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Robust Reduction Method for Biomolecules Modeling
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Abstract: This paper concerns the application
and demonstration of robust reduction methodol-
ogy for biomolecular structure modeling, which
is able to estimate dynamics of large proteins.
The understanding of large protein dynamics is
germane to gain insight into biological functions
related to conformation change that is well de-
scribed by normal modes. In general, proteins
exhibit the complicated potential field and the
large degrees of freedom, resulting in the com-
putational prohibition for large protein dynamics.
In this article, large protein dynamics is investi-
gated with modeling reduction schemes. The per-
formance of hierarchical condensation methods
implemented in the paper is compared with that
obtained from full original model, successfully
demonstrating robustness of reduction method.
The examples presented in these results also
show that the computational accuracy of reduc-
tion method is maintained, while computational
cost is reduced.
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1 Introduction

Recent advent of high efficient computational
techniques enables us to estimate protein dynam-
ics more accurately in a more realistic environ-
ment. Molecular Dynamics simulation is one
of the most common methodologies to estimate
molecular behaviors at atomic level as computa-
tional capability increases enormously [McCam-
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mon and Harvey. (1987); Shen and Atluri (2004)].
As it is evident during observations of change of
molecular structures, the size and length scales
of protein structures of interest increase. For a
particular purpose, it may not necessary to ac-
count for every microscopic detail in the mod-
eling formulation. Furthermore, Molecular Dy-
namics simulation is not applicable to large bio-
logical structures requiring the large spatial and
temporal scales [Cui and Bahar (2005); Kim, Jang
and Jeong (2006)]. As a consequence, the normal
mode analysis, which has enabled the dynamic
analysis in engineering [Xie and Long (2006)],
has recently contributed significantly as a stan-
dard technique in the analysis of the dynamics
of biological macromolecules [Cui, Li, Ma and
Karplus (2004); Tama and Brooks (2006); Hay-
ward and Go (1995)]. Normal mode analysis is
performed with standard semi-empirical poten-
tials, as far as low frequency normal modes are
concerned. Its primary objective is to identify
and characterize the conformational fluctuations,
dominated by low-frequency normal modes, of
large biological macromolecules. Nevertheless,
the large structural biological system often suf-
fers from memory problem during computation
using normal mode analysis. In this regard, Gaus-
sian network model and/or elastic network model
which may be one of the alternatives to the nor-
mal mode analysis has become prominent to over-
come their limitations of conventional schemes.
The related publications have shown that the fluc-
tuation dynamics of proteins in heat bath (e.g.
water) can be successfully predicted by Gaussian
network model [Tirion (1996); Haliloglu, Bahar
and Erman (1997)]. The Gaussian network model
assumes the protein structures can be simplified
with mass and spring model such that dominant
alpha carbon atoms, which are nodes, are con-
nected by elastic harmonic springs. In spite of its
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simplicity, the Gaussian network model has suc-
cessfully given promising insights for estimation
of dynamics of proteins. However, the Gaussian
network model may be still computationally in-
hibitive for the large proteins with a large num-
ber of degrees of freedom. In general, reduction
method gains computational efficiency by avoid-
ing the full eigenvalue problem for the entire full
model and only dealing with a much more coarse-
grained model. The applied reduction method
presented in this paper consists of reducing the
order of the structure by eliminating insignificant
variables (nodes).

In this sense, this paper investigates the results of
applying hierarchical condensation method to the
simulation of protein dynamics and demonstrates
the robustness of reduction methodologies for dy-
namic behaviors of proteins.

2 Modeling Methods

Gaussian network model (GNM)

The GNM, one dimensional configuration of elas-
tic network model, has been used to construct a
bridge between physical reality and mathematical
formulation [Cui and Bahar (2006)]. The position
of the dominant atoms (nodes) based on GNM are
defined by the alpha carbon atom coordinates, and
the springs connecting the nodes are representa-
tive of the bonded and nonbonded interactions be-
tween the pairs of residues located within an inter-
action range, called cutoff distance, rc. The cutoff
distance is usually taken as 7∼ 12 based on the ra-
dius of the first coordination shell around residues
observed in PDB structures.

