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A Fin Design Problem in Determining the Optimum Shape of Non-Fourier
Spine and Longitudinal Fins

Cheng-Hung Huang1 and Hsin-Hsien Wu2

Abstract: The conjugate gradient method
(CGM) is applied in an inverse fin design prob-
lem in estimating the optimum shapes for the non-
Fourier spine and longitudinal fins based on the
desired fin efficiency and fin volume at the spec-
ified time. One of the advantages in using CGM
in the inverse design problem lies in that it can
handle problems having a huge number of design
parameters easily and converges very fast.
The validity of using CGM in solving the present
inverse design problem is justified by perform-
ing the numerical experiments. Several test cases
involving different design fin efficiency, design
fin volume, specified time and relaxation time
are considered and examined. Results show that
CGM can be utilized successfully in determining
the optimum shape of the non-Fourier spine and
longitudinal fins.

Nomenclature

A cross-section area
Bi1,Bi2 Biot number
h1,h2 convective heat transfer coefficient
J functional defined by equation (3)
J′ gradient of functional defined by

equation (17)
k thermal conductivity
L reference length
p perimeter of fin
q actual heat transfer rate through fin
Q ideal heat transfer rate through fin
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r(x, ts) fin radius for spine fins and fin thick-
ness for longitudinal fins

t dimensional time
T dimensional temperature
v(r, ts) estimated fin volume
V given fin volume
w fin width

Greeks
β search step size
γ conjugate coefficient
θ (x, t) estimated dimensionless temperature
Δθ (x, t) sensitivity function defined by equa-

tion (8)
Ω computational domain
λ (x, t) Lagrange multiplier defined by equa-

tion (15)
δ (•) Dirac delta function
η estimated fin efficiency
Φ desired fin efficiency
ε convergence criteria
τ dimensional relaxation time

Superscript
n iteration index

dimensional quantities

1 Introduction

One of the main goals in designing the modern
thermal systems is the achievement of more com-
pact and efficient heat exchangers. This requires
employing the finned surfaces to the systems to
enhance the heat transfer. Finned surfaces have
been in use over a long period of time for dissipa-
tion of heat by convection or by radiation. Appli-
cations for finned surfaces are widely seen in air-
conditioning, refrigeration, cryogenics and many
cooling systems in industrial. Many works have
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been done in improving the design of the fins.

The design criterion of fins is different for vari-
ous applications, but the primary concern is the fin
volume (or weight) and fin efficiency. It is highly
desirable to optimize the shape of fins based on
these two constraints. The optimum dimensions
for fin with the maximum (or desired) fin effi-
ciency must be justified under the condition of
fixed volume of the fin.

Numerous studies have been conducted to opti-
mize the dimensions of spine and longitudinal fins
of various profiles subject to convection. A review
on extended surfaces over six decades is avail-
able in the work by Kraus (1988). Aziz (1992)
has published a survey article where the opti-
mum dimensions of straight fins, annular fins and
spines of different profiles with many numerical
examples are included. For pure conducting fins,
a criterion for optimum shape was proposed by
Schmidt (1926) using the principle of a constant
heat flux. Duffin (1959) confirmed later the re-
sults by using a variational method. In their stud-
ies, the fin profile is calculated as a parabola and
has a zero thickness at the outer edge. An opti-
mum shape of purely radiating fin was obtained
by Wilkins (1960,1960) for a variety of geome-
tries. For convective and radiative fins, Kern and
Kraus (1972) have presented a thorough study of
the optimum design of finned surfaces.

Razelos (1983) and Chung (1983) have indepen-
dently presented the optimum dimensions of con-
vective pin fin with cylindrical, conical, concave
parabolic and convex parabolic profiles. Chung
and Iyer (1993) used an integral approach to de-
termine the optimum dimensions for rectangular
longitudinal fins and cylindrical pin fins. Yeh
(1996) used the Lagrange’s multiplier method to
find the optimum dimensions of longitudinal rect-
angular and cylindrical pin fins. Recently, Huang
and Hsiao (2003) applied the conjugate gradient
method (CGM) in an inverse fin design problem
to find the optimum shape of the longitudinal and
spine fins with constant thermal properties. Later,
the non-linear thermal properties were considered
in the fin design problem by the same authors
(2003).

In all the above references the optimum shape

of fins are determined based on either minimum
weight or maximum heat transfer rate through fin
base or optimum (or desired) fin efficiency for
some specified fin volume using Fourier model.
The applications for non-Fourier fin design prob-
lems are rarely discussed.

With advances in micro-fabrication technology,
the micro-heat exchangers are of interest in many
engineering applications, such as cooling of elec-
tronic chips and cryocoolers using helium II. For
such a situation, phenomena with the finite ther-
mal propagation speed might be important for the
thermal analysis of the extended surface in the
micro-heat exchangers.

