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How to Achieve Kronecker Delta Condition in Moving Least Squares
Approximation along the Essential Boundary

Jin Yeon Cho1

Abstract: A novel way is proposed to fulfill
Kronecker delta condition in moving least squares
(MLS) approximation along the essential bound-
ary. In the proposed scheme, the original MLS
weight is modified to boundary interpolatable
(BI) weight based on the observation that the sup-
port of weight function is exactly the same as
the support of MLS nodal shape function. The
BI weight is zero along the boundary edges ex-
cept the edges containing the nodal point asso-
ciated with the concerned weight. In order to
construct the BI weight from the original weight,
concept of edge distance function is introduced,
and the BI weight construction procedure is pre-
sented in detail. Furthermore, it is explained theo-
retically why the MLS nodal shape functions ob-
tained by BI weights satisfy Kronecker delta con-
dition along the boundary edges. To identify the
validity and usefulness of the proposed BI MLS
approximation scheme through numerical tests,
the scheme is applied to the model problems with
rectangular domain and complex shaped domain.
Through the tests, theoretical prediction is identi-
fied numerically, and it is confirmed that one can
handle the essential and natural boundary condi-
tions through the proposed BI MLS scheme in ex-
actly the same manner used in traditional finite el-
ement methods.
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1 Introduction

Most of the meshless (or mesh-free) analysis
methods rely on the meshless approximation
methods. Through the meshless approximations,
the shape functions for unknown variables, which
are utilized in variational weak forms or strong
forms of ordinary or partial differential equations,
can be constructed only with the nodal points with
no aid of well-defined mesh. The feature of in-
dependency of meshes in constructing the shape
functions gives various potentials in dealing with
engineering problems. And the drawbacks fre-
quently encountered in applying the finite element
methods, such as human labor-intensive mesh-
ing, degradation of solution accuracy according to
the element distortions, difficulty in tracking the
moving boundary, burden of re-meshing during
large deformation, locking, element mismatching,
and others, have been expected to be eliminated
or alleviated by adopting the meshless (or mesh-
free) approaches.

With the anticipation, considerable research ef-
forts have been given to the field of meshless
method and its application to the analyses of
several engineering problems. As a result, var-
ious methods have been proposed in the con-
text of meshless analysis to alleviate the draw-
backs of traditional analysis methods dependent
on mesh (or grid) such as finite element, finite
volume, finite difference, and others. Some of
these are SPH (smoothed particle hydrodynam-
ics) [Lucy (1977)], Generalized Finite Difference
[Liszka and Orkisz (1980)], DEM (diffuse el-
ement method) [Nayroles, Touzot, and Villion
(1992)], EFG (element free Galerkin method)
[Belytschko, Lu, and Gu (1994)], Generalized
Finite Element [Babuska and Melenk (1997)],
MLPG (meshless local Petrov-Galerkin method)
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[Atluri and Zhu (1998)], MLS displacement weld-
ing [Cho, et al. (2005)], and others [Atluri
(2005)].

Even though those have their own salient fea-
tures, all of the methods have the common char-
acter. It is that they utilize the nodal shape func-
tions obtained from the meshless approximation
schemes in order to approximate the unknown
variables in weak form or strong form of differen-
tial equations. Consequently, all of the meshless
analysis methods inherit the common character
from the meshless approximation, and the charac-
ter makes it possible to eliminate or alleviate the
mesh-related drawbacks in the traditional numer-
ical analysis methods such as finite element, finite
volume, finite difference, and so on.

Among the meshless approximation methods,
the moving least squares scheme [Lancaster and
Salkauskas (1981)] may be one of the most rep-
resentative approximation techniques. Its low-
est version is the same as Shepard interpolation
[Shepard (1968)], and it is essentially the same as
the reproducing kernel particle method (RKPM)
[Liu, Jun, and Chang (1995); Atluri (2005)]. For
its generalized version, one can see references
[Atluri, Cho, and Kim (1999); Cho and Atluri
(2001)].

