-Gear (BDF)
method with a variable order (up to the fifth order)
and the adaptive inner step size with variable co-
efficient strategy. Note that it is a very important
to distinguish the outer time step when the adap-
tive grid remains unchanged from the inner time
step needed for time integrator routine DASPK to
achieve accuracy and stability. This routine is ap-
propriate for systems of stiff equations (usually
for strongly nonlinear groundwater problems) and
it attempts to keep the local error proportional to
a user-specified tolerance [Vasilyev and Bowman
(2000)]. Unfortunately, it does not guarantee that
the global integration error is controlled; this is
the reason why this tolerance should be smaller
by a few orders than threshold ε , in order to keep
the global numerical accuracy closely related to
the spatial approximation error.

Within a DASPK subroutine, the modified New-
ton method is used for solving the nonlinear sys-
tem (25)-(26). Without a loss of generality, we
can show the Newton algorithm in case of the sim-
ple backward Euler method or the BDF method of
the first order (k = 1):

uν+1
n =

uν
n −
(

1
Δtn

∂H
∂u′ +

∂H
∂u

)−1

H
(

tn,uν
n ,

uν
n −un−1

Δtn

)
(28)

where ν presents the index of the Newton itera-
tion. Special attention should be devoted to con-
sistent initial conditions. This algorithm usually
enables only one factorization of the finite dif-
ference Jacobian per time step, but the procedure
loses the quadratic convergence properties. De-
spite that, numerical simulations show that this
approach is relatively cheap and efficient. The

Jacobian is presented by a very sparse matrix.
For 1-D problems, this matrix can be arranged
in a banded form, but for 2-D problems it is
not possible. Hence we use a sparse IMSL rou-
tine, LFTXG, which is implemented in the routine
DASPK.

4 Numerical examples

Two examples are presented in this section to il-
lustrate efficiency of the adaptive Fup collocation
method. The first example is Burgers equation
with small viscosity. The results show the abil-
ity of the method in modeling stationary increased
shocks. The second example presents double
wave propagation which illustrates the strength of
the method in handling a pure hyperbolic coupled
system of wave equations.

4.1 Burgers equation

Burgers equation results from an application of
the Navier–Stokes equation to unidirectional flow
without pressure gradient and small viscosity.
The solution is characterized with one dimen-
sional shock that is stationary in space, but in-
creases in time. The problem is described by the
following equation, and initial and boundary con-
ditions:

∂u
∂ t

= v
∂ 2u
∂x2 −u

∂u
∂x

(29)

u(x,0) = −sin(πx) (30)

u(±1, t) = 0 (31)

where u is dimensionless velocity, while the do-
main and viscosity are defined by: x ∈ [−1,1];
v = 10−2/π .

Initial conditions are very simple and monotonic.
Dirchlet boundary conditions are homogeneous.
Analytic and numerical solutions of this problem
obtained via a wavelet collocation method can be



An Adaptive Multi-resolution Method for Solving PDE’s 65

found in Vasilyev and Paolucci (1997):

u(x, t) = −
[ ∞∫
−∞

sin(π(x−η))

· exp

(
−cos (π(x−η))

2πv

)
exp

(
− η2

4vt

)
dη

]
/[ ∞∫

−∞

exp

(
−cos (π (x−η ))

2πv

)

· exp

(
− η2

4vt

)
dη

]
. (32)

The adaptive algorithm uses the following param-
eters: NL = NR = 2, NU

L = NU
R = 0, M = 1, n = 6,

ε = 10−5, jmin = 4. Figure 8 shows time evolution
of the solution. In the initial stages of the pro-
cess, the solution is not demanding and requires
a relatively large time step. Approximately after
time 0.7/π , shock sharpness increases rapidly and
needs higher levels and frequencies. After time
1.3/π , shock reaches the maximum steepness and
grid requirement.

This example is a classical nonlinear benchmark
test that shows ability to handle a shock which
is fixed in space, but rapidly changes steepness
in time. The shock is very narrow due to small
viscosity and needs higher resolution levels, es-
pecially in later time steps. The grid follows all
changes in solution structure during time simula-
tion.

An efficiency of the algorithm is illustrated by a
compression coefficient that is the ratio between a
number of collocation points of the non–adaptive
uniform grid at the maximum resolution level and
a number of collocation points of the adaptive
grid. The compression ratio is very high in the
initial time steps due to lower solution demand.
However, with increase of the shock steepness,
the number of levels and collocation points in-
creases progressively and therefore the compres-
sion ratio decreases. In later time steps, the so-
lution becomes very stiff and needs an implicit
Gear BDF method for efficient time integration,
although in initial stages the problem is non-stiff;
it requires that the compression ratio drop down
to six.

The comparison between analytical and numeri-
cal solutions shows the accuracy of the proposed
algorithm (Fig. 9). Numerical error is larger
outside of the shock and approximately similar
within the whole domain, which presents one of
the natural advantages of the method. In this ex-
ample, numerical error is larger than the threshold
ε , but keeps the same order of the accuracy.