The Gaussian Network Model (GNM) assumes
that the protein is fluctuating about the equilib-
rium state. The fluctuation of the end-to-end dis-
tance between residues i and j obeys the Gaus-
sian probability distributions as follows [Eom, Li,
Makarov, and Rodin (2003); Eom, Makarov, and
Rodin (2005)];
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where p(r) is the probability distributionfor r, γ is
a force constant for a Gaussian chain connecting
residues i and j, k is the Boltzmann constant, T
is the temperature, and superscript 0 indicates the
equilibrium state. The Gaussian chain following
the probability distribution given as Eq. 1 can be
modeled as a harmonic spring whose potential is
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The GNM of folded proteins presumes that a
residue is connected to the residues within a
cut-off distance by Gaussian chains, and conse-
quently, the potential field for GNM of folded pro-
teins is
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where H(r) is the Heaviside unit step function,
i.e. H(r) = 1 if r ≥ 0; otherwise H(r) = 0, and rc

is the cut-off distance.

The fluctuation behavior of a protein is repre-
sented as eigenvalue problem for the oscillating
GNM such as [Cui and Bahar (2006)]

ΓΓΓq = ρω2q (4)

Here, ρ is the mass of an alpha carbon, ω is the
natural frequency, and q is its corresponding nor-
mal mode, and Γ is the N ×N stiffness matrix for
GNM given as
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where δi j is the Kronecker delta, i.e. δi j = 1 if
i = j; otherwise δi j = 0, and N is the total num-
ber of alpha carbons. The equilibrium statistical
mechanics theory [Chandler (1987)] allows one
to construct the fluctuation matrix Q such as
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where the angle bracket 〈· · ·〉 represents the en-
semble average (or time average), ωn is the nat-
ural frequency for n-th mode, and q(n)

i is the i-th
component of the eigenvector for n-th mode. The
exclusion of the first mode for summation in Eq.
6 is to eliminate the rigid body motion for one-
dimensional spring network.

3 Reduction Schemes

3.1 Hierarchical condensation methods

When the dominant atoms in protein structure
may be modeled by lumped masses, lumped mass
matrices are generated by point masses and elim-
inate unnecessary nodes if there is a good reason
to believe that those particular atoms are not dom-
inant. Hence, the diagonal entries associated with
insignificant atoms are generally zero. The fact
that certain diagonal entries in the lumped mass
matrix are zero is an indication that correspond-
ing displacements are not vital to the fluctuation
and can be discarded from the eigenvalue prob-
lem. The elimination process is based on hier-
archically condensed method, which exhibits the
reasonable predictions of fluctuations comparable
to original full model. It may be related to the
structural characteristics of proteins, that is, the
protein structure consists of several domains that
are relatively rigid when compared with flexible
region such as hinge region. One may consider
the protein structures of which the relatively rigid
domains are connected with the soft springs. In
this respect, the dynamic behavior of protein can
be decomposed into two parts; one is fluctuation
of the soft region such as hinge region, and the
other is internal fluctuation of each relatively rigid
domain. That is, the model condensation of pro-
tein samples was to be implemented mostly for
the domains while the inter-domain interactions
are maintained, so that the model condensation al-
lows one to obtain the fast computation of thermal
fluctuation with accuracy.

3.2 Model Condensation I

We assumed the inertia forces associated with
some of the displacements are known to be much
smaller than those associated with others, so that

the importance of the former class of displace-
ments in an overall solution can be regarded as
being relatively insignificant.

In this sense, we provide Model Condensation I
(MC I) that enables us to reconstruct the low-
resolution structure consisting of much less num-
ber of alpha carbons from the GNM of proteins.
We identified the residues that are retained in
the low-resolution structure, referred to as mas-
ter residues, whereas the other residues to be re-
moved in the model condensation are referred to
as slave residues. The equation of motion given
as Eq. 4 can be described by the kinetic energy
K and potential energy V given as [Meirovitch
(1980)].
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where p is the momenta vector for alpha carbons,
q is the displacement vector, subscript m repre-
sents the master residues, and subscript s indicates
the slave residues. It is assumed that the slave
residues are in the equilibrium.

