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Characteristic of Waves in A Multi-Walled Carbon Nanotube

G. Q. Xie1,2,3, X. Han2 and S. Y. Long3

Abstract: A multi-walled carbon nanotube is
modeled as a multiple-elastic cylindrical struc-
ture. The numerical-analytical method is adopted
to analyze the characteristics of harmonic waves
propagating along an anisotropic carbon nan-
otube. Each wall of the carbon nanotube is di-
vided into three-nodal-line layer elements. The
deflections of two adjacent tubes are coupled
through the van der Waals. The governing equa-
tion of element is obtained from Hamilton’s prin-
ciple. A set of system equation of dynamics equi-
librium for the entire structure is obtained by the
assembling of all the elements. From solution of
the eigenvalue equations, the dispersive charac-
teristics, group velocities of multi-walled carbon
nanotubes are achieved, and these properties of
the six characteristic wave surfaces are also ob-
tained.

Keyword: Multi-walled carbon nanotube; elas-
tic wave; group velocity; dispersion; characteris-
tic surfaces

1 Introduction

Carbon nanotubes have been demonstrated to pos-
sess dramatic mechanical and electronic proper-
ties such as high stiffness-to-weight and strength-
to-weight ratios and excellent electrical and ther-
mal conductivities (Treacy et al. 1996; Parnes
et al. 2002; Li et al. 2003, etc). Due to their
excellent physical, chemical, mechanical proper-
ties, carbon nanotubes have be used as structural
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elements in nanoscale devices or potential rein-
forcements in nanocomposite materials. To take
advantage of the potential applications of carbon
nanotubes, it is necessary to have the fundamen-
tal understanding of them. A lot of theoretical and
experimental investigations have been carried out
(e.g. Dai et al. 1998; Govindjee et al. 1999; Qian
et al. 2002).

The theoretical methods adopted to investigate
the mechanics properties of carbon nanotubes are
roughly classified into two kinds, one kind is the
molecular dynamics and the other is the contin-
uum mechanics methods. Continuum beam or
shell models can be used to analyze the static
or dynamic mechanical properties of carbon nan-
otubes. Yoon et al. (2002), Zhang et al. (2005)
have made use of continuum elastic beam models
to study vibrations of the carbon nanotube. The
single-Euler-beam model was employed to inves-
tigate wave propagation in multi-walled carbon
nanotubes (e.g. Treacy et al. 1996; Poncharal
et al. 1999; Popov et al. 2003). Yoon et al.
(2002, 2003a, 2003b) pointed out that non-coaxial
intertube vibration and transverse waves of multi-
wall carbon nanotubes (MWNTs) will be excited
with high frequencies, which would have substan-
tial effects on both the natural frequencies and
the wave speed of MWNTs. Recently, Wang and
Varadan (2006) investigated wave characteristics
of carbon nanotubes, they proposed the material
properties from the discrete atomic nature of car-
bon nanotubes, compared the wave solution in a
single-walled carbon nanotube by Euler-Bernoulli
beam model and Timoshenko beam model, re-
spectively. They also used Timoshenko beam
model to study the wave propagation in a dou-
ble walled carbon nanotube via a simple single
beam theory by assuming coaxial motion of the
two tubes, and a double beam theory accounting
for van der Waals. Chakraborty et al. (2006) used
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a spectrally formulated finite element to study
elastic waves in CNTs. They investigated the
effect of the number of walls on the frequency
response function, and analyzed the response of
multi-walled carbon nanotubes for terahertz level
loading. Xie and Long (2006) investigated vibra-
tion behavior of a carbon nanotube based on mi-
cropolar elasticity.

Xi et al. (2000) use numerical-analytical method
to investigate dispersion and characteristic sur-
faces of waves of laminated composite circular
cylindrical shells, and Han et al. (2004) adopted
this method to analyze transient response in cross-
ply laminated cylinders and its application to re-
construction of elastic constants. In this paper,
the numerical-analytical method is adopted to in-
vestigate the characteristics of wave propagating
along a carbon nanotube. The multi-walled car-
bon nanotube is first divide into annular elements,
the quadratic radial interpolate function is used
for the shape function of the element in the ra-
dial direction. With the help of the solution of the
eigenvalue equations, the group velocity, disper-
sion curve and the six characteristic surfaces of
the waves in multi-walled carbon nanotubes are
obtained. Numerical results have been presented
to illustrate the characteristics of waves in nan-
otubes.

