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A MLPG4 (LBIE) Formulation in Elastostatics

V. Vavourakis and D. Polyzos1

Abstract: Very recently, Vavourakis, Selloun-
tos and Polyzos (2006) (CMES: Computer Mod-
eling in Engineering & Sciences, vol. 13, pp.
171–184) presented a comparison study on the
accuracy provided by five different elastostatic
Meshless Local Petrov-Galerkin (MLPG) type
formulations, which are based on Local Bound-
ary Integral Equation (LBIE) considerations. One
of the main conclusions addressed in this pa-
per is that the use of derivatives of the Moving
Least Squares (MLS) shape functions decreases
the solution accuracy of any MLPG(LBIE) for-
mulation. In the present work a new, free of
MLS-derivatives and non-singular MLPG(LBIE)
method for solving elastic problems is demon-
strated. This is accomplished by treating dis-
placements and stresses as independent variables
through the corresponding local integral equa-
tions and considering nodal points located only
internally and externally and not on the global
boundary of the analyzed elastic structure. The
MLS approximation scheme for the interpolation
of both displacements and stresses is exploited.
The essential displacement and traction bound-
ary conditions are easily satisfied via the corre-
sponding displacement and stress local integral
equations. Representative numerical examples
that demonstrate the achieved accuracy of the pro-
posed MLPG(LBIE) method are provided.

Keyword: MLPG4, LBIE, MLS, hypersingu-
lar, elastostatics

1 Introduction

Meshless methods have attracted considerable at-
tention in recent years, since they seem to cir-
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cumvent well known problems associated with
the Finite Element Method (FEM), such as mesh-
ing, remeshing, locking and element distortion
and drawbacks related to the Boundary Element
Method (BEM), such as full populated matri-
ces and requirement of the fundamental solution
of the problem. Smooth Particle Hydrodynam-
ics, Petrov-Galerkin Diffuse Element, Partition of
Unity, h-p Clouds, Reproducing Kernel Particle,
Point Interpolation, Element Free Galerkin, Lo-
cal Boundary Integral Equation, Meshless Local
Petrov-Galerkin, Boundary Node and so on, are
some of the meshless methods reported so far in
the literature [Atluri (2004); Liu (2003)].

Eight years ago, Atluri and co-workers proposed
the Local Boundary Integral Equation (LBIE)
method [Zhu, Zhang, and Atluri (1998)] and the
Meshless Local Petrov-Galerkin (MLPG) method
[Atluri and Zhu (1998)] as alternatives to the
BEM and FEM, respectively. Both methods are
characterized as “truly meshless” since no back-
ground cells are required for the numerical eval-
uation of the involved integrals. Properly dis-
tributed nodal points, without any connectivity
requirement, covering the domain of interest as
well as the surrounding global boundary are em-
ployed instead of any boundary or finite element
discretization. All nodal points belong in regu-
lar sub-domains (e.g. circles for two-dimensional
problems) centered at the corresponding colloca-
tion points. The fields at the local and global
boundaries as well as in the interior of the sub-
domains are usually approximated by the Mov-
ing Least Squares (MLS) approximation scheme.
Owing to regular shapes of the sub-domains, both
surface and volume integrals are easily evaluated.
The local nature of the sub-domains leads to a fi-
nal linear system of equations the coefficient ma-
trix of which is sparse and not full populated.
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Depending on the test functions used in the weak
formulation of the MLPG method, Atluri and co-
workers developed six different MLPG method-
ologies numbered from one to six [Atluri and
Shen (2002a); Atluri and Shen (2002b)]. The
MLPG4 method utilizes as test functions, the fun-
damental solution of the differential equation (or
part of the differential equation) of the problem,
resulting thus to a MLPG approach that is equiv-
alent to the LBIE method. For this reason, in the
present work the LBIE method will be called from
now and further MLPG(LBIE) method.

In the context of the linear elasticity, several pa-
pers dealing with MLPG(LBIE) solutions have
appeared in the literature. The most represen-
tative are those of [Atluri, Sladek, Sladek, and
Zhu (2000); Sladek, Sladek, and Keer (2000a);
Sladek, Sladek, and Atluri (2000b); Atluri, Han,
and Shen (2003); Han and Atluri (2004); Selloun-
tos and Polyzos (2003); Sellountos and Polyzos
(2005a); Sellountos and Polyzos (2005b); Sell-
ountos, Vavourakis, and Polyzos (2005); Bodin,
Ma, Xin, and Krishnaswami (2006)] while a com-
prehensive presentation on the application of the
MLPG(LBIE) method to different types of bound-
ary value problems one can find in the review pa-
per of Sladek, Sladek, and Atluri (2002) and in
the very recent book of Atluri (2004).