∂V
∂qs

= ΓΓΓsmqm +ΓΓΓssqs = 0 (8)

The equation of motion represented by Eq. 4 with
kinetic energy and potential energy given as Eq. 7
can be re-written in the form of[
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From Eq. 8 and Eq. 9, one can obtain the equation
of motion for the low-resolution structure consist-
ing of master residues.

Γ̃ΓΓqm = ρω2qm (10)

Here Γ̃ΓΓ is the effective stiffness matrix for the low-
resolution structure, given as
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where Iμ is the μ ×μ identity matrix (μ = number
of master residues), and Ψ is the transition opera-
tor that maps the stiffness matrix Γ for the original
structure to the effective stiffness matrix Γ̃ΓΓ for the
low-resolution structure.

For MC I of large proteins, the large number of
slave residues is not appropriate because the com-
puting expense to estimate the transition operator
Ψ is proportional to O(l3), where l is the number
of slave residues. As a consequence, we imple-
mented MC I in the iterative manner as follows:
(i) Identify the slave residues whose number is
much less than that of specified slave residues, (ii)
Calculate the effective stiffness matrix Γ̃ΓΓ from Eq.
11, and (iii) Repeat the steps (i)-(ii) until one ob-
tains the effective stiffness matrix Γ̃ΓΓ for the low-
resolution structure consisting of specified mas-
ter residues. Moreover, MC I was implemented
in the hierarchical manner by retaining N/2, N/4,
and N/16 alpha carbons, where N is the total num-
ber of residues for the original protein structure.

3.3 Model Condensation II

In the eigenvalue problem associated with model
condensation II (MC II), the mass matrix gener-
ally neglects point masses associated with slave
residues. The fact that certain diagonal entries
in the mass matrix are zero is an indication that
the corresponding displacements are not signifi-
cant to the solution and can be eliminated from
the eigenvalue problem formulation. Its net result
is to reduce the order of the eigenvalue problem.
According to the present MC II, this enables one
to partition the eigenvalue problem as follows:
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Herein Kmm represents the stiffness of sub-
structure including master residues, Kss denotes
stiffness of substructure associated with slave
residues, while Kms indicates the interaction be-
tween master substructure and slave substruc-
ture. Furthermore, qmand qs represent master dis-
placement and slave displacement, respectively.
Eq. (12) can be separated into the two equations

[Eom, Baek, Ahn, and Na (2007)].

Kmmqm +Kmsqs = ω2Mmmqm (13a)

Ksmqm +Kssqs = 0 (13b)

Solving Eq. (13 b) for qs, one obtains

qs = −K−1
ss Ksmqm (14)

so that, substituting Eq. (14) into Eq. (13 a), one
obtains the reduced eigenvalue problem via MC II
as follows

K1qm = ω2M1qm (15)

where

K1 = Kmm −KmsK
−1
ss Ksm, M1 = Mmm (16)

3.4 Mean square fluctuations

The model condensation allows us to obtain the
mean-square fluctuation driven by thermal energy
for the low-resolution structure. The mean square
fluctuation induced by thermal energy for a spe-
cific residue i about the equilibrium state is de-
fined as〈
(Δri)

2
〉

= Qii (17)

In order to compare the mean-square fluctua-
tion of the low-resolution structure with that of
the original structure, the reconstruction proce-
dure for mean-square fluctuation from the low-
resolution structure is implemented as follows:
(i) Calculate the normal modes and mean-square
fluctuations for the low-resolution structure con-
sisting of N/8 alpha carbons, and then (ii) the step
(i) is repeated for 8 times in order to obtain the
mean-square fluctuation for all residues of pro-
teins.

4 Simulation Results

The model condensation that transforms the pro-
tein molecular structures into the low-resolution
(coarse-grained) protein structures is presented.
Here, the model condensation implements the
coarse model of ENM to build the low-resolution
molecular structure consisting of much less num-
ber of alpha carbons. To validate the model con-
densation scheme for biomolecules in this study,
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we considered three proteins such as retinol bind-
ing protein (pdb code: 1aqb), hemoglobin (pdb
code: 1gzx), and Hiv-1 reverse transcriptase (pdb
code: 1tkz). These proteins have the degrees of
freedom in the order of 102 ∼ 103 such that ap-
plication of reduction method is computationally
challenging for simulating the dynamic charac-
teristics of proteins. Fig. 1(a) shows three di-
mensional image of retinol binding protein and
the number of alpha carbons represented by point
mass is 175. Fig. 1(b) displays the corresponding
mass-spring model composed only by dominant
alpha carbons. The two different condensation
methods were performed in a hierarchical man-
ner such that we reduce the degree of freedom of
biomolecules from N to N/8.