However, due to the character of diffuseness in
meshless approximations including the moving
least squares scheme, most of the meshless ap-
proximations lose the exact interpolation prop-
erty, differing from Lagrange interpolation func-
tions which are usually adopted in finite element
method. And the lack of exact interpolation prop-
erty directly leads to the difficulty in enforcement
of essential boundary conditions when we apply
meshless analysis methods in solving differen-
tial equations, although enforcement of essential
boundary conditions in traditional finite element
method is very simple task. Because of this draw-
back, several approaches have been proposed to
resolve this unexpected trouble. Some of these are
Lagrange multiplier method [Belytschko, Lu, and
Gu (1994)], coupling to finite elements [Krongauz
and Belytschko (1996)], the penalty method [Zhu
and Atluri (1998)], the mixed (or partial) trans-
formation method [Atluri, Kim, and Cho (1999);

Chen and Wang (2000)], and so on.

Lagrange multiplier method requires additional
unknowns and does not preserve the positive def-
initeness and banded structure of system matrix.
Method of coupling to finite elements requires
well-defined meshes (or elements). The mixed (or
partial) transformation method requires additional
computation and bookkeeping for transformation
of boundary values, and it needs additional com-
puting cost to preserve the symmetry of system
matrix. In case of penalty method, numerical so-
lution is very sensitive to the penalty parameter,
although it is easy to implement and preserves the
positive definiteness and banded structure of sys-
tem matrix. In this sense, the trouble in enforc-
ing the essential boundary condition is not elimi-
nated completely, and most of the analysis meth-
ods based on meshless approximation scheme still
have troubles and inconveniences in enforcing the
essential boundary condition.

Under this background, this work aims to com-
pletely eliminate the trouble in enforcing the es-
sential boundary conditions in meshless methods,
focusing on the moving least squares method. For
the purpose, by using the newly devised edge dis-
tance function and modified weight function, a
novel boundary interpolatable (BI) moving least
squares scheme is proposed, where the obtained
meshless nodal shape function has the exact inter-
polation property along the boundary of interest.
The exact interpolation property obtained by the
newly proposed scheme makes it possible to en-
force the boundary conditions in meshless analy-
sis methods with no difficulty just like in conven-
tional finite element methods.

2 Original Moving Least Squares Approxi-
mation

Let us assume that a continuous function u(x) is
defined on a domain Ω, and its nodal values u(xI)
at the scattered nodal points xI (1 ≤ I ≤ N) in the
domain Ω are given as ûI (1 ≤ I ≤ N). Then, in
the moving least squares method, the following
global approximation form (1) is defined in or-
der to approximate the continuous function u(x)
only with the given nodal values ûI at the scat-
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tered points xI.

u(x)∼= uh(x) = pT (x)a(x) =
m

∑
k=1

pk(x)ak(x) (1)

where pT (x) = [p1(x), p2(x), · · · , pm(x)]
is a r-times differentiable basis and
a(x) = [a1(x),a2(x), · · · ,am(x)]T is a vector
of undetermined coefficient functions, whose
values are varying according to the position
x ∈ Ω. The basis p(x) is selected to contain
constant ‘1’, and to be linearly independent over
some set of m among the given N points in Ω
[Lancaster and Salkauskas (1981)].

For example, the (m−1)-th order monomial basis
in one dimension is written as follows.

pT (x) = [1,x,x2, · · · ,xm−1] (2)

In two dimensions, linear and quadratic monomial
bases have the following forms, respectively.

pT (x) = [1,x,y] (3)

pT (x) = [1,x,y,x2,xy,y2] (4)

The coefficient vector a(x) at each position x =
x will be determined by a local weighted least
squares approximation ux(x) of the function u(x).
In a sufficiently small neighborhood of each point
x ∈ Ω, the local approximation ux(x) is defined
by the form (5), and the coefficient vector a(x) is
selected to fulfill the minimizing condition (6).

ux(x) = pT (x)a(x) (5)

Jx(a(x)) ≤ Jx(b), for all b ∈ Rm (6)

where Jx(b) is defined by the weighted least
squares L2 error norm as shown in Eq. (7).