Very recently, Vavourakis, Sellountos, and Poly-
zos (2006) presented a comparison study on the
accuracy provided by five different elastostatic
MLPG(LBIE) formulations. One of the main con-
clusions they reached is that the use of deriva-
tives of the MLS shape functions decreases the
solution accuracy of any MLPG(LBIE) formula-
tion. Motivated by this result, the present pa-
per addresses a new MLPG(LBIE) method where
neither MLS shape function derivatives are uti-
lized nor singular or hypersingular integrals are
involved in its final numerical implementation.
Displacements and stresses are considered as in-
dependent variables and interpolated via MLS ap-
proximation functions. Although both singular
and hypersingular LBIEs are employed for the
representation of displacements and stresses, re-
spectively, no singular integrals appear since all
the considered nodal points are located only inter-

nally and externally and not on the global bound-
ary of the analyzed elastic body. The essential dis-
placement and traction boundary conditions are
easily satisfied via the corresponding displace-
ment and stress LBIEs. The paper is structured
as follows. The MLS approximation scheme used
for the interpolation of the unknown displace-
ments and stresses is explained in the next section.
The LBIEs for displacements and stresses as well
as the numerical implementation of the proposed
here MLPG(LBIE) methodology are presented in
section 3. Representative numerical examples that
demonstrate the accuracy of the new non-singular
and MLS derivatives-free MLPG(LBIE) method
are provided in section 4. Finally, in section
5 some conclusions, comments and remarks are
drawn.

Figure 1: The circular support domains Ω( j) and
the non-circular domain of definition Ω̂y used for
the approximation of the field at point y

2 Moving Least Squares approximation
scheme

Consider an elastic body Ω embedded in a set of
arbitrarily placed nodes, with none of them be-
longing on the global boundary Γ of the analyzed
domain. Each node x(k) is the center of a cir-
cle (Ω(k)) of radius r(k)

0 called support domain, as
shown in Fig. 1. For an arbitrary point y, the sup-
port subdomains Ω( j) of the adjacent nodes x( j),
j = 1, . . ., n that contain y define a non-circular
subdomain: Ω̂y = Ω(1)∪· · ·∪Ω(n), called domain
of definition of the approximated field point. For
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that node the displacement component can be ap-
proximated as [Lancaster and Salkauskas (1981)]

ui (y) = p(x) ·a(i) (x) (1)

with p being a vector the m components of which
form a complete basis of monomials of the spatial
variables xi, according to Pascal’s triangle. The
unknown coefficients of vector a(i) are determined
by minimizing the L2-norm:

Ji =
n

∑
j=1

w
(

y,x( j)
)[

p
(

x( j)
)
·a(i) (y)− ûi

(
x( j)

)]2

(2)

where ûi
(
x( j)) is the unknown fictitious nodal

field value at node x( j) and w
(
y,x( j)) stands

for the weight function. In the present paper
two kinds of weight functions are used: (a) the
quartic-Spline and (b) the Gaussian exponential,
given below respectively

w
(
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)

= 1−6l2 +8l3 −3l4; l = d/r( j)
0 (3)
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0

2
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where d = ‖y−x( j)‖ stands for the Euclidean dis-
tance of these two points and c is a parameter set
equal to 0.95.

The minimization of Ji leads to the linear relation:
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)
· û(i) (5)

where
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If matrix Ã is invertible and the condition n ≥ m
is satisfied then

a(i) (y) = Ã−1
(

y,x( j)
)
· B̃

(
y,x( j)

)
· û(i) (9)

Taking Eq. 1 and Eq. 9 someone obtains the MLS
approximant of the displacement vector at the
neighborhood of node y

ui (y) = p(y) · Ã−1
(

y,x( j)
)
· B̃

(
y,x( j)

)
· û(i) ⇒

u(y) =
n

∑
j=1

φ
(

y,x( j)
)

û
(

x( j)
)

(10)

where û
(
x( j)) is the fictitious displacement vector

field at node x( j) and

φ
(

y,x( j)
)

=
m

∑
l=1

pl (y)
[
Ã−1

(
y,x( j)

)
· B̃

(
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)]
l j

(11)

Figure 2: Support domains Ω(k) of internal
and boundary nodes, and intersections with the
bounding surface Γ