Lin (1998) proposed a hybrid application of the
Laplace transform and control volume methods
in determining the non-Fourier fins performance
under periodic thermal conditions. Results show
that the effects of the thermal relaxation time on
the fin performance are significant for a short time
after the initial transient. This is the so-called di-
rect non-Fourier fin problems. It should be noted
that the discussions for thermal behaviors for the
direct non-Fourier fin problems are still limited in
the open literature, not to mention the non-Fourier
fin design problems. Therefore, the purpose of
this work is to develop a design algorithm using
the conjugate gradient method to estimate the op-
timum shapes of the non-Fourier spine and longi-
tudinal fins.

Various inverse algorithms have been applied to
many different engineering practical applications.
Hon and Wei (2005) applied an effective mesh-
less and integration-free method for the numeri-
cal solution of multidimensional inverse heat con-
duction problems. Liu (2006) derived the first-
order and second-order one-step GPS applied to
the estimation of thermophysical properties. Liu
et al (2007) constructed a closed-form estimation
method for the inverse thermal problems of esti-
mating the spatial-dependent thermophysical pa-
rameters.

Moreover, the conjugate gradient algorithm has
also been applied successfully in many inverse
problems. Chao et al (2001) used the CGM
to determine the unknown traction of a cracked
elastic body. Huang and Kim (2005) also used
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CGM to estimate the time-dependent reaction
coefficient in an autocatalytic reaction pathway.
Huang and Lo (2006) utilized the CGM in a three-
dimensional inverse problem in estimating the in-
ternal heat flux of housing for high speed motors.

For the inverse design problem, it has been uti-
lized to determine the optimum shape of cool-
ing passages for turbine blade [Huang and Hsi-
ung, (1999)] and optimum spine and longitudinal
fin shapes for Fourier model [Huang and Hsiao,
(2003)]. In this paper we addressed the devel-
opments of CGM for estimating optimum shapes
of the non-Fourier spine and longitudinal fins at
some specified times based on optimum (or de-
sired) fin efficiency and desired fin volume. More-
over, the influence of Biot number on the opti-
mum fin shape will also be discussed.

The CGM derives from perturbation principle,
and transforms the inverse design problem to the
solution of three problems, namely, the direct
problem, the sensitivity problem and the adjoint
problem. This method will be discussed in detail
in the next few sections.

2 The Direct Problem

To illustrate the methodology for developing ex-
pressions for use in designing the optimum shape
for the non-Fourier spine and longitudinal fins
based on the desired fin efficiency and fin volume
at the specified timets, we consider the following
fin design problem.

The mathematical formulation of this non-Fourier
fin problem in dimensional form is given by:

d
dx

[
A(x, ts)

dT
dx

]
− h1p(x, ts)

k
(T −T ∞)

− τh1 p(x, ts)
k

∂
∂ t

(T −T ∞)

=
ρCA(x, ts)

k

∂T
∂ t

+
ρCτA(x, ts)

k

∂ 2T

∂ t2 ; in 0 < x < L (1a)

T = T b; at x = 0 (1b)

k
dT
dx

+h2T = h2T ∞; at x = L (1c)

T = 0; at t = 0 (1d)

dT
dt

= 0; at t = 0 (1e)

here the over bar “ “ represents dimensional
quantities.

A(x, ts) and p(x, ts) represent the cross-section
area and perimeter of fin at the specified time
ts; k,ρ and C are the thermal conductivity, den-
sity and heat capacity of fin, respectively, and τ
is the relaxation time. T b and T ∞ are the fin
base temperatures at x = 0 and ambient temper-
ature, respectively. h1 and h2 are the heat transfer
coefficients on fin surface and fin tip x = L, re-
spectively. For spine fins A(x, ts) = πr(x, ts)2 and
p(x, ts) = 2πr(x, ts), and r(x, ts) represents fin ra-
dius. For longitudinal fins A(x, ts) = r(x, ts)×w
and p(x, ts) ≈ 2w (assuming r(x, ts) << w), and
r(x, ts) represents fin thickness. Here w is the
width of longitudinal fins.

If the following dimensionless quantities are de-
fined

θ =
T −T ∞

T b −T ∞
; x =

x

L
; r =

r

L
;

Bi1 =
h1L

k
; Bi2 =

h2L

k
; w =

w

L
;

t =
kt

ρCL
2 ; τ =

kτ
ρCL

2

The dimensionless non-Fourier fin equation can
be obtained as

∂
∂x

[F1(x, ts)
∂θ (x, t)

∂x
]−2F2(x, ts)Bi1θ

= F3(x, ts)
∂θ
∂ t

+F4(x, ts)
∂ 2θ
∂ t2 (2a)

θ = 1; at x = 0 (2b)

dθ
dx

+Bi2θ = 0; at x = 1 (2c)

θ = 0; at t = 0 (2d)

∂θ
∂ t

= 0; at t = 0 (2e)

For spine fins: F1(x, ts) = r(x, ts)2, F2(x, ts) =
r(x, ts), F3(x, ts) = r(x, ts)2 + 2Bi1τr(x, ts)
and F4(x, ts) = τr(x, ts)2 For longitudi-
nal fins: F1(x, ts) = r(x, ts), F2(x, ts) = 1.0,



200 Copyright c© 2007 Tech Science Press CMC, vol.5, no.3, pp.197-211, 2007

(a) (b)

Figure 1: The (a) spine fin and (b) longitudinal fin.

