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Flutter of Thermally Buckled Composite Sandwich Plates

Le-Chung Shiau1 and Shih-Yao Kuo2

Abstract: A high precision high order triangu-
lar plate element is developed for the linear flut-
ter analysis of thermally buckled composite sand-
wich plates. Due to uneven thermal expansion
in the two local material directions, the buckling
mode of the plate may be shifted from one pattern
to another for certain fiber orientation or plate as-
pect ratio as the aerodynamic pressure is present.
This buckle pattern change alters the frequencies
and modes of the plate and that in turn changes the
flutter coalescent modes. Numerical results show
that temperature has a destabilizing effect on the
flutter boundary but the aerodynamic pressure has
a stabilizing effect on the buckling boundary.

Keyword: Flutter, composite sandwich plate,
thermal buckling, buckle pattern change.

1 Introduction

Because of its outstanding bending rigidity, low
specific weight, superior isolating qualities, ex-
cellent vibration characteristics and good fatigue
properties, sandwich construction has been devel-
oped and utilized for almost five decades. Re-
cently, sandwich construction has become even
more attractive due to the introduction of ad-
vanced composite materials for the faces. In the
design of sandwich skins for aircraft wings, one
important issue is buckling. High-speed aircraft
structural panels are subjected not only to aerody-
namic loading, but also to aerodynamic heating.
The temperature rise may buckle the plate and re-
duce the load-carrying capacity. Unlike beams or
columns, plates can carry an additional load af-
ter buckling without failure. In other words, the
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plates can be used at temperatures higher than
the critical buckling temperature. In order to re-
duce the weight of aircraft, structure are usually
permitted to buckle and operated in postbuckling
region. In other words, the plates can be used
at temperatures higher than the critical buckling
temperature. Plate in its buckled state may be
expected to survive under dynamic disturbances.
This is particularly true for aircraft and space
structures, which may depend on the stiffness and
dynamic characteristics of the buckled plates with
increasing flight speeds.

Panel flutter is a self-excited oscillation of the ex-
ternal skin of a flight vehicle and is due to dy-
namic instability of inertia, elastic, and aerody-
namic forces of the system. An excellent sum-
mary of panel flutter was given by Dowell (1970).
This type of aeroelastic instability has received
much attention in the past 50 years. As a result,
their peculiar phenomenon is now reasonably un-
derstood for two- and three-dimensional panels
made of conventional isotropic materials. But rel-
atively few works have been devoted to the study
of flutter characteristics of panels made of com-
posite materials. Ketter (1967) used Ritz method
to study flutter of orthotropic panels with vari-
ous boundary conditions and angle orthotropic.
Sawyer (1977) analyzed flutter of general lam-
inated plates using Galerkin’s method and the
effects of fiber orientation, stacking sequence,
anisotropic property, aspect ratio, and flow angu-
larity were discussed in details. Birman and Li-
brescu (1990) used a higher order transverse shear
deformation theory to study the effect of trans-
verse shear deformation on flutter-type instabil-
ity of cross-ply composite flat panels. Compar-
isons of their results obtained in the framework
within the first order transverse shear deformation
and classical counterparts were presented and a
number of conclusions concerning their range of
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applicability were outlined. Lee and Cho (1991)
analyzed supersonic flutter of clamped symmet-
ric composite panels by the finite element method
based on the first-order shear deformation theory.
They found that the plate aspect ratio, flow direc-
tion, and fiber orientation affect greatly the flut-
ter boundaries. Shiau and Chang (1992) made
an extensive study of transverse shear effect on
panel flutter of laminated plates by finite element
method. They pointed out that the transverse
shear deformation might have a significant effect
on the flutter boundary of thick plates. If the
aerodynamic heating is to be considered, Scha-
effer and Heard (1965) examined the effect of a
parabolic temperature distribution on the flutter
behavior of a flat, rectangular, simply supported
panel subjected to supersonic flow over one sur-
face. Their results indicated that the nonlinear
distribution of temperature may be as important
in affecting the flutter behavior as a uniform com-
prehensive stress state. Yang and Han (1976)
used finite element formulation to treat the flutter
problem of a semi-infinite panel that is buckled
into large deflections due to aerodynamic heat-
ing. A relation between the uniform tempera-
ture rise and the in-plane compression force in
the postbuckling region were used. Later on, a 54
degree-of-freedom, high-order triangular plate fi-
nite element was employed to formulate and ana-
lyze the supersonic panel flutter problems by Han
and Yang (1983). The effect of biaxial mechani-
cal in-plane compressive stress for a simply sup-
ported square panel was studied and boundaries
among the flat and stable region, dynamically sta-
ble buckled region, and the flutter region were
found. Xue and Mei (1993) studied the nonlin-
ear flutter response of panels with temperature ef-
fects. From the principle of virtual work, the el-
ement nonlinear stiffness formulation for a panel
under combined thermal and aerodynamic loads
was derived. Effects of nonuniform temperature
distributions, panel aspect ratios, and boundary
conditions on flutter response of rectangular and
triangular panels were presented.