Jx(b) = [Pb−u]T W(x) [Pb−u] (7)

where,

P =

⎡
⎢⎢⎢⎣

pT (x1)
pT (x2)

...
pT (xN)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

p1(x1) · · · pm(x1)

p1(x2) · · · pm(x2)
...

p1(xN) · · · pm(xN)

⎤
⎥⎥⎥⎥⎥⎦ (8)

u =

⎛
⎜⎜⎜⎝

u(x1)
u(x2)

...
u(xN)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

û1

û2

...
ûN

⎞
⎟⎟⎟⎠ (9)

W(x) =

⎡
⎢⎢⎢⎢⎣

W1(x) 0 · · · 0

0 W2(x) · · · ...
...

...
. . . 0

0 · · · 0 WN(x)

⎤
⎥⎥⎥⎥⎦ (10)

The N×m matrix P consists of basis, and the vec-
tor u denotes the vector of given values ûI of vari-
able u at nodes I (1 ≤ I ≤ N). The N ×N diago-
nal matrix W(x) is composed of weight functions.
The weight function WI(x) is associated with the
position xI of node I. The weight function WI(x)
is selected to be non-negative for all x, and the
region of non-zero values is called the support.

The coefficient vector a(x), which satisfies the
minimizing condition (6), is determined by ap-
plying the stationarity condition to the weighted
discrete error norm as shown below.

[
PT W(x)P

]
a(x) =

[
PT W(x)

]
u (11)

A local weighted least squares approximation is
found by solving Eq. (11) for a(x), and the coef-
ficient vector a(x) is used to construct the global
approximation (1) at each position x = x. This is
the moving procedure of local approximation to
obtain the global approximation, as stated in the
previous work [Lancaster and Salkauskas (1981)].
The method to approximate the function by the
moving least squares method is sketched in Fig. 1.
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Figure 1: Construction of the moving least
squares approximating function
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Additionally, the global approximation may be
rewritten in the form of a linear combination of
nodal shape functions similar to that used in finite
element method as shown in Eq. (12)

uh(x) = ΨT (x)u =
N

∑
I=1

ûIψI(x) (12)

where,

ΨT (x) = pT (x)
[
PT W(x)P

]−1
PT W(x)

ψI(x) =
m

∑
k=1

pk(x)
[
[PT W(x)P]−1PT W(x)

]
kI

(13)

3 Boundary Interpolatable Moving Least
Squares Approximation

3.1 Properties of MLS approximation

As widely known, the value of MLS approxima-
tion at nodal point xI is not the same as the given
data ûI = u(xI) at location xI .

uh(xI) �= ûI = u(xI) (14)

Therefore, MLS nodal shape functions lose Kro-
necker delta property. And consequently, it be-
comes difficult to enforce the essential bound-
ary condition unlike the traditional finite element
methods.

ψI(xJ) �= δIJ (15)

In Fig. 2, one can see that the nodal shape func-
tions obtained from the moving least squares ap-
proximation procedure do not have Kronecker
delta property. The reason for losing Kronecker
delta property is that the value of weight function
WJ(x) associated with nodal points xJ(J �= I) is
not zero at the location of nodal point of interest
xI .

Based on the observation, singular weight func-
tions have been utilized to equip MLS nodal shape
function with Kronecker delta property in previ-
ous work [Lancaster and Salkauskas (1981)]. In
this singular weight approach, MLS nodal shape
function becomes to have Kronecker delta prop-
erty in nodal points. However, because nodal

����ψ

Figure 2: Non-Kronecker delta property of MLS
nodal shape functions

shape functions have the property similar to origi-
nal ones along the boundary except the position of
nodal points, it is still difficult to completely en-
force the essential boundary conditions along the
boundary unlike the conventional finite element
methods. Because of this limitation, the essential
boundary condition is enforced not through the
boundary edges (or faces) but through the bound-
ary nodal points in the singular weight approach.
Additionally, the quality of MLS approximation
with singular weight is degraded compared with
the original non-singular weight MLS approxima-
tion.

In actual computations, various kinds of weight
functions can be adopted for MLS approximation,
and the required smoothness of MLS can be easily
achieved by changing the weight function WI(x)
in the MLS approximation. Usually the weight
function WI(x) centered at each node xI is adopted
to be positive and non-zero if the distance be-
tween node xI and x is less than a specified radius
RI , and to be zero if the distance is greater than or
equal to the given radius RI .

In Eq. (16), typical form of weight function is
presented.