(a) molecular structure

(b) mass-spring model

Figure 1: Retinol binding protein (RBP) model-
ing

Fig. 2 represents the quantitative comparison of
mean square fluctuation predicted by full model
implemented by GNM and experimental data ob-
tained by X-ray crystallography. The result indi-

cates that the fluctuation behavior of model pro-
tein can be predicted well by GNM.
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Figure 2: Comparison of experimental data and
full GNM model of retinol binding protein

Figs. 3-5 denote the comparisons of mean-square
fluctuations between the original full model of
structure and the low-resolution structure of N/8.
It is of great interest in that the fluctuation pat-
tern of the low-resolution structure is qualitatively
similar to that of the original structure except the
amplitude of the mean-square fluctuations. The
larger amplitude for the low-resolution protein
structure is obvious because our model conden-
sation scheme is based on the elimination of elas-
tic springs in the original structure so as to soften
the protein structure. Furthermore, the amplitude
of mean-square fluctuations is not of significance
as long as the pattern of mean-square fluctua-
tions is comparable to that of the original struc-
ture, because the force constant γ is empirically
determined by the curve-fitting to the experimen-
tal data. Accordingly, one may obtain the mean-
square fluctuations of the low-resolution structure
qualitatively and quantitatively comparable to the
original structure by adjusting the force constant
γ . In addition, from Figs. 3-5, it may suggest
that the low-resolution structure consisting of less
number of entropic springs for small number of
residues is very sufficient to represent the native
topology of proteins related to the thermal fluctu-
ations.
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Figure 3: Mean square fluctuation of retinol bind-
ing protein (RBP)

(a) molecular structure
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Figure 4: HIV-1 reverse transcriptas
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Figure 5: Mean square fluctuation of T state
hemoglobin (N/8)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 100 200 300 400 500 600

full model
condensation I (N/16)
condensation II (N/16)

Residue

Figure 6: Mean square fluctuation of T state
hemoglobin (N/16)

In Fig. 6, it is shown that the coarser structures
exhibit the qualitatively consistent mean-square
fluctuation regardless of resolution of structures
as long as N ranges from 8 to 16. It is quite inter-
esting in that the low-resolution structure through
model condensation is sufficient to the normal
mode study of large proteins.

The successful reproduction of dynamic motion
of proteins through model condensation may sug-
gest that the coarse-grained structure is quite suf-
ficient to provide the protein structure topology
for protein dynamics. This conjecture may pro-
vide that the lower degrees of freedom is appro-
priate to understand the dynamic motion of pro-
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teins, indicating that the low-resolution structure
described by the lower degrees of freedom is very
sufficient for the studies of protein dynamics. Re-
garding how many residues are sufficient to rep-
resent the native topology of proteins that is re-
lated to the dynamic behavior of proteins, from
our work, it is stated that the low-resolution struc-
ture consisting of small number of residues is able
to reproduce the low-frequency modes, that is,
functional modes. This indicates that the degree
of model condensation may be related to the num-
ber of functional modes. Specifically, the number
of residues retained in the low-resolution structure
may be associated with the number of functional
modes of protein dynamics.

5 Conclusions

The model condensation scheme may suggest the
further model condensation of protein structures
which might be applicable to the large proteins
that are hardly tractable with conventional models
such as normal mode analysis. This may provide
the hierarchical model reduction of protein struc-
tures to build the low-resolution structures con-
sisting of the minimal number of atoms for the
studies of protein dynamics and structure predic-
tions. For the future perspective, the model con-
densation may enable one to study the dynam-
ics of the biological supramolecular complexes.
Specifically, the dynamics of large proteins inac-
cessible with conventional NMA with ENM may
be computationally tractable by model conden-
sation to reconstruct the protein structures in the
low-resolution.
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