Responses of the composite sandwich structures
for bending, buckling, and vibration has been an-
alyzed by many authors (Jijan et al. (2004), Li et

al. (2005), Sharnappa et al. (2007)). Recently,
Shiau and Kuo (2004) developed a higher order
triangular-plate element for thermal postbuckling
analysis of a composite sandwich plate. Their
results show that a “buckle pattern change” phe-
nomenon may occur in the thermal postbuckling
region for certain fiber orientation or aspect ratio
of the composite sandwich plate. Later on, Shiau
and Kuo (2006) extended their investigation to the
analysis of free vibration of a thermally buckled
composite sandwich plate. They found that the
“buckle pattern change” will alter the sequence
and change the magnitude of natural frequencies
of the plate. In panel flutter analysis, the determi-
nation of the occurrence of aeroelastic instability
is through the coupling of natural modes of the
system. As the “buckle pattern change” changes
the natural frequencies and natural modes of the
plate, it may have significant effect on the flutter
behavior of the composite sandwich plate. In the
present study, a high precision high order trian-
gular plate element with shear deformation effect
developed in Shiau and Kuo (2006) is extended
for the linear flutter analysis of thermally buckled
sandwich plates with composite laminated faces
and honeycomb cores. The effects of “buckle
pattern change”, plate aspect ratio, fiber orienta-
tion, and temperature on the flutter behavior of the
plate are discussed in detail.

2 Formulations

Consider a rectangular composite sandwich plate
with length a, width b, and total thickness h. The
sandwich panel is assumed to consist of two bal-
anced laminated face sheets of the same thickness
f and an orthotropic honeycomb core of thickness
c. The face sheets are fabricated with Nf layer or-
thotropic laminates. Supersonic airflow with air
density ρ∞, flow velocity V∞, Mach number M∞,
and aerodynamic pressure ΔP is assumed pass-
ing over the top surface of the plate. The total
transverse displacement of the plate is assumed to
be the sum of the displacement due to bending of
the plate wb and that due to shear deformation of
the core ws. Adopting the Von Karman large de-
flection assumptions, the strain in the plate can be
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written as

{ε}= {ε0}+ z{κ}+{δ} (1)

where {ε0}, {κ}, {δ} are the mid-plane strain,
plate curvature, and large deflection strain, re-
spectively.

The stress-strain relation of the sandwich plate
subjected to temperature rise ΔT is given by

{σ}k =
[
Q

]
k ({ε}−ΔT{α}k) (2a)

{τ}=
[
Q

]{γ} (2b)

where Qi j are the transformed reduced stiffness.

For sandwich plate having honeycomb core, it is
reasonable to assume that the transverse normal
stiffness of the core is infinitely large and the core
makes no contribution to the bending and mem-
brane stiffness of the sandwich plate. But the
shear strains in the core of the sandwich need to
be considered due to a low transverse modulus of
rigidity of the core. The force and moment resul-
tants of the sandwich plate are then defined as

{N} = [A]
{

ε0}+[A]{δ}−{
NΔT }

(3a)

{M}= [D]{κ} (3b)

{V} = [S]{γ} (3c)

where the extensional stiffness [A], bending stiff-
ness [D] of the panel, and transverse shear stiff-
ness [S] are the usual composite terms.