F3(x, ts) = r(x, ts)+2Bi1τ and F4(x, ts) = τr(x, ts).
Figures 1a and 1b illustrate the dimensionless
geometry for the spine and longitudinal fins
considered here.

The direct problem considered here is concerned
with the determination of the temperature dis-
tribution of non-Fourier fin and its efficiency at
the specified time ts when the shape of fin and
the boundary conditions at both boundaries are
known and given.

3 The Inverse Design Problem

For the inverse design problem, the shape of fin,
i.e. r(x, ts), is regarded as being unknown, but
everything else in equation (2) is known. In ad-
dition, desired fin efficiency at the specified time
and desired fin volume are given.

The solution of the present inverse design prob-
lem is to be obtained in such a way that the fol-
lowing functional is minimized:

J(r, ts) = [q(r, ts)−ΦQ(r, ts)]2 +α [v(r, ts)−V ]2

(3)

Where q(r, ts) and Q(r, ts) are the actual (or esti-
mated) and ideal heat transfer rate of fin at the
specified time ts, respectively. v(r, ts) and V rep-
resent the estimated and desired (or given) fin vol-
ume. Φ is the desired fin efficiency and α is the
weighting coefficient.

The first and second terms on the right hand side

are the square of the deviation between the actual
and desired heat transfer rate through fin and the
deviation between the estimated and desired fin
volume, respectively.

If the value of functional J(r, ts) is less than the
specified stopping criterion ε , stop the iterative
process and the optimal shape of fins is obtained,
otherwise, continue the iteration until the stopping
criterion is satisfied.

Here q = q
qre f

, Q = Q
qre f

and v = v
vre f

are defined

and the reference quantities are given as

qre f = h1L
2(T b −T ∞) (4a)

vre f = L
3

(4b)

For spine fins we have

q(r, ts) =
L∫

x=0

h1[2πr(x, ts)][T(r, ts)−T ∞]dx (5a)

Q(r, ts) =
L∫

x=0

h1[2πr(x, ts)](Tb −T ∞)dx (5b)

v =
L∫

x=0

πr(x, ts)2dx (5c)

thus the dimensionless quantities for q, Q and v
can be obtained as

q =

t f∫
t=0

1∫
x=0

2πr(x, t)θ (x, t)δ (t− ts)dxdt (5d)
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Q =

t f∫
t=0

1∫
x=0

2πr(x, t)δ (t− ts)dxdt (5e)

v =

t f∫
t=0

1∫
x=0

πr(x, t)2δ (t − ts)dxdt (5f)

For longitudinal fins, we assumed r(x, ts) << w
and obtained

q =
L∫

x=0

h1(2w)[T(x, ts)−T ∞]dx (6a)

Q =
L∫

x=0

h1(2w)[Tb(0, ts)−T ∞]dx (6b)

v =
L∫

x=0

wr(x, ts)dx (6c)

so the dimensionless quantities for q, Q and v can
be expressed as

q =

t f∫
t=0

1∫
x=0

2wθ (x, t)δ (t− ts)dxdt (6d)

Q =

t f∫
t=0

1∫
x=0

2wδ (t− ts)dxdt (6e)

v =

t f∫
t=0

1∫
x=0

wr(x)δ (t− ts)dxdt (6f)

The inverse design problem for non-Fourier fins
can now be stated as follows: by utilizing the
above mentioned functional J[r(x, ts)], estimate
the optimum shape of the fins, i.e. r(x, ts), such
that the actual (or estimated) heat transfer rate of
fin q approaches to Φ, Q and the estimated fin vol-
ume v approaches to the desired fin volume V at
the specified time ts.

The conjugate gradient method has the ability in
optimizing the above non-Fourier fin design prob-
lem and will be discussed in detail in the next few
sections.

4 Conjugate Gradient Method for Minimiza-
tion

The following iterative process based on CGM
[Alifanov, (1994)] is now used for the estimation
of the unknown fin shape r(x, ts) by minimizing
the functional J[r(x, ts)].

rn+1(x, ts) = rn(x, ts)−β nPn(x, ts) (7a)

Here β n is the search step size in going from iter-
ation n to iteration n+1 and Pn(x, ts) is the direc-
tion of descent (i.e. search direction) given by

Pn(x, ts) = J
′n(x, ts)+ γnPn−1(x, ts) (7b)

which is a conjugation of the gradient in the out-
ward normal direction J′n(x, ts) at iteration n and
the direction of descent Pn−1(x, ts) at iteration
n−1. The conjugate coefficient is defined as [Al-
ifanov, (1994)]:

γn =

1∫
x=0

(
J
′n
)2

dx

1∫
x=0

(
J′n−1

)2
dx

; with γ0 = 0 (7c)

It is noted that when γn = 0 for any n, the direction
of descent Pn(x, ts) becomes the gradient direction
in equation (7b), i.e. the Steepest Descent Method
(SDM) is obtained. The convergence of the above
iterative procedure in minimizing the functional J
is guaranteed in [Lasdon et al, (1967)].