3 LBIE formulation in Elastostatics

Consider a two-dimensional (2-D) linear elastic
domain of volume Ω surrounded by boundary Γ
(see Fig. 2). The displacement field u at any
arbitrary point x(k) satisfies the Navier-Cauchy
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equation of equilibrium [Timoshenko and Good-
ier (1970)]

μ∇x ·∇xu
(

x(k)
)

+(λ + μ)∇x∇x ·u
(

x(k)
)

= 0

(12)

where body forces are neglected, λ and μ are the
Lamé constants and ∇x is the gradient operator
with respect to vector x. The Boundary Condi-
tions (BCs) are assumed to be

u(x) = u, x ∈ Γu

t(x) = t, x ∈ Γt
(13)

with u, t representing prescribed displacement
and traction vectors, respectively, on the global
boundary Γ = Γu ∪Γt .

The integral representation of the above described
problem is [Brebbia and Dominguez (1989)]

au
(

x(k)
)

+
∫

Γ
t̃∗

(
x(k),y

)
·u(y) dSy

=
∫

Γ
ũ∗

(
x(k),y

)
· t(y) dSy (14)

where a takes the values 1, 0 for internal and
external points, respectively, while ũ∗, t̃∗ stand
for the 2-D elastostatic fundamental displace-
ment and traction second-order tensors [Banerjee
(1994); Brebbia and Dominguez (1989); Polyzos,
Tsinopoulos, and Beskos (1998)], respectively.

Applying the gradient operator on Eq. 14 and uti-
lizing Hooke’s law, the corresponding hypersin-
gular boundary integral equation of stresses is de-
rived, i.e.

a σ̃
(

x(k)
)

+
∫

Γ
˜̃t
∗(

x(k),y
)
·u(y) dSy

=
∫

Γ
˜̃u
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x(k),y
)
· t(y) dSy (15)

where σ̃ is the stress tensor and the third-order
tensors ˜̃u

∗
, ˜̃t

∗
are kernels given in the book of

Banerjee (1994), while for both compressible and

incompressible elastic materials are given in refer-
ence [Polyzos, Tsinopoulos, and Beskos (1998)].

Exploing the symmetry of tensor σ̃ , the surface
traction vector t can be written in the form

t(y)=
[

n̂1 0 n̂2

0 n̂2 n̂1

]
·
⎧⎨
⎩

σ11

σ22

σ12

⎫⎬
⎭ = Ñ(y)·τ (y) (16)

where n̂i are the components of the outward unit
normal vector to surface Γ and σ11, σ22 and σ12

the independed components of stress tensor σ̃ .

Substituting Eq. 16 in Eq. 14 and 15 one obtains
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where the kernels Ũ∗, T̃∗ are taken after rear-
rangement of ˜̃u

∗
, ˜̃t

∗
, respectively, since according

to Eq. 16, τ is a three-dimensional vector.

It is well-known that the above set of integral
equations become singular only when the field
point y coincides with the source point x(k). Thus,
Eqs. 17 and 18 can be also written in the form
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=
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where ∂Ω(k), Γ(k) are illustrated in Fig. 2.
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In case when the support domain Ω(k) does not in-
tersect with the global boundary Γ then the bound-
ary integrals on Γ(k) vanish from both Eq. 19 and
20.

Splitting the boundary integrals on Γ(k) according
to the prescribed BCs then one obtains
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whereas Γ(k) = Γ(k)u ∪Γ(k)t .

Considering for both u and τ the MLS approxi-
mation scheme presented in section 2, Eq. 21 and
22 read

a
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For the numerical evaluation of all boundary inte-
grals involved in the above equations one can con-
sult the thorough papers [Atluri, Kim, and Cho
(1999); Sladek, Sladek, and Keer (2000a); Sell-
ountos and Polyzos (2003)].

As seen in Eq. 23 and 24, the only unknown quan-
tities are the fictitious nodal displacements and
stresses. Considering a distribution of N nodes
(Fig. 2) and collocating both Eq. 23 and 24 one
can conclude to the final linear system of equa-
tions

Ã ·v = b (25)

where the 5N × 5N sparse matrix Ã contains all
the boundary integrals and free-terms of the left-
hand side of Eqs. 23 and 24, the right-hand-side
vector b contains the boundary integrals on Γ
with prescribed BCs and vector v contains the un-
known fictitious nodal displacements and stresses.

After solving the linear system of Eq. 25 and
obtaining the fictitious nodal displacements and
stresses then one can make use of the approxima-
tion Eq. 10, so as to retrieve the true nodal values
of the analyzed elastic body.