WI(x) =

⎧⎨
⎩1−3

(
dI
RI

)2
+2

(
dI
RI

)3
, if 0 ≤ dI < RI

0, if dI ≥ RI

(16)

where RI denotes the radius of support of weight
function and dI denotes the distance between the
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point x and nodal point xI. It is noted that the
weight function (16) is C1 continuous (differen-
tiable) function.

If the derivatives of MLS basis p(x) are continu-
ous up to the r-th derivative, the resulting func-
tion from MLS approximation is continuously
differentiable up to the minimum of r and the
smoothness order of weight function. Therefore,
if one uses the weight function (16) along with
infinitely differentiable monomial basis, one can
obtain a C1 continuous (differentiable) moving
least squares approximating function.

Also one can use other kinds of weight functions
such as Gaussian weight function [Alturi (2005)]
as shown in Eq. (17).

WI(x) =

⎧⎨
⎩

e(−(dI /cI )2k)−e(−(RI /cI )2k)

1−e(−(RI/cI )2k) , if 0 ≤ dI < RI

0, if dI ≥ RI

(17)

where cI is a constant controlling the shape of
weight function. For k=1, the weight function be-
comes C0continuous over the entire domain. In
this case of k=1, one may obtain a C0 continuous
MLS approximating function at most.

Also one may notice that the regions of non-zero
values of weight functions (16) and (17) are local
circular (or spherical) regions with a specified ra-
dius RI . This local character of weight function
results in the locality of MLS nodal shape func-
tion, which directly leads to the sparseness of sys-
tem matrix for the considered differential equa-
tion.

Furthermore, it should be noted that the support
(region of non-zero values) of MLS nodal shape
function becomes exactly the same as the sup-
port of weight function associated with the nodal
point of interest. Thus, the support of MLS nodal
shape function can be tailored according to the
support of weight function. Fig. 3 shows MLS
nodal shape functions, which are corresponding
to the weight functions with circular and rectan-
gular supports.

In summary, MLS nodal shape function has the
following intrinsic properties.

1) In general, MLS nodal shape functions do not

Figure 3: MLS nodal shape functions with circu-
lar support and rectangular support

have Kronecker delta property.

2) One may obtain the required smoothness of
MLS nodal shape function through the weight
function.

3) One can tailor the local support of MLS nodal
shape function by changing the support of
weight function.

3.2 Edge Distance Function, Modified Weight
Function (Boundary Interoplatable (BI)
Weight)

In real practice, most of the geometric engineer-
ing models constructed by CAD tools are repre-
sented by well-defined boundary edges(lines) or
faces(surfaces) as presented in Fig. 4.

Figure 4: Geometric model represented by well-
defined faces

In this point of view, boundary edge(line) or
face(surface) is essential to represent the geomet-
ric model precisely even in meshless approach,
and it is natural to utilize the information of
boundary edge or face for dealing with geomet-
ric model regardless of meshless or mesh-based
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approaches. Based on this practical observation,
the information of boundary edge (or face) is uti-
lized to tailor the support of weight function in
this work. The brief concept for tailoring the sup-
port of weight function (consequently, the support
of MLS nodal shape function) through the edge
information is as follows.

Let us consider a weight function for xI , which is
not zero on the boundary, as shown in Fig. 5. Then
the resulting MLS nodal shape function ψI(x) has
non-zero value on the boundary as noted pre-
viously. However if we multiply the edge dis-
tance function De(x) in Fig. 6 to the original
weight function, then we can make the modified
BI (boundary interpolatable) weight which is zero
on the boundary as shown in Fig. 7. And as a
result, we can obtain MLS nodal shape function
which has zero value on the boundary.

By using the concept, we can construct the bound-
ary interpolatable (BI) MLS nodal shape func-
tions which satisfy Kronecker delta condition.
Depending upon whether the nodal point is lo-
cated in interior domain or boundary region, BI
weight construction procedure is changed as fol-
lows.