To perform the iterations according to equation
(7a), a step size β n and the gradient of the func-
tional J′n(x, ts) need to be computed. In order
to develop expressions for the determination of
these two quantities, a "sensitivity problem" and
an "adjoint problem" are constructed as described
below.

5 Sensitivity Problem and Search Step Size

The sensitivity problem is obtained from the orig-
inal direct problem defined by equation (2) in the
following manner: It is assumed that when r(x, ts)
undergoes a variation Δr(x, ts), θ (x, ts) is per-
turbed by Δθ (x, ts). Then replacing in the direct
problem r(x, ts) by r(x, ts)+ Δr(x, ts) and θ (x, ts)
by θ (x, ts) + Δθ (x, ts), subtracting the resulting



202 Copyright c© 2007 Tech Science Press CMC, vol.5, no.3, pp.197-211, 2007

expressions from the direct problem and neglect-
ing the second-order terms, the following sensitiv-
ity problem for the sensitivity function Δθ (x, ts) is
obtained.

∂
∂x

[
F5(x, ts)

∂Δθ
∂x

]
+

∂
∂x

[
F6(x, ts)

∂θ
∂x

]

= 2Bi1[F7(x, ts)Δθ +F8(x, ts)θ ]+F9(x, ts)
∂θ
∂ t

+F10(x, ts)
∂Δθ
∂ t

+F11(x, ts)
∂ 2θ
∂ t2 +F12(x, ts)

∂ 2Δθ
∂ t2

(8a)

Δθ = 0; at x = 0 (8b)

dΔθ
dx

+Bi2Δθ = 0; at x = 1 (8c)

Δθ = 0; at t = 0 (8d)

∂Δθ
∂ t

= 0; at t = 0 (8e)

For spine fins: F5(x, ts) = r(x, ts)2,
F6(x, ts) = 2r(x, ts)Δr(x, ts), F7(x, ts) = r(x, ts),
F8(x, ts) = Δr(x, ts), F9(x, ts) = 2τBi1Δr(x, ts) +
2r(x, ts)Δr(x, ts), F10(x, ts) = r(x, ts)2 +
2Bi1τr(x, ts), F11(x, ts) = 2τr(x, ts)Δr(x, ts)
and F12(x, ts) = τr(x, ts)2. For longitudinal
fins: F5(x, ts) = r(x, ts), F6(x, ts) = Δr(x, ts),
F7(x, ts) = x, F8(x, ts) = w, F9(x, ts) = Δr(x, ts),
F10(x, ts) = r(x, ts)+2Bi1τ , F11(x, ts) = τΔr(x, ts)
and F12(x, ts) = τr(x, ts).

The functional J(rn+1, ts) for iteration n+1 is ob-
tained by rewriting equation (3) as

J(rn+1, ts) = [q(rn−β npn, ts)−ΦQ(rn−β n pn, ts)]2

+α [v(rn −β n pn, ts)−V ]2 (9a)

where we replaced rn+1 by the expression given
by equation (7a). If the terms q(rn − β npn, ts),
Q(rn−β n pn, ts) and v(rn−β n pn, ts) are linearized
by a Taylor expansion, equation (9a) takes the
form

J(rn+1, ts)
= {q(rn, ts)−β n[Δq(pn, ts)−ΦΔQ(pn, ts)]

−ΦQ(rn, ts)}2+α [v(rn, ts)−β nΔv(pn, ts)−V ]2

(9b)

Here the expressions for Δq, ΔQ and Δv can be ob-
tained by using Δq = q(r +Δr, ts)−q(r, ts), ΔQ =
Q(r + Δr, ts) − Q(r, ts) and Δv = v(r + Δr, ts) −
v(r, ts) and neglecting the high order terms. Even-
tually, for spine fins we have

Δq =

t f∫
t=0

1∫
x=0

2π (rΔθ +θΔr)δ (t − ts)dxdt (10a)

ΔQ =

t f∫
t=0

1∫
x=0

2πΔrδ (t− ts)dxdt (10b)

Δv =

t f∫
t=0

1∫
x=0

2πrΔrδ (t− ts)dxdt (10c)

for longitudinal fins we have

Δq =

t f∫
t=0

1∫
x=0

2wΔθδ (t − ts)dxdt (11a)

ΔQ = 0 (11b)

Δv =

t f∫
t=0

1∫
x=0

wΔrδ (t− ts)dxdt (11c)

The sensitivity function Δθ (x, t) is taken as the
solutions of problem (8) by letting Δr = Pn. Once
Δθ (x, t) is obtained, the above quantities can all
be calculated.