4 Numerical Examples

This section presents some numerical examples,
which demonstrate the achieved accuracy of the
proposed here MLPG(LBIE) methodology.
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The accuracy of the obtained numerical results is
validated by means of the relative error L2 norm

errv = log10

√√√√∑N
i=1‖v(i)

analytical −v(i)
numerical‖2

∑N
i=1 ‖v(i)

analytical‖2

(26)

4.1 Dirichlet patch test

Consider the standard linear patch test [Be-
lytschko, Lu, and Gu (1994)] in a square 4× 4
domain having E = 1 Young modulus of elasticity
and ν = 0.25 Poisson’s ratio. This is a Dirichlet
boundary value problem having the solution

u1 = a0 +a1x1 +a2x2

u2 = b0 +b1x1 +b2x2
(27)

where ai and bi are arbitrarily-chosen constants.
The displacements are prescribed on all four sides
according to Eq. 27, while the stress field is con-
stant in the patch.

Since the exact solution of the displacement field
is linear, a first order polynomial basis for the
MLS is adequate to represent the approximated
field quantities. The quartic-Spline weight func-
tion of Eq. 3 is used for the MLS scheme. The
square domain of Fig. 3(a) is discretized with a
uniform distribution of 49 nodes. As observed
in the same figure, no boundary points are used
in analyzing the problem, thus, no singularities
on the integrated kernels are met. Consequently,
the classical Gauss-Legendre integration scheme
is utilized with 8 quadrature points.

From the derived numerical results obtained for
various normalized support domain radii r0/d
(d is the distance of two consecutive nodes), as
presented in Fig. 4, it can be stated that the
MLPG(LBIE) method solves this problem with
high accuracy.

4.2 Higher order patch tests

Two high-order patch tests [Belytschko, Lu, and
Gu (1994); Taylor, Beresford, and Wilson (1976)]
are further studied having mixed-type BCs on all

(a)

(b)

Figure 3: Uniform distribution of (a) 49 and (b)
529 nodes in the square domain

Figure 4: Dirichlet patch test: displacement rel-
ative error L2 norm for various support domains
(49-node mesh)

boundary sides, as it is explained in Fig. 5. On the
first case (linear patch test) the horizontal force
load applied on the right side of the rectangle is
considered uniform (t1 = p), whereas the analyti-
cal solutions to this problem are given below

u1 = px1/E
u2 = −px2/E

(28)



A MLPG4 (LBIE) Formulation in Elastostatics 191

Figure 5: Rectangular domain of the higher order
patch test with its prescribed BCs

On the second case (quadratic patch test) the trac-
tion load is linearly varied (t1 = px2), while the
analytical solutions of the displament field are the
following

u1 = px1x2/E
u2 = −p

(
x2

1 +νx2
2

)
/(2E)

(29)

where E = E, ν = ν for plane-stress and E =
E/(1−ν2), ν = ν/(1−ν) for plane-strain. The
material properties are kept the same just as in
subsection 4.1.

For the case of Eqs. 28 the relative error L2 norm
of displacements is shown in Fig. 6. The nodal
points are the same to those used in the linear
patch test of 4.1. As it is seen, the obtained results
show a rather stable behaviour and excellent ac-
curacy, even though a non-dense mesh is utilized
and a linear basis on the MLS approximation is
employed.

In the case of the quadratic domain 2nd and 3rd
order polynomial basis are utilized in the MLS
approximation to represent the solution. The do-
main is covered by a 49-node and a 529-node uni-
form mesh, as demonstrated in Fig. 3. The corre-
sponding L2 norms are presented in Fig. 7 and 8,
for both MLS polynomial bases. As observed, the
higher polynomial basis in the MLS chosen the
more stable results are acquired. Also denser dis-
tribution of points delivers more accurate results.

Figure 6: Linear high-order patch test: displace-
ment relative error L2 norm for various sup-
port domains for MLS with linear basis (49-node
mesh)

Figure 7: Quadratic high-order patch test: dis-
placement relative error L2 norm for various sup-
port domains for MLS with quadratic basis

Figure 8: Quadratic high-order patch test: dis-
placement relative error L2 norm for various sup-
port domains for MLS with cubic basis

4.3 Cantilever beam

The exact solution of the displacement and stress
field for the cantilever beam, subjected to a shear
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(a)

(b)

Figure 9: Uniform distribution of (a) 217 and (b)
561 nodes for a cantilever beam

load applied on the right free-end, is given in the
book of Timoshenko and Goodier (1970).

u1 = − p

6EI
(x2 −D/2)

[x1 (6L−3x1)+(2+v)x2 (x2 −D)]
(30)

u2 =
p

6EI

[
3v(L−x1) (x2 −D/2)2 +

(4+5v)x1D2/4+(3L−x1)x2
1

]
(31)

σ11 = − p
I

(L−x1)(x2 −D/2) (32)

σ22 = 0 (33)

σ12 = − p
2I

x2 (x2 −D) (34)

where the moment of inertia: I = D3/12, for
a rectangular cross-section of thickness D = 1,
length L = 5 and unit shear load p = 1. The con-
stants E and v are the same with those of subsec-
tion 4.2.