Let us consider the nodal point xI located in the
interior domain. Suppose that the support of orig-
inal weight function for node xI includes bound-
ary points as shown in Fig. 8. Then all of
the edge distance functions corresponding to the
included boundary edges are multiplied to the
original weight function in order to construct BI
weight function. If the support of original weight
for the interior node xI does not include bound-
ary point as shown in Fig. 9, then BI weight
can be adopted as the original weight WI(x) or
WI(x)De1(x)De2(x) since both have zero value on
the boundary. The first case corresponds to a lo-
cal edge finding algorithm where only the edges
intersecting with the support of weight are consid-
ered in constructing BI weight. The second case
is a global edge finding algorithm which consid-
ers all of the edges.

If the nodal point xI is located on the bound-
ary, the procedure for constructing BI weight is
slightly changed from the case of interior nodal
point. In this case, the edge distance function as-
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Figure 5: Original weight function associated
with the nodal point xI
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Figure 6: Edge distance function De(x) for edge e
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Figure 7: BI (boundary interpolatable) weight
constructed by multiplying the edge distance
function to the original weight

sociated with the nodal point xI is excluded, even
though the nodal point xI itself is also the bound-
ary point. As sketched in Fig. 10, if the support
of weight function for nodal point xI includes the
other boundary point e2, the edge distance func-
tion, which corresponds to the boundary point
e2, is multiplied to the original weight function
in order to make the BI weight. If no boundary
point is included in the support of weight func-
tion except the nodal point xI as shown in Fig. 11,
then BI weight can be adopted as the original
weight WI(x) or WI(x)De2(x) since both are zero



Achieve Kronecker Delta Condition in Moving Least Squares Approximation 105

�
�

�
%

�
&

�
�
�������	�����

�������������
�

	
�%

���	
�&

���

� #$��������������
�

������
�

����'�

�
���	

�%
���	

�&
���

Figure 8: Constructing BI weight for interior node
with support intersecting with boundary
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Figure 9: Constructing BI weight for interior node
with support which does not intersect with bound-
ary

on the boundary except the nodal point xI . The
first and second cases are corresponding to lo-
cal and global edge finding algorithms for bound-
ary nodal point, respectively. Here, it is noted
that local edge finding algorithm, where only the
edges intersecting with support of weight function
are considered, is more efficient than global edge
finding algorithm in practical problems.

Differing from one dimension, boundary in two
or three dimensions is composed of collection of
points. Therefore, edge distance functions in two
and three dimensions should be defined in differ-
ent form. In this work, edge distance functions in
two and three dimensions are defined as the min-
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Figure 10: Constructing BI weight for bound-
ary node with support intersecting with the other
boundary
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Figure 11: Constructing BI weight for boundary
node with support which does not intersect with
the other boundary

imum distance between the point y in boundary
edge (or face in 3D) and the point of interest x in
domain Ω as denoted in (18).

De(x) = min
y∈Edge_e

‖y−x‖ (18)

Edge distance functions in two and three dimen-
sions are presented graphically in Fig. 12 and 13,
respectively. This concept may be also extended
for general curved lines or surfaces.

Furthermore, one can utilize not only the form of
(18) but also its variants (19) in order to convert
the original weight into the modified BI weight,
since its variants presented in (19) are also zero
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Figure 12: Edge distance function in two dimen-
sions
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Figure 13: Edge distance function in three dimen-
sions

on the boundary.

f (De(x))( f (0) = 0 and f (D)≥ 0) (19)

where f (D) may be spline, power, or other func-
tion forms. The simplest form among the vari-
ants of edge distance function may be the form of
cDe(x) with positive normalizing coefficient c.

By using the aforementioned edge distance func-
tion or its variants, one can tailor the support of
weight function in two and three dimensions. In
case of 2D and 3D, algorithm for constructing BI
weight is slightly extended from the one dimen-
sional case, since the boundary of 2D and 3D is
not a point but a set of points. In BI weight con-
struction algorithm for 2D and 3D, the original
weight is made be zero for the boundary edges
(or faces) except the edges (or faces) containing
the nodal point of interest, whereas the original

weight is made be zero only for the boundary
points different from the concerned nodal point in
one dimension.

And consequently, one can obtain the MLS nodal
shape function which is completely zero along
the boundary edges except the edges containing
the nodal point of interest. The BI weight con-
struction algorithm in two and three dimensions
is shown below. It is noted that the following
algorithm can be also utilized in one dimension
without modification if we consider the boundary
point as a boundary edge in one dimension.