2 Formulations

Fig. 1 shows a N-walled carbon nanotube with the
inner, outer radius and the thickness RI , RO and H,
respectively. The material constants of grapheme
is (Liu and Zheng, 2002)

D = 1e9
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Figure 1: The shell model of carbon nanotube

2.1 Basic equation

The strain and stress relation of carbon nanotube
is given by

σσσ = Dεεε (2)

where σσσ = [σz, σθ , σr , σθr , σrz, σzθ ]T and εεε =
[εz, εθ , εr, εθr, εrz, εzθ ]T are the vectors of the
stresses and strains, respectively.

The geometric equations are written in matrix
form

εεε = Lu (3)

where

L =

⎡
⎢⎣

∂
∂z 0 0 0 ∂

∂r
1
r

∂
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0 1
r
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∂
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1
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∂
∂θ

∂
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T

,

u = {u,v,w}T

where u,v,w are the displacements in the axial,
circumferential and radial directions, respectively.

The matrix L can be expressed as

L = L1
∂
∂ z

+L2
∂

r∂θ
+L3

∂
∂ r

+L4
1
r

(4)

where L1, L2, L3 and L4 can be inspected from eq.
(4).

2.2 Van der Waals pressure

Multi-walled carbon nanotubes possess hollow
multilayer structure which interacts with the ad-
jacent tubes by van der Waals forces. The net van
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Figure 2: Annular element subdivision and the isolated annular element

der Waals pressure at any point between adjacent
tubes is a linear function of the difference of de-
flection at that point. The pressure pi(i+1) on tube
i due to tube i+1 is (Yoon et al. (2003b))

pi(i+1) = ςi (wi+1 −wi) (i = 1, 2, . . . , N) (5)

where, the subscripts i, i + 1 represents the num-
bers of the two adjacent tubes, respectively, wi is
the inward deflection of tube i, and the van der
Waals interaction coefficient ςi is given by Yoon
et al. (2003b)

ςi =
320(2Ri)erg/cm2

0.16d2 (6)

where d = 0.142nm, Ri is the inner radius of tube
i.

From Eqs. (6) and (7), the following relation be-
tween p(i+1)i and pi(i+1) can be obtained.

p(i+1)i = − Ri

Ri+1
pi(i+1) (7)

2.3 Dispersive equation

We use annular elements to model the radial dis-
placement component of the carbon nanotube,
while the axial and circumferential displacement
components are dealt with analytically. Every
wall is divided into three annular elements. The
subdivision of an annular element and the rela-
tions of the adjacent element are shown in Fig. 2.
Each element has the inner, middle, and outer
nodal surfaces donated by 1,2,3.

The displacement field within the jth element of
the ith tube can be approximated as

ui j = N(r)Ui j (8)

where the matrix of shape function of the jth ele-
ment of the ith tube

N(r) =[(
1−3r +2r2)I 4

(
r− r2)I

(−r +2r2)I
]

where I is a 3 × 3 identity matrix and r =
(r− ri j)/

(
ri( j+1)− ri j

)
. ri j is the inner radius of

the jth element of the ith tube. The vector of the
nodal surface displacement amplitudes of the ele-
ment of the jth element of the ith tube is written
as

Ui j =[
U (1)

i j V (1)
i j W (1)

i j U (2)
i j V (2)

i j W (2)
i j U (3)

i j V (3)
i j W (3)

i j

]T

(9)

The governing equation of the element could be
developed by means of the Hamilton variational
principle, which takes the form

∫ t1

t0
δ (Pi j −Ti j)dt = 0 (10)

Here, the time t0 and t1 are arbitrary, Pi j and Ti j

are the potential energy and kinetic energy of the
jth element of the ith tube, respectively.
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The potential energy in the absence of body force
is given by

Pi j =
1
2
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(11a)
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where n = {0,0,1}.