The thermal forces
{

NΔT
}

induced by the tem-
perature change are defined as

{
NΔT }

= 2Tu

Nf

∑
k=1

[
Q

]
k {α}k (hk −hk−1) (4)

The total strain energy can be expressed as

U =
1
2

∫
A
{ε0}T [A]{ε0}dA

+
1
2

∫
A
{κ}T [D]{κ}dA

+
1
2

∫
A

(
{δ}T [A]{ε0}+{ε0}T [A]{δ}

)
dA

+
1
2

∫
A
{δ}T [A]{δ}dA

+
1
2

∫
A
{γ}T [S]{γ}dA

− 1
2

∫
A

(
{δ}T {

NΔT }
+{ε0}T {

NΔT })
dA

(5a)

The kinematic energy may be expressed as

T =
ρth
2

∫ (
ẇ2

b +2ẇbẇs + ẇ2
s

)
dA (5b)

where ρth = 2ρ f f +ρcc.

The work done by the non-conservative aerody-
namic loading may be expressed as

Wnc =
∫

Δp(wb +ws)dA (5c)

For high supersonic Mach numbers (M∞ > 1.6),
the aerodynamic pressure loading is assumed to
follow quasi-steady aerodynamic theory:

ΔP = − ρ∞V 2
∞√

M2
∞ −1

·
(

(wb,x +ws,x)+
M2

∞ −2
M2

∞ −1
1

V∞
(ẇb + ẇs)

)
(6)

The work done by the non-conservative aerody-
namic loading may be divided into two parts:
aerodynamic force part and aerodynamic damp-
ing part as

Wnc = Wa +Wd (7)

where

Wa = − ρ∞V 2
∞√

M2
∞ −1

∫
(wb,x +ws,x)(wb +ws)dA

Wd = −ρ∞V 2
∞(M2

∞ −2)
(M2

∞−1)3/2

∫
(ẇb + ẇs)(wb +ws)dA

2.1 Finite Element Formulation

Consider a triangular element with thickness h as
shown in Fig. 1. The total transverse displace-
ment of the plate is assumed to be the sum of
the displacement due to bending of the plate and
that due to shear deformation of the core. For
simplicity, the four displacement functions for the
in-plane, bending and shear deformation are as-
sumed to have the same form. These displace-
ment functions for u, v, wb, and ws can be ex-
pressed in the local ξ −η coordinate system as a
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Figure 1: Geometry of a composite sandwich
panel

polynomial to the complete fifth order of ξ and η ,
excluding the term ξ 4η . Omitting the term ξ 4η is
to ensure that the slope normal to the edge η = 0
varies cubically along ξ , so that the normal slope
compatibility along this edge is satisfied:

u =
20

∑
i=1

αiξ miηni ; v =
20

∑
i=1

βiξ miηni ; (8a)

wb =
20

∑
i=1

γiξ miηni ; ws =
20

∑
i=1

ζiξ miηni (8b)

where mi = (0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 4, 3, 2, 1, 0,
5, 3, 2, 1, 0), ni = (0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2,
3, 4, 0, 2, 3, 4, 5), and αi, βi, γi, ζi are constants to
be determined by using conditions at nodal point.

Substituting the displacement functions in Eqs.
(8) into Eq. (5) and integrating over the plate el-
ement, the strain energy of an element can be ex-
pressed as

Ue =
1
2
{q}T

(
[k]+

1
3

[n1]+
1
6

[n2]
)
{q} (9a)

UΔT = −1
2

ΔT
[{q}T [

kΔT
N

]{qt}+{q}T {
f ΔT }]

(9b)

T =
1
2

{
∂q
∂ t

}T

[m]
{

∂q
∂ t

}
(9c)

Wa =
ρ∞V 2

∞√
M2

∞ −1
{q}T [a]{q} (9d)

Wd =
ρ∞V 2

∞(M2
∞−2)

(M2
∞ −1)3/2

{q}T [c]{q̇} (9e)
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Figure 2: Global/local coordinate systems for a
triangular plate element.

where [k], [n1], [n2] are the element linear, first-
order, second-order nonlinear stiffness matrices,[
kΔT

N

]
is the geometrical stiffness matrix due to

uniform thermal load,
{

f ΔT
}

is the thermal load-
ing vector due to temperature gradient, [m] is the
mass matrix, [a] is the element aerodynamic ma-
trix, [c] is the aerodynamic damping matrix, and
{q} contains all the nodal degree of freedoms.