The search step size β n is determined by mini-
mizing the functional given by equation (9b) with
respect to β n. The following expression results:

β n =
(q−ΦQ)(Δq−ΦΔQ)+α (v−V )Δv

(Δq−ΦΔQ)2 +αΔv2
(12)

6 Adjoint Problem and Gradient Equation

To obtain the adjoint problem, equation (2a) is
multiplied by the Lagrange multiplier (or adjoint
function) λ (x, t) and the resulting expression is
integrated over the correspondent space domain.
Then the result is added to the right hand side of
equation (3) to yield the following expression for
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the functional J[r(x, ts)]:

J(r, ts) = (q−ΦQ)2 +α (v−V )2

+

t f∫
t=0

1∫
x=0

λ (x, t)
{

∂
∂x

[
F1(x, ts)

∂θ (x, t)
∂x

]

−2F2(x, ts)Bi1θ −F3(x, ts)
∂θ
∂ t

−F4(x, ts)
∂ 2θ
∂ t2

}
dxdt (13)

The variation ΔJ is obtained by perturbing r by
r+Δr, θ by θ +Δθ , q by q+Δq, Q by Q+ΔQ and
v by v+Δv in equation (13), subtracting the result-
ing expression from the original equation (13) and
neglecting the second-order terms. We thus find

ΔJ = 2(q−ΦQ) (Δq−ΦΔQ)+α [2(v−V )Δv]

+

t f∫
t=0

1∫
x=0

{
λ (x, t)

∂
∂x

[
F5(x, ts)

∂Δθ
∂x

]

+
∂
∂x

[
F6(x, ts)

∂θ
∂x

]

−2Bi1

[
F7(x, ts)Δθ +F8(x, ts)θ

]
−F9(x, ts)

∂θ
∂ t

−F10(x, ts)
∂Δθ
∂ t

−F11(x, ts)
∂ 2θ
∂ t2 −F12(x, ts)

∂ 2Δθ
∂ t2

}
dxdt (14)

In equation (14), the integral terms are reformu-
lated based on the integration by parts; the bound-
ary conditions of the sensitivity problem given by
equations (8b) and (8c) are utilized and then ΔJ
is allowed to go to zero. The vanishing of the
integrands containing Δθ leads to the following
adjoint problem for determining λ (x, t):

∂
∂x

[F13(x, ts)
∂λ
∂x

]+4(q−ΦQ)F14(x, ts)

= 2Bi1λ F15(x, ts)+F16(x, ts)
∂λ
∂ t

+F17
∂ 2λ
∂ t2

(15a)

λ = 0; at x = 0 (15b)

dλ
dx

+Bi2λ = 0; at x = 1 (15c)

λ = 0; at t = 0 (15d)

dλ
dt

= 0; at t = 0 (15e)

where F13(x, ts) = r(x, ts)2, F14(x, ts) = πr(x, ts),
F15(x, ts) = r(x, ts), F16(x, ts) = −r(x, ts)2 −
2Bi1τr(x, ts) and F17(x, ts) = τr(x, ts)2 for spine
fins and F13(x, ts) = r(x, ts), F14(x, ts) = w,
F15(x, ts) = 1, F16(x, ts) = −r(x, ts)− 2Bi1τ and
F17(x, ts) = τr(x, ts) for longitudinal fins.

Finally, the following integral term is left for spine
fins

ΔJ =

t f∫
t=0

1∫
x=0

{
2π

[
2(q−ΦQ)(θ −Φ)

+2αr(v−V )
]
−2λ Bi1θ +2rλ dθ

dx
δ (x−1)

−2r
dθ
dx

dλ
dx

− (2r +2τBi1)λ ∂θ
∂ t

−2τλ r
∂ 2θ
∂ t2

}
Δrdxt (16a)

and the following integral term is left for longitu-
dinal fins

ΔJ =

t f∫
t=0

1∫
x=0

{
2αw(v−V )−λ ∂θ

∂ t
−λ τ ∂ 2θ

∂ t2

+λ
dθ
dx

δ (x−1)− dθ
dx

dλ
dx

}
Δrdtdx (16b)

Where δ (•) is the Dirac delta function. From
definition [Alifanov, (1994)], the functional incre-
ment can be presented as

ΔJ =
1∫

x=0

J′Δrdx (16c)

A comparison of equations (16a), (16b) and (16c)
leads to the following expression for the gradient
J′(x) of the functional J[r(x)] for spine and longi-
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tudinal fins, respectively:

J′(x) =
t f∫

t=0

{
2π [2(q−ΦQ)(θ −Φ)+2αr(v−V )]

−2λ Bi1θ +2rλ
dθ
dx

δ (x−1)−2r
dθ
dx

dλ
dx

− (2r +2τBi1)λ
∂θ
∂ t

−2τλ r
∂ 2θ
∂ t2

}
dt (17a)

and

J′(x) =

t f∫
t=0

{
2αw(v−V )−λ

∂θ
∂ t

−λ τ
∂ 2θ
∂ t2

+λ
dθ
dx

δ (x−1)− dθ
dx

dλ
dx

}
dt (17b)

The calculation of gradient equations is the most
important part of CGM since it plays a significant
role of the inverse calculation.