Substituting Eqs. (8) and (9) into Eq. (11), in
view of Eqs. (1) and (5), gives
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where ( j = 2, i = 1,2, . . .,N) or ( j = 1, i = 1) or

( j = 3, i = N)
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where j = 3, i = 1,2, . . .,N −1
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where j = 1 i = 2,3, . . .,N.

ci j = LT
i DL j i, j = 1,2,3,4 (13)

The kinetic energy of the element is expressed in
terms of the displacement vector as

Ti j =
1
2

∫ +∞

−∞

∫ 2π

0

∫ ri( j+1)

ri j

∂uT
i j

∂ t
∂ui j

∂ t
ρrdrdθdz

(14)

Substituting Eqs. (12) and (14) into Eq. (10), and
taking variation with respect to U leads to the fol-
lowing governing differential equations of the el-
ement

MeÜe +Ke
DUe = qe (15)

Where the dot represents the derivative with re-
spect to the time, the superscript ‘e’ denotes ele-
ment and

Ke
D = −Ae

6
∂ 2

∂ z2 −Ae
5

∂ 2

∂θ∂ z
−Ae

4
∂ 2

∂θ2
+Ae

3
∂
∂ z

+ Ae
2

∂
∂θ

+ Ae
1 (16)

where Ae
l (l = 1,2, . . .,6) and qe are expressed in

the appendix.

The assembling of all the elements can get the
total system differential equations for the whole
nanotubes:

MtÜt +Kt
DUt = 000 (17)

where

Kt
D = −At

6
∂ 2

∂ z2 −At
5

∂ 2

∂θ∂ z
−At

4
∂ 2

∂θ2
+At

3
∂
∂ z

+ At
2

∂
∂θ

+ At
1 + qt (18)

the superscript ‘t’ represents the total. It should be
noted that qe of Eq. (15) is the coupled displace
terms of the adjacent walls and assembled into qt ,
and qt is incorporated by Kt

D.

The whole stiff matrix Kt , mass matrix Mt , and
the displacement vector Vt can be obtained by as-
sembling the corresponding matrices and vectors
of adjacent elements, respectively. The size of Vt

is 21N, the size of the matrices Mt and Kt are both
21N ×21N.

During the process of assembling elements, the
following interface conditions are applied:

u(3)
i1 = u(1)

i2 , u(3)
i2 = u(1)

i3 , p(i+1)i =− Ri

Ri+1
pi(i+1)

(19)

It should be noted that pi(i+1) is the pressure on
3-th element of i-th tube due to (i + 1)-th tube,
and p(i+1)i is the van der waals pressure on 1-th
element of (i+1)-th.

The displace vector Ut(θ , z, t) of the element is
expressed as the complex exponentials

Ut(θ , z, t)=
Vt exp [(Rok sinβ )θ +(k cosβ )z−ωt] i (20)

Where i =
√−1, ω is the angular frequency, k is

the wavenumber, β is the helical angle of wave
propagation with respect to the z-axial.

Substituting Eq. (20) into Eq. (17), has[
Kt −ω2Mt]Vt = 000 (21)

Where

Kt =

At
6k2 cos2β +At

5R0k2 cosβ sinβ +At
4R2

0k2 sin2β
+ iAt

3k cosβ + iAt
2R0k sinβ +At

1 +qt (22)

The eigenvalue equation corresponding to Eq.
(21) is[
Kt −ω2Mt]ϕR = 0 (23)

From Eq. (23), the eigenfrequencies ω j

( j = 1,2, . . .,21N) and the right eigenvectors ϕR

can be obtained.

In Eq. (23) Mt is a symmetric matrix and Kt is
a Hermitian matrix for a given real wave number.
For the mth mode, the eigenfrequency can be ob-
tained from the Rayleigh quotient

ω2
m =

ϕL
mKtϕR

m

ϕL
mMtϕR

m
(24)

Where ϕL
m and ϕR

m are the mth transposed left and
right eigenvectors of Eq. (23).
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2.4 Wave surfaces

Following, we will make use of the Rayleigh quo-
tient concept and the conception of references
(Liu et al. (1991); Liu and Xi (2001)) to express
mathematically characteristic wave surfaces.