On assembling all element matrices and load
vectors and then applying suitable boundary
conditions, and introducing the following non-
dimensional parameters and constants

λ =
ρ∞V 2

∞√
M2

∞ −1

a3

D0
11

, μ =
ρ∞a
ρth

, g =
μ

M∞
,

D0
11 =

E2
1

(
h3 −c3

)
12

(
E1 −ν2

12E2
) , ω0 =

√
D0

11

ρtha4 , τ = ω0t

The governing equation in matrix form for the
nonlinear flutter analysis of thermal buckled com-
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posite sandwich plate is obtained as

1
ρth

[M]
{

Q̈
}

+
√

λ g[C]
{

Q̇
}

+
[

a4

D0
11

(
[K]+

1
2

[N1]+
1
3

[N2]−ΔT
[
KΔT

N

])

+λ a[A]
]
{Q}=

ΔTa4

D0
11

{
FΔT }

(10)

where {Q} is the global nodal degree of freedoms
vector for the assembled structure.

Let the total response of the plate to be the sum of
displacement due to static deformation and that
due to dynamic deformation as

{Q}= {Qs}+{Qd} = {Qs}+{φ}eiωτ (11)

where {φ} is the mode shape vector. By substi-
tuting above equation into Eq. (10) and neglect-
ing the higher order terms related to {Qd}, i.e.,
considered for small amplitude vibration, then Eq.
(10) can be written into two sets of equations as

(
[K]+

1
2

[N1]+
1
3

[N2]−ΔT
[
KΔT

N

]
+λ

D0
11

a3 [A]
)
{Qs} = ΔT

{
FΔT

}
(12a)

(
−κaω2

0 [M]+ [K]+ [N1]+ [N2]−ΔT
[
KΔT

N

]
+λ

D0
11

a3 [A]
)
{Qd} = {0} (12b)

Eq. (12a) is a set of nonlinear algebraic equations
that yields the static deflection of the thermally
buckled plate under the influence of aerodynamic
pressure and aerodynamic heating. Eq. (12b) is
a set of linear equations to determine the flutter
boundary of the thermally buckled plate. For a
nontrivial solution to exist, the determinant of the
matrices in parentheses of Eq. (12b) must equal to
zero, which gives the characteristic equation for
the eigenvalue. Eq. (12b) can be solved in fre-
quency domain by assuming that the plate motion
is represented by an exponential function of time
as in Eq. (11). The two governing equations may

be rewritten as(
[KN ]+λ

D0
11

a3 [A]
)
{Qs} = ΔT

{
FΔT }

(13a)∣∣∣∣−κaω2
0 [M]+ [KT ]+λ

D0
11

a3 [A]
∣∣∣∣ = 0 (13b)

where [KT ] is the tangent stiffness matrix. The
nonlinear equation in Eq. (13a), which governing
the thermal postbuckling behavior of composite
sandwich plate, is a static algebraic equation that
can be solved by Newton-Raphson method. Af-
ter the equilibrium state of thermal postbuckling
analysis is obtained, the nonlinear tangent stiff-
ness matrix [KT ] in Eq. (13b) can be obtained.
Thus, Eq. (13b) becomes standard eigenvalue
problem and is applied to study the linear flutter
of thermally buckled composite sandwich plates.