7 Computational Procedure

The computational procedure for the solution of
this inverse design problem for non-Fourier fins
using CGM may be summarized as follows:

Suppose rn(x, ts) is available at iteration n.

Step 1. Solve the direct problem given by equa-
tion (2) for θ (x, t).

Step 2. Examine the stopping criterion ε . Con-
tinue if not satisfied.

Step 3. Solve the adjoint problem given by equa-
tion (15) for λ (x, t).

Step 4. Compute the gradient of the functional
J′n from equation (17).

Step 5. Compute the conjugate coefficient γn and
direction of descent Pn from equations
(7c) and (7b), respectively.

Step 6. Set Δr(x, ts)= Pn(x, ts), and solve the sen-
sitivity problem given by equation (8) for
Δθ (x). Then Δq, ΔQ and Δv can be cal-
culated.

Step 7. Compute the search step size β n from
equation (12).

Step 8. Compute the new estimation for
rn+1(x,ts) from equation (7a) and
return to step 1.

8 Results and Discussions

The objective of this work is to apply the present
inverse design algorithm, i.e. the conjugate gra-
dient method (CGM), in estimating the optimum
shapes for the non-Fourier spine and longitudinal
fins based on the desired fin efficiency and fin vol-
ume at the specified time. No prior information
on the functional form of the unknown shapes is
given, thus it is also called the function estimation
[Beck et al, (1985)].

One should note that the initial guess of the fin
shape is always necessary for the present iterative
algorithm. To make it more convenient to be ap-
plied, we always assume that, for a fixed fin vol-
ume, the initial shapes for the spine and longitu-
dinal fin design problems are the pin fin and rect-
angular fin, respectively.

To illustrate the ability of this inverse design al-
gorithm in estimating the optimum shape for non-
Fourier fins from the knowledge of the desired fin
efficiency and volume at the specified time, the
following two types of problems are considered,
i.e. (I). The non-Fourier spine fin design problems
and (II). The non-Fourier longitudinal fin design
problems.

(I). The Non-Fourier Spine Fin Design Prob-
lems:

First, the optimum shape of non-Fourier spine fins
is examined by considering perfect fin efficiency,
i.e. Φ = 1.0 and using Δx = 0.05, Δt = 0.1,
Bi2 = 0, ts = 200, Bi1 = 1, 3 and 5, respectively,
for a smaller and a larger relaxation time, say τ =
1 and 100, respectively. The desired fin volume is
given in the range from V = 0.002 to V = 0.005
with an increment of 0.0005. It is impossible to
obtain the shape of spine fin having Φ = 1.0 un-
der this consideration, however, the optimum fin
shape can still be obtained with best fin efficiency.
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When the value of weighting coefficient α is
small, the constraint for fin volume is loose which
means the estimated fin volume may have discrep-
ancy with the desired one. At the same time, the
product of β n and Pn (i.e. the corrected value of
fin radius) becomes larger, this also implies that
the rate of convergent will be faster. To compro-
mise with both requirements, the value of α is
chosen as 10000 at the beginning and is increased
gradually during the iterative process.

By performing the above stated inverse design al-
gorithm, the optimum shape of non-Fourier spine
fin for various desired fin volumes can be ob-
tained. The value of objection function J can not
be decreased to a small number since the desired
efficiency Φ = 1.0 can not be satisfied. The stop-
ping criterion under this consideration is used as
the follows: if (Jn − Jn−1) < 10−10, stop the iter-
ative process.

Figures 2a and 2b illustrate the optimum fin effi-
ciency for the estimated spine fin for τ = 1 and
100, respectively. From Figures 2a and 2b we
learned that for same desired fin volume, the ef-
ficiency of the optimum fin with a smaller relax-
ation time (higher thermal propagation speed) is
always higher than that with a larger relaxation
time (lower thermal propagation speed). This is
due to the fact that when the relaxation time is
larger heat will need more time to travel within the
fin, therefore the surface temperature is lower than
that for higher relaxation and the fin efficiency be-
comes lower.

It is also of interest to examine the influence of
Biot number Bi1 on the estimated optimum fin ef-
ficiency and fin shape. Figures 2a and 2b also in-
dicate the optimum fin efficiency for various de-
sired fin volumes when Bi1 is increased from 1
to 3 and then to 5 with Bi2 = 0. From these Fig-
ures we noticed that as Bi1 increases, the optimum
fin efficiency η also increases. For a fin with fin
shape fixed, when Bi1 is increased fin surface tem-
perature will be decreased; as a result, the fin ef-
ficiency will also be decreased. However, in the
present case, the fin shape can be adjusted auto-
matically by the present algorithm to obtain opti-
mum shape that matches best with the constraints.
Therefore, it is possible that the fin efficiency in-

creases even when Biot number increases [Huang
and Hsiao, (2003)].