Group velocity represents the rate at which energy
is transported. It is defined as (Achenbach 1973)

cg =
dω
dk

(25)

Combination of Eq. (24) and Eq. (25), the group
velocity of the mth mode can be given by Lysmer
et al. (1970)

cgm =
ϕL

mKt
kϕR

m

2ωmϕL
mMtϕR

m
(26)

Where

Kt
k = 2kAt

6 cos2β +2kAt
5 cosβ sinβ +2kAt

4 sin2β
+ iAt

3 cosβ + iAt
2 sinβ (27)

From Eq. (26), the group velocity surface for the
mth mode can be obtained

fg (cgm,θ ) = ϕL
mkt

kϕR
m −2cgmωmϕL

mMtϕR
m (28)

The group slowness qm for the mth mode is the
reciprocal of the group velocity. The group slow-
ness surface (GSS) shows the dependence of the
relative arrival time of the energy of a plane wave
on the direction of wave propagation. In the same
way, the group slowness surface for the mth mode
can be obtained

fq (qm,θ ) = qmϕL
mkt

kϕR
m −2ωmϕL

mMtϕR
m (29)

Similarly, phase velocity surface and phase slow-
ness surface, as well as group wave surface and
phase wave surface can be obtained following the
same way.

3 Results and discussions

The computational procedure is: Each wall of
tube is divided into three annular elements of uni-
form thickness, an N-walled nanotubes possesses
3N elements. Based on the Hamilton’s principle,
the governing equations of each element are de-
rived. The mass matrix Mt and stiff matrix Kt

can be obtained by assembling the adjacent ele-
ments. The eigenvalues and eigenvectors of the
system can be obtained by solving of eigenvalue
equation (23) for various wavenumber k. Finally,
the dispersive curves and group velocity of var-
ious modes can be obtained by using Eqs. (24)
and (26), respectively.

The numerical examples are presented for disper-
sion and characteristic surfaces of harmonic he-
lical waves in a carbon nanotube. The following
dimensionless parameters are adopted:

ci j = ci j/c44, k = kH,R = r/H,

ω = ωH
√

ρc/c44

(30)

where the reference properties c44 and ρc are
the Young’s modulus and the mass density of
grapheme.

Fig. 3(a), (b) and (c) show that the dispersion
curves of the waves propagating along the axial
(β = 0o), helical (β = 30o) and circumferential
(β = 90o) direction of a 2-wall carbon nanotube
with the inner radius 2nm, respectively. It can be
observed from these figures that none of these dis-
persion curves pass through the coordination ori-
gin. This reveals that the group velocities aren’t
equal to the phase velocities; the waves for the
carbon nanotube are dispersive. It can be ob-
served from Figs. 3(a), (b) and (c) that the disper-
sion curves of the harmonic helical waves in the
2-wall carbon nanotube will changed with varia-
tion of the propagation direction of the waves.

The dispersions of the waves for two carbon nan-
otubes with similar wall number but different in-
ner radii are shown by Fig. 4(a). It can be ob-
served from Fig. 4(a) that the inner radius of the
carbon nanotube influence less on the dispersive
curve of these waves for smaller wavenumber, and
that the larger the wavenumber, the stronger this
effect.

Fig. 4(b) shows that the dispersive curves of the
waves for two carbon nanotubes with similar in-
ner radii but different wall number. It can be ob-
served from Fig. 4(b) that the dispersive curves
of the waves are influenced by the number of the
wall of the carbon nanotube, the dispersive curves
of the more wall carbon nanotube are below that
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(a) β = 0o

(b) β = 30o

(c) β = 90o

Figure 3: The dispersive curves of a 2-wall carbon
nanotube

(a)

(b)

Figure 4: The dispersive curves of two carbon
nanotubes β = 30o

of the less wall ones. This can be explained as fol-
lowing. The numerical results show that the van
der waals pressure is a less force, the connections
of the adjacent walls of the multi-walled carbon
nanotube can be regarded as the weak spring link-
ing, the wall number more, the freedom number
more, and the stiff of the system weaker, the fre-
quency will decrease with the increasing of the
wall number.

Figs. 5(a), (b) and (c) are the group velocity spec-
tra of the waves for carbon nanotubes with their
radii 2nm. The propagation directions of waves
are chosen asβ = 0o, 30o and 90o, respectively.
Figs. 5 indicate that the group velocity spectra are
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(a) β = 0o R1=2nm

(b) β = 30o R1=2nm

(c) β = 90o R1=2nm

Figure 5: The group velocity curves of a 2-walled
carbon nanotube

horizontal line at a small range of wavenumbers,
this implies that the energy travels at a constant
speed within these range of wavenumbers. The
sudden jumps in the group velocities indicate the
change of the order of the wave modes. It can be
found from the comparison between Figs. 5(a),
(b) and (c) that the group velocity will change as
the direction of the wave propagating in the car-
bon nanotube varies.