3 Numerical Results

In the following, a simply supported rectangular
composite sandwich plate consisting of graphite
epoxy laminated face sheets and aluminum hon-
eycomb core is analyzed. The material proper-
ties for the graphite epoxy laminated face sheets
are E1 = 181 Gpa, E2 = 10.3 Gpa, G12 = 7.17
Gpa, ν12 = 0.28, α1 = 0.02 × 10−6/oC, α2 =
22.5 × 10−6/oC, ρ f = 1.6 × 103Kg/m3. The
material property for the aluminum honeycomb
core is ρc = 1.6×101Kg/m3, G23C = G31C= 0.14
Gpa. The thicknesses of each face and the core
are 0.5mm and 10mm, respectively. Two differ-
ent stacking sequences of the plate are consid-
ered: (1) [(0/90)2/core]s sandwich plate and (2)
[(±θ )2/core]s sandwich plate.

3.1 [(0/90)2/core]s cross-ply laminated sand-
wich plates

For linear flutter, the plate motion can be di-
vided into three types: (1) plate remains stable
and flat; (2) plate buckles but is dynamically sta-
ble; (3) flutter occurs (either limit-cycle oscilla-
tion or chaotic motion). Figure 3 shows the sta-
bility boundaries between these three types of
motion for rectangular [(0/90)2/core]s sandwich
plates with two different aspect ratios. It is seen
that temperature has a destabilizing effect on the
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flutter boundary (line AC) when the plate remains
in flat and stable condition. But when the plate is
in buckled but dynamically stable condition, tem-
perature will raise the flutter boundary (line CD).
On the other hand, due to stabilizing effect of the
aerodynamic pressure, the critical buckling tem-
perature of the plate will be higher when the aero-
dynamic pressure is present (line BC).
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Figure 3: Stability boundaries for rectangular
[(0/90)2/core]s sandwich plate

Flutter occurs through the coupling of two modes
of the plate. Figure 4 shows the flutter coales-
cence plot of the square [(0/90)2/core]s plate dis-
cussed in Fig. 3 with three different temperatures.
For λ = 0 the eigenvalues of all modes of the
plate are purely real. As λ increases from zero,
the eigenvalues of two modes approach each other
and coalesce at a critical value of λ , called λcr,
where flutter occurs. For all the three temperature
cases, the coalescent pair is the first and the sec-
ond modes of the plate. For the ΔT/ΔTcr = 2 case,
the plate goes through three motion types. As the
aerodynamic pressure starts from zero, the plate
is in its buckled but dynamically stable condition
due to the temperature higher than the buckling
temperature. As λ increases to the boundary line

BC in Fig. 2, one of the eigenvalues will drop to
zero. At this moment (λ = 77), plate goes into flat
and stable condition and remains in that condition
until λ further increases to 96 where two modes
coalesce and flutter occurs.
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Figure 4: Flutter coalescence plot of square
[(0/90)2/core]s sandwich plates

The foregoing phenomenon may also be ex-
plained by the contour plot of the two modal
shapes at various λ shown in Fig. 5 for the
ΔT/ΔTcr = 2 case. At λ = 0, the two natu-
ral modes of the buckled plate are modes 1 and
2. The shapes of the two modes are gradually
changed with the increase of aerodynamic pres-
sure, especially in the flow direction. Finally,
these two modes coalesce into a single flutter
mode when λ reaches λcr.

3.2 [(±θ )2/core]s angle-ply laminated sand-
wich plates

Figure 6 depicts the map in λ and ΔT/ΔTcr

space which identifies the flutter boundaries for
a simply supported square [(±30)2/core]s sand-
wich plate. Here, a phenomenon called “buckle
pattern change” occurs in the postbuckling re-
gion when aerodynamic pressure is present. The
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(a) 0, mode 1                    (b) 0, mode 2

(c) 70, mode 1               (d) 70, mode 2

(e) 85, mode 1                  (f) 85, mode 2

(g) cr 96, mode 1                (h) cr 96, mode 2
(Top View)        (Side view)           (Top view)