[Algorithm for BI weight construction]

❏ Identify the set of candidate boundary edges
CE

❏ Locate the position x and nodal point xI

❏ Local) Find the edges which do not contain
the nodal point xI and intersect with support
of WI(x)

EI = {e ∈CE |e∩ supp(WI(x)) �= φ , xI /∈ e}

or Global) Find the boundary edges which
do not contain the nodal point xI

EI = {e ∈CE |xI /∈ e}

❏ Calculate the edge distance function

De(x)(e∈ EI) or f (De(x))(e ∈ EI)

❏ Construct the BI weight

W BI
I (x) = WI(x) ∏

e∈EI

De(x)

or W BI
I (x) = WI(x) ∏

e∈EI

f (De(x))

As mentioned previously, the local edge finding
algorithm is more efficient than global edge find-
ing algorithm especially for 2D and 3D prob-
lems. In local edge finding algorithm, the orig-
inal weights for the majority of nodal points are
utilized without any modification. Therefore the
increased computational cost compared with the
original MLS approximation is proportional only
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Figure 14: Construction of BI weight for interior
nodal point by using local edge finding algorithm
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Figure 15: Construction of BI weight for bound-
ary nodal point by using local edge finding algo-
rithm

to the small number of nodal points near the
boundary of interest, such as the essential or nat-
ural boundary.

Fig. 14 and Fig. 15 present graphically how to
construct BI weights in 2D associated with inte-
rior nodal point and boundary nodal point through
the local edge finding algorithm, respectively.

In Fig. 16 and Fig 17, the original weight func-
tion and the corresponding BI weight function for

Figure 16: Original weight function associated
with interior nodal point

Figure 17: BI weight function for interior nodal
point (by using the normalized edge distance
function cDe(x) and local edge finding algorithm)

interior nodal point are presented. To construct
BI weight, the normalized edge distance function
cDe(x) is utilized along with local edge finding
algorithm. One may easily observe that the ob-
tained BI weight values are becoming zero along
the boundary.

Fig. 18 and Fig. 19 show the original weight func-
tion and the corresponding BI weight function for
nodal point located on the boundary, respectively.
Like Fig. 17, the normalized edge distance func-
tion cDe(x) is utilized along with local edge find-
ing algorithm in order to construct BI weight pre-
sented in Fig. 19. Fig. 20 shows the BI weight
function obtained by using local edge finding al-
gorithm and variant form of edge distance func-
tion f (De(x)) = c1De(x)(1−c2De(x))2. Here, c1
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Figure 18: Original weight function associated
with the nodal point located on boundary

Figure 19: BI weight function for the boundary
nodal point (by using the normalized edge dis-
tance function cDe(x) and local edge finding al-
gorithm)

Figure 20: BI weight function for boundary nodal
point (by using the variant form of edge distance
function c1De(x)(1 − c2De(x))2 and local edge
finding algorithm)

and c2 denote positive normalizing coefficients.

In both cases of Fig. 19 and Fig. 20, we can ob-
serve that the BI weight values along the bound-

Figure 21: BI weight function for boundary nodal
point (by using cDe(x) and local edge finding al-
gorithm)

Figure 22: BI weight function for boundary nodal
point (by using c1De(x)(1− c2De(x))2 and local
edge finding algorithm)

ary become zero except the edges containing the
nodal point of interest. Also from Fig. 21 and
Fig. 22, one can see that the BI weight obtained
by c1De(x)(1− c2De(x))2 is less diffusive com-
pared with the BI weight from cDe(x).

3.3 BI (Boundary Interpolatable) MLS Nodal
Shape Function

For the interior node, the associated BI weight
function has zero value along the boundary. And
for the boundary node xI , the corresponding BI
weight function is zero along the boundary edges
except the edges containing the nodal point xI .
Therefore, all of the BI weight functions become
zero along the boundary edge e except the BI



Achieve Kronecker Delta Condition in Moving Least Squares Approximation 109

weights associated with the nodal points which
are located on the concerned edge e as sketched
in Fig. 23.
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Figure 23: Non-zero BI weight functions for the
boundary edge e

As a result, the matrix PT W(x)P may become
singular along the boundary edge, since sufficient
number of non-zero weights is not available on
the boundary. And one may not determine the co-
efficient vector a(x) by direct inversion because
of the rank deficiency of PT W(x)P.