4.2 Double pulse propagation

Wave processes that can be described as pure hy-
perbolic problems are one of the most demand-
ing tasks in the numerical analysis. We consider
two waves that travel in opposite directions and
interact to each other. This example has general
meaning and shows the ability of the method to
solve the coupled system of hyperbolic equations
with a reaction term. The double pulse propaga-
tion problem is described by the following system
of equations and initial and boundary conditions
[Alves et al. (2002)]:

∂u
∂ t

= −∂u
∂x

+10uv;

∂v
∂ t

= +
∂v
∂x

−10uv
(33)

u(x,0) =
{

1, 0.3 < x < 0.4
0, elsewhere

}
;

v(x,0) =
{

1, 0.6 < x < 0.7
0, elsewhere

} (34)

u(0, t) = v(1, t) = 0;

∂u(1, t)
∂x

=
∂v(0, t)

∂x
= 0

(35)

where u and v are dimensionless wave velocities,
while the domain is defined by x ∈ [0,1].
The initial conditions are very demanding because
they consist of two pulses or waves and four prac-
tically discontinuous fronts. The boundary con-
ditions are mixed (Dirichlet and Neumann type)
while the Neumann type corresponds to an out-
flow boundary for each wave. The problem was
solved with an adaptive multi-resolution approach
by Alves et al. (2002).

The adaptive algorithm uses the following pa-
rameters: NL = NR = 2, NU

L = NU
R = 2, M = 1,
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Figure 8: Numerical solution of the problem I: velocity (left) and adapted grid (right)
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Figure 9: Difference between numerical (u∗) and exact (u) solution at time t = 1.5/π

n = 2, ε = 10−3, jmin = 4, jmax = 11. We pre-
scribe maximum level because initial conditions
describe abrupt velocity fronts that cannot be ap-
proximated accurately with the given threshold.
Figure 10 shows time evolution of the wave pro-
cess. At first, waves only go in opposite direc-
tions. The reaction term is zero while waves do
not overlap and interact with each other. Be-
cause of the opposite reaction term, one wave ex-
its higher with a positive slope, while the second
wave exits lower with a negative slope through
the interaction zone. After the interactive period,
waves travel to the opposite outflow boundary and
exit outside the domain.

The adaptive algorithm uses a nearly constant
number of collocation points (around 250-260
points). A slight reduction of this number is ob-
tained during the interactive period, and means
that the compression ratio is around seven. The
numerical solution obtained by the AFCM is prac-
tically the same as the solution obtained by Alves
et al. (2002).

Solving this relatively simple physical process is
not trivial. If we use the proposed numerical
algorithm, unphysical and artificial oscillations
around fronts occur. The classical central oriented
FD operator for the advective term is not adequate
for pure hyperbolic problems. In these problems,

the method should adopt high–resolutionbounded
FD schemes. Here we use the SMART high–
resolution scheme for an advective term defined
by Alves et al. (2002) that has a boundedness
property, but introduces some artificial diffusion.
The scheme uses four closest points and corre-
sponds to the Fup2(x) basis functions. Because
of the high accuracy of the SMART scheme and
the adaptive algorithm, artificial diffusion can be
neglected for practical purposes. If we have even
a small but stabile diffusive term, as is the case
in advection dominated problems, use of bounded
high–resolution schemes is not necessary because
unphysical oscillations can be reduced within the
range of the threshold. This example can serve as
the upper limit of the possible and physical based
advection dominated problems.

5 Conclusions

The main purpose of this work is to present an
adaptive multi-resolution method for solution of
PDE’s and to demonstrate its ability in describ-
ing problems with sharp gradients, fronts, and
narrow transition zones that change in space and
time. The technique is based on the collocation
method using infinitely differentiable Fup basis
functions. The numerical procedure is designed
through a method of lines. Space discretization



68 Copyright c© 2007 Tech Science Press CMC, vol.6, no.2, pp.51-70, 2007

x

c

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1
t = 0.980

x

u*
,v

*

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

t = 0.0

v*u*

x

u*
,v

*

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

1.25

t = 0.125

u*

v*

x

u*
,v

*

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

1.25

1.5

1.75
t = 0.375

u*

v*

x

j

0 0.25 0.5 0.75 1
0

1

2

3

4

5

6

7
t = 0.0

x

j

0 0.25 0.5 0.75 1
0

1

2

3

4

5

6

7
t = 0.125

x

j

0 0.25 0.5 0.75 1
0

1

2

3

4

5

6

7
t = 0.375

Figure 10: Numerical solution of the problem II: velocity (left) and adapted grid (right)
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and grid adaptation on a dyadic grid is obtained
by the Fup collocation transform, while time in-
tegration is reduced to solving a system of DAE
equations. The AFCM enables adaptive multi-
resolution evolution of system dynamics resolv-
ing different spatial and temporal scales with a
desired level of accuracy using the entire family
of the Fup basis functions.

The main advantages of the proposed mesh-free
method are: (1) the possibility of resolving a wide
range of spatial and temporal scales on near opti-
mal adaptive grid, (2) reduced computational ef-
forts due to the space and time adaptation, (3)
predefined mesh and numerical integration are
avoided, and (4) an accurate numerical solution
with global numerical error is closely related to
the prescribed spatial threshold. That implies ac-
tive control of numerical errors, especially numer-
ical oscillations and dispersion.

The numerical model is tested and verified with a
few general advection dominated problems. Re-
sults show that new adaptive Fup collocation
method is well suited for dealing with general
boundary conditions and nonlinearities. Further
work on this research is now being conducted in
order to extension the algorithm to 2D problems
with complex domain and simultaneous space-
time Fup approach.
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Gotovac, B.; Kozulić, V. (1999): On a selection
of basis functions in numerical analyses of engi-
neering problems. Int. J. Eng. Model., vol. 12(1-
4), pp. 25-41.
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