Figure 5: Contour plot of static deflection
for square [(0/90)2/core]s sandwich plate at
ΔT/ΔTcr=2

buckle pattern change occurred in the postbuck-
ling region means the buckling shape of the plate
will shift from one buckling mode to another as λ
increases. This shifting will alter the flutter fre-
quencies and modes of the plate and that in turn
changes the flutter coalescence pair. This phe-
nomenon can also be seen in the flutter coales-
cence plot shown in Fig. 7 for the [(±30)2/core]s

sandwich plate with ΔT/ΔTcr = 3. As the flut-
ter speed increases from zero, all frequencies of
the plate will decrease with the increase of λ . At
λ = 78, the frequency of square sandwich plate
mode 1 drops to zero and the plate goes through
the first buckle pattern change phenomenon. At
this moment, the frequencies of all modes have a
sudden upward jumping and then decrease again
as the flutter speed increases further. When the
flutter speed reaches a value of 330, buckle pattern

change occurs again and the frequency of mode 3
drops to zero. After this point, two modes of the
plate coalesce at λcr = 382.
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Figure 6: Flutter boundaries for [(±30)2/core]s
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Figure 7: Flutter coalescence plot of
[(±30)2/core]s sandwich plate (ΔT/ΔTcr=
3)

Figure 8 displays the effect of fiber angle on
the flutter boundaries for a square [(±θ )2/core]s

sandwich plate with four different temperatures.
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For the ΔT/ΔTcr = 0 and ΔT/ΔTcr = 1 cases, ro-
tating fiber away from x-axis will reduce the stiff-
ness of the plate in the x-direction which in turn
lower the flutter boundary of the plate. When the
plate is in its buckling stage, that is the ΔT/ΔTcr

= 1 case, the flutter boundary is reduced signif-
icantly when the fiber is orientated at an angle
between 65o and 90o. For the ΔT/ΔTcr = 2 and
ΔT/ΔTcr = 3 cases, general trends are the same
as that of the other two cases except for the plate
with fiber orientated between 0o and 30o. For
plate with those fiber orientations, rotating fiber
away from x-axis may raise the flutter boundary
of the plate. It is seen that when the fiber angle is
between 0o and 20o, the flutter boundary is rais-
ing with the fiber angle. But when the fiber an-
gle varies from 20o to 30o, the flutter boundary
is drop sharply. The reason to cause this varia-
tion is due to the “buckle pattern change” phe-
nomenon and the effect of this phenomenon on
the flutter boundary variation can be clearly seen
from flutter coalescence plot. Figure 9 shows the
flutter coalescence plots of the square angle-ply
laminated sandwich plate with fiber angle var-
ied from 0o to 30o for the case of ΔT/ΔTcr = 2.
First, for the plate with fiber angle less than 20o,
there is only one occurrence of “buckle pattern
change” before the flutter begins. The “buckle
pattern change” is occurred at λ = 163 for θ =
0o and the occurrence point is gradually shifted
to λ = 180, 204, and 238 for θ = 10o, 15o, and
20o, respectively. Because of the “buckle pattern
change” and the shifting of the occurrence point,
the flutter boundary of the plate is raising with the
fiber angle. Second, for the plate with fiber an-
gle larger than 20o, there are two occurrences of
“buckle pattern change” before the flutter begins.
Due to the second “buckle pattern change”, the
frequencies of the plate are dropped sharply, that
is these frequencies are closer to each other. Once
the frequencies of two coalescent modes are close
to each other, they will coalesce to a lower value
of λ .

4 Conclusions

The linear flutter of a thermally buckled compos-
ite sandwich plate is presented. Based on the
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Figure 8: Flutter boundary vs. fiber angle for
square [(±θ )2/core]s sandwich plates
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Figure 9: Flutter coalescence plot of square angle-
ply composite sandwich plates

present results, the following conclusions can be
drawn:

(1) Temperature has a destabilizing effect on the
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flutter boundary but the aerodynamic pressure
has a stabilizing effect on the buckling bound-
ary.

(2) Buckle pattern change occurred in the post-
buckling region alters the frequencies and
modes of the plate and that in turn changes
the flutter coalescent modes.

(3) The frequency coalescence usually occurs be-
tween the first two modes. However, if there
is buckle pattern change occurred in the post-
buckling region, the coalescent pair may be
between higher modes.
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