Figures 3a and 3b illustrate the optimum fin
shapes at τ = 100 and ts = 200 for Bi1 = 1, 3
and 5, respectively, for fin volume V = 0.003
and 0.005, respectively. We have learned from
these Figures that as Bi1 increases, fin base ra-
dius r(0, ts) also increases but the rest of fin radius
r(x, ts) decreases to obtain higher fin surface tem-
perature and thus to obtain higher fin efficiency.

Next the present design algorithm is examined by
assigning desired fin efficiency and fin volume at
different specified time, then estimate the opti-
mum fin shape corresponding to these situations.
The desired fin efficiency is always less than the
optimum efficiency, we thus expect that the value
of the objection function J can be decreased to
a small number, so the stopping criterion under
this consideration is taken as ε = 10−8. The es-
timated optimum fin shapes are presented in Fig-
ures 4a and 4b for ts = 3 and 20, respectively. It
is found that at the same desired fin efficiency and
relaxation time, the base area of fin for smaller ts
is bigger than that for larger ts. This is because
that when the specified time is shorter, less heat is
entered into the fin than the case of longer speci-
fied time due to the characteristic of finite thermal
propagation speed. In order to allow more heat
enters into the fin to satisfy with the desired fin
efficiency, the base area must be increased to al-
low more heat to enter into the fin.

Figures 5a and 5b show the fin shapes for differ-
ent relaxation time τ = 1 and 100, respectively,
with desired fin efficiency Φ = 0.8 and ts = 20.
It is found that under the condition of same fin
volume, the base area of fin for larger relaxation
time is always bigger than that for smaller relax-
ation time. It is clear that larger relaxation time
represents lower thermal propagation speed. To
match with the condition of desired fin efficiency,
more heat must enter into the fin. This can only be
done by increasing the base area and that is why
the base area of fin for a larger relaxation time is
always bigger than that for a smaller relaxation
time.

Figures 6a and 6b indicate the fin shapes for dif-
ferent specified time ts = 3, 8 and 200, respec-
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Figure 2: The optimum fin efficiency for spine fin at ts = 200 by varying Bi1 for (a) τ = 1 and (b) τ = 100
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Figure 3: The optimum spine fin shapes at ts = 200 ,τ = 100 and (a) V = 0.003 and (b) V = 0.005
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Figure 4: The optimum spine fin shapes at τ = 10 by varying desired fin efficiency and (a) ts = 3 and (b)
ts = 20
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Figure 5: The optimum spine fin shapes at Φ = 0.8 and ts = 20 by varying desired fin volume and (a) τ = 1
and (b) τ = 100
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Figure 6: The optimum spine fin shapes at Φ = 0.6 and V = 0.005 by varying ts and (a) τ = 10 and (b)
τ = 100
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Figure 7: The optimum spine fin efficiency with time at ts = 3 by varying relaxation time τ and (a) V = 0.003
and (b) V = 0.005
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tively, with desired fin efficiency Φ = 0.8 and
V = 0.005 for τ = 10 and 100, respectively. It
can be seen from Figures 6a and 6b that the base
fin area for τ = 100 is always bigger than that for
τ = 10 for the reason stated previously. Moreover,
it is also found that the optimum non-Fourier fin
profile for a smaller relaxation time is easier to ap-
proach to the profile of Fourier fin. As the speci-
fied time is long enough, the temperature distribu-
tion for fin will become steady-state and thus the
fin profile is identical to the Fourier fin profile.

Finally it is interesting to examine the fin effi-
ciency with time based on the optimum fin shape
with desired fin efficiency Φ = 0.6 obtained at the
specified time ts = 3. Figures 7a and 7b show a
comparison of the fin efficiency with time at dif-
ferent relaxation time and fin volume. It is clear
that for the case τ = 1, the fin reaches steady-state
condition at ts = 3 and thus the fin efficiency re-
mains the same with time. However, for τ = 10
and 100, the fin is still in a transient-state at ts = 3
and the fin efficiency varies with time but will
reach to a steady-state condition eventually. The
fin efficiencies beyond ts = 3 are all better than or
equal to the efficiency at ts = 3. This implies that
the fin efficiency for the optimum fin is always the
same as or better than the efficiency at ts = 3 and
therefore the overall fin performance is better than
the design value.

(II). The Non-Fourier Longitudinal Fin Design
Problems:

The optimum shape of non-Fourier longitudinal
fins is first examined by considering perfect fin
efficiency, i.e. Φ = 1.0 and using V = 0.006,
Δx = 0.05, Δt = 0.1, Bi2 = 0, ts = 3, Bi1 = 1 and
5 for τ = 0.1, 1 and 10, respectively. The width
of fin w is assumed as unity. It is impossible to
obtain the optimum shape of non-Fourier longitu-
dinal fin having Φ = 1.0, but the fin shape can still
be obtained with best fin efficiency. The value of
α is chosen as 10000 at the beginning and is in-
creased gradually during the iterative process as
was mentioned previously.