Figures 10 and 11 depict displacements and
stresses relative error L2 norms, respectively, for
both meshes. The main conclusion here is that the
solution is drastically affected by the size of the
considered support domain, while both stresses
and displacements are obtained with almost the
same accuracy.

Figure 10: Cantilever beam problem: displace-
ment relative error L2 norm for various support
domains for MLS with quadratic basis

Figure 11: Cantilever beam problem: stress rela-
tive error L2 norm for various support domains for
MLS with quadratic basis

4.4 Lamé problem

The Lamé problem consists of a hollow cylinder
subjected to a uniform internal pressure load (p =
1) under plane-strain conditions. The cylinder has
internal radius a = 0.5 and external radius b = 1,
while the material properties are E = 1.0 and ν =
0.25. The exact solutions of the displacement and
the stress field, given in polar coordinates (r,θ )
with the origin at the center of the cylinder, are
the ones given below [Timoshenko and Goodier
(1970)]
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(a)

(b)

Figure 12: Uniform distribution of (a) 118 and (b)
536 nodes in the quarter cylinder

u1 =
pa2

b2 −a2

1+ν
E

[
(1−2ν) r +

b2

r

]
(35)

u2 = 0 (36)

σ11 =
pa2

b2 −a2

(
1− b2

r2

)
(37)

σ22 =
pa2

b2 −a2

(
1+

b2

r2

)
(38)

σ12 = 0 (39)

Due to symmetry, only the upper right quadrant
of the cylinder is analyzed, as shown in Fig. 12,
with 118 and 536 nodes distributed internally and
externally to the domain of interest. Symmetry
conditions are imposed on the bottom (u2 = 0) and
left edge (u1 = 0) of the quadrant, while the outer
surface is traction-free.

In this numerical example, the Gaussian weight
function of Eq. 4 is used in the MLS approxima-
tion method. For both displacement and stress
fields quadratic and cubic polynomial bases are
assumed.

In Fig. 13 and 15 the displacement relative L2 er-
ror norms are shown for both node distributions in
quadratic and cubic basis, respectively. The same
is presented for stresses in Fig. 14 and 16.

Again, one can say that the radii of the considered
support domains affect drastically the accuracy of
the obtained results. The cubic basis used in MLS
scheme seems to deliver more accurate and more
stable results than the quadratic one.

Figure 13: Lamé problem: displacement relative
error L2 norm for various support domains for
MLS with quadratic basis

Figure 14: Lamé problem: stress relative error L2

norm for various support domains for MLS with
quadratic basis
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Figure 15: Lamé problem: displacement relative
error L2 norm for various support domains for
MLS with cubic basis

Figure 16: Lamé problem: stress relative error L2

norm for various support domains for MLS with
cubic basis

5 Conclusions

A new MLPG(LBIE) method capable to solve 2D
elastostatic problems has been presented. The
new elements and the main conclusions of this
work can be summarized as follows

(i) The method considers displacements and
stresses as independed variables at any nodal
point of the analyzed domain. This is ac-
complished with the aid of the correspond-
ing local integral representations valid for
internal and external nodes. Of course,
the use of three more degrees of freedom
makes the proposed MLPG(LBIE) method
more time-consuming as it is compared to
other MLPG(LBIE) formulations. How-
ever, this disadvantage is compensated by
the facts that (a) stresses are evaluated with

the same accuracy as displacements and
(b) MLPG(LBIE) becomes more accurate
when no derivatives of MLS approxima-
tion functions are involved in its formula-
tion [Vavourakis, Sellountos, and Polyzos
(2006)].

(ii) Since no points on the global boundary
are placed, all the integrals involved in the
present MPG(LBIE) formulation are regular.

(iii) The radii of the considered support domains
affect the accuracy of the obtained results

(iv) Cubic polynomial basis in the MLS scheme
provides more accurate and more stable re-
sults than the quadratic one.

Finally, the accuracy achieved by the proposed
MLPG(LBIE) method is demonstrated with three
representative numerical examples.
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