It is observed from Fig. 6 that the group veloc-
ity spectra of waves for the carbon nanotube are
influenced by the inner radius of the carbon nan-
otubes, the group velocity spectra for the carbon
nanotube with the different inner radius are differ-
ent.

Figure 6: The group velocity curves of two carbon
nanotubes β = 30o

Figs. 7(a) and 7(b) illustrate six characteristic
wave surfaces for the first two propagation modes
of a 3-wall carbon nanotube (R1 = 2nm). It can
be found from these figures that none of wave sur-
faces of the first two modes are circular. This is
the result that the elastic moduli of carbon nan-
otube are strongly anisotropic. From these fig-
ures, we can see very clearly that the wave propa-
gation in the carbon nanotube depends strongly
upon not only the wave propagation modes but
also the anisotropy of the carbon nanotube ma-
terial.
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(a) First mode

(b) Second mode

Figure 7: Characteristic wave surfaces for a 3-wall carbon nanotube (The innermost radius 2nm)
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4 Conclusions

A multi-walled nanotube is modeled as a
multiple-elastic cylindrical shell, and the deflec-
tions of all nested tubes are coupled through the
van der Walls interaction between any two adja-
cent tubes. The governing equations of each ele-
ment are obtained from the Hamilton’s. The dis-
persive curve of the waves can be obtained from
the solution of the eigenvalue equations, the group
velocity and six characteristic wave surfaces of
the waves for the multi-walled carbon nanotubes
can also be obtained. The numerical results show
that the dispersion, the group velocity of carbon
nanotubes are influenced by the number of wall,
the innermost radius of carbon nanotubes and the
direction of the waves propagating in the carbon
nanotube.
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Appendix

Ae
6 =

∫ ri( j+1)

ri j

NTc11Nrdr

Ae
5 =

∫ ri( j+1)

ri j

NT (c12 +cT
12

)
Ndr

Ae
4 =

∫ ri( j+1)

ri j

1
r

NTc22Ndr

Ae
3 =

∫ ri( j+1)

ri j

(
−NTc13

∂N
∂ r

+
∂NT

∂ r
cT
13N

+
1
r

NT (cT
14 −c14

)
N
)

rdr

Ae
2 =

∫ ri( j+1)

ri j

(
−NTc23

∂N
∂ r

+
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∂ r
cT
23N

+
1
r

NT (cT
24 −c24
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N
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dr

Ae
1 =

∫ ri( j+1)

ri j

(
∂NT

∂ r
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∂N
∂ r

+
1
r

∂NT

∂ r
c34N

+
1
r2 NTc44N+

1
r

NTcT
34

∂N
∂ r

)
rdr

Me =
∫ ri( j+1)

ri j

NTNρrdr

The terms of the van der Waals are given by

(1) j = 2, i = 1,2, . . .,N or j = 1, i = 1

qi j = 000

(2) j = 3, i = 1,2, . . .,N −1

qi j =
1

2π

(∫ hi j

0
ς1
(
NT

i jn
T)(n

∂Ni j

∂ r

)
drUi j

−
∫ ri

ri−1

ς1

(
NT

(i+1)( j−2)n
T
)(

n
∂Ni j

∂ r

)
dr

·U(i+1)( j−2)

)

where, n = {0,0,1}
(3) j = 1, i = 2,3, . . .,N

qi j =
1

2π

∫ hi j

0
(ς j
(
NT

i jn
T)(n

∂Ni j

∂ r

)
Ui j

−
∫ h

0
ς j
(
NT

i jn
T)(n

∂N(i−1)( j+2)

∂ r

)
·U(i−1)( j+2)dr

B1 = Ali j +λ̄ N
j (S j)

whereλ̄ N
j is an assembling operator.

S j =
[

M1 M2
M3 M4

]

where

M1 = 1
2π
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0 ς j

(
∂NT

i j

∂r nT

)
(nNi j)dr

M2 = − 1
2π
∫ h

0 ς j

(
∂NT

i j

∂r nT

)(
nNi( j+1)

)
dr

M3 = − 1
2π
∫ h

0 ς j

(
∂NT

i j

∂r nT
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dr
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2π
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(
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∂r nT

)(
nNi( j+1)

)
dr
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