The value of objection function J can not be de-
creased to a small number for the case Φ = 1.0,
therefore the iterative process is stopped when

(Jn − Jn−1) < 10−7. When the above stated in-
verse design algorithm is performed, the optimum
shape of non-Fourier longitudinal fin for various
desired fin volumes can be obtained. Figures 8a
and 8b indicate the estimated non-Fourier longi-
tudinal fin by varying τ or Bi1 = 1 and 5, respec-
tively.

From Figures 8a and 8b we learned that the ef-
ficiency of the optimum non-Fourier longitudinal
fin is very low. This is because that the fin width
w is fixed and we can adjust only the fin thickness
r(x) to optimize the fin efficiency. However, the
fin thickness has much less weight than fin width
in calculating the total fin surface. For this reason
the optimum fin shape can improve only slightly
the fin efficiency.

It is observed that when the relaxation time is
larger, the fin base area is also bigger. The rea-
son for this is the same for the spine fin and is
stated previously. Moreover, it is also observed
that at the same relaxation time, when Bi1 be-
comes larger, the fin base area becomes also big-
ger. This is because that when the Biot number is
increased the surface temperatures are decreased
and thus the fin efficiency is decreased. In order
to keep fin efficiency optimum, the fin base area
must be increased to let more heat enters into the
fin and to increase the surface temperature of the
fin and to result in higher fin efficiency.

Figures 9a and 9b show the fin shapes for different
specified time ts = 3, 8 and 200, respectively, with
desired fin efficiency Φ = 0.1 and V = 0.012 for
τ = 1 and 10, respectively. It can be seen from
those Figures that the base fin area for τ = 10
is always bigger than that for τ = 1 for the rea-
son stated before. Moreover, it is also found that
the optimum non-Fourier fin profile for τ = 1 ap-
proaches to the profile of Fourier fin at ts = 3, 8
and 200. This implies that when τ = 1, the fin
system has become steady-state for ts = 3, 8 and
200 and the non-Fourier assumption no longer ex-
ists and the fin becomes a steady-state Fourier
fin. As the relaxation time becomes longer, say
τ = 10, the temperature distributions at ts = 3 and
8 are still in a transient-state, therefore the fin
shapes differ from the Fourier fin profile. How-
ever fin temperature will become steady-state as
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Figure 8: The optimum longitudinal fin shapes at ts = 3 and V = 0.006 by varying relaxation time τ and (a)
Bi1 = 1 and (b) Bi1 = 5
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Figure 9: The optimum longitudinal fin shapes at Φ = 0.1 and V = 0.012 by varying ts and (a) τ = 1 and (b)
τ = 10
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Figure 10: The optimum longitudinal fin efficiency with time at ts = 3 by varying relaxation time τ and (a)
V = 0.009 and (b) V = 0.012
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ts increases and thus the fin profile is identical to
the Fourier fin profile.

Finally the fin efficiency with time based on the
optimum fin shape with desired fin efficiency Φ =
0.1 obtained at ts = 3 is examined for V = 0.009
and 0.012, respectively. The results are shown in
Figures 10a and 10b for a comparison of the fin ef-
ficiency with time at different relaxation time and
fin volume. It is clear that for the case τ = 0.1 and
1, the fin reaches steady-state condition at ts = 3
and thus the fin efficiency remains the same with
time. However, for τ = 10, the fin is still in a
transient-state and the fin efficiency varies with
time but will finally reach to a steady-state condi-
tion. Again, the fin efficiencies beyond ts = 3 are
all better than or equal to the efficiency at ts = 3.
This means the fin efficiency for the optimum fin
is always better than or the same as the efficiency
at ts = 3 and therefore the overall fin performance
is better than the desired value.

From the above discussions we concluded that the
present design algorithm has the ability in design-
ing optimum non-Fourier spine and longitudinal
fins under the given constraints and the rate of
convergence is also very fast.

9 Conclusions

The conjugate gradient method (CGM) was ap-
plied successfully for the solution of the inverse
design problem in estimating the optimum shape
of the non-Fourier spine and longitudinal fins.
Several test cases involving different design con-
siderations were examined.

It is noticed that when the Biot number varies,
the optimum fin efficiency and optimum fin shape
will be changed. The results also show that the fin
efficiency can be improved greatly for the spine
fins by the present design algorithm but can be
increased only a little for the longitudinal fins.
Moreover, the relaxation time plays an important
role in the present optimum fin shape design prob-
lem. When it is small enough, the fin reaches to
Fourier fin easily. When it becomes larger, the
characteristic of the non-Fourier fin is dominated
and the designed fin shape is different from the
Fourier fin.
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