Therefore, in this work the coefficient vector a(x)
is determined by the limit of sequence rather than
the conventional way as denoted in (20).

a(x) = lim
k→∞

ak(x) (20)

And the sequence ak(x)is defined as follows[
PT W(x+(1/k)n)P

]
ak(x)

=
[
PT W(x+(1/k)n)

]
u

(21)

where, n denotes an arbitrary inward unit vector,
and the point x+(1/k)n is located in local neigh-
borhood of x. It is noted that there exists the limit
of sequence (21) because the sequence is Cauchy
sequence defined on the real finite dimensional
normed linear space [Bartle and Sherbert (1982)].

Consider BI MLS approximation with the lin-
ear basis p(x,y) = [1,x,y]T and BI weights in
2 dimensional domain Ω represented by straight
edges. Then the following proposition regarding
the exact interpolation property is satisfied.

Proposition. Suppose that the boundary edge e
of interest is composed of nodal points x1 and

x2, and it is represented by linear equation 0 =
g(x) = α +β x+ γy.

Then the value uh(x) of BI MLS function at point
x = λ x1+(1−λ )x2 (0≤ λ ≤ 1) along the bound-
ary edge e is represented by the convex combina-
tion of the given nodal values û1 and û2.

(i.e., uh(λ x1 + (1 − λ )x2) = λ û1 + (1 − λ )û2,
∀ 0 ≤ λ ≤ 1)

Proof. At point x = (x,y) = λ x1+(1−λ )x2 (0 <
λ < 1) located on the interior of boundary edge
e, the sequence (21) to define MLS approxima-
tion can be written in the following Taylor expan-
sion form (22), because the values of BI weights
W BI

I (x)(3 ≤ I ≤ N) are zero along the boundary
edge except the BI weights W BI

1 (x) and W BI
2 (x)

associated with the nodal points x1 and x2 con-
tained in the concerned boundary edge e.

Ak(x)ak(x) = Bk(x)u (22a)

where,

Ak(x) =

⎡
⎣A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎦+O(k−2)

A11 = W BI
1 (x)+W BI

2 (x)

+
N

∑
I=1

(
∂W BI

I (x)
∂n

)
1
k

A12 = x1W
BI
1 (x)+x2W BI

2 (x)

+
N

∑
I=1

(
xI

∂W BI
I (x)
∂n

)
1
k

A13 = y1W
BI
1 (x)+y2W BI

2 (x)

+
N

∑
I=1

(
yI

∂W BI
I (x)
∂n

)
1
k

A21 = x1W BI
1 (x)+x2W BI

2 (x)

+
N

∑
I=1

(
xI

∂W BI
I (x)
∂n

)
1
k

A22 = x2
1W BI

1 (x)+x2
2W BI

2 (x)

+
N

∑
I=1

(
x2

I
∂W BI

I (x)
∂n

)
1
k

A23 = x1y1W BI
1 (x)+x2y2W BI

2 (x)

+
N

∑
I=1

(
xIyI

∂W BI
I (x)
∂n

)
1
k

(22b)
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A31 = y1W BI
1 (x)+y2W BI

2 (x)

+
N

∑
I=1

(
yI

∂W BI
I (x)
∂n

)
1
k

A32 = x1y1W BI
1 (x)+x2y2W BI

2 (x)

+
N

∑
I=1

(
xIyI

∂W BI
I (x)
∂n

)
1
k

A33 = y2
1W

BI
1 (x)+y2

2W BI
2 (x)

+
N

∑
I=1

(
y2

I
∂W BI

I (x)
∂n

)
1
k

Bk(x) =⎡
⎣B11 B12 B13 · · · B1I

B21 B22 B23 · · · B2I

B31 B32 B33 · · · B3I

⎤
⎦+O(k−2)

B11 = W BI
1 (x)+

∂W BI
1 (x)
∂n

1
k

B12 = W BI
2 (x)+

∂W BI
2 (x)
∂n

1
k

B1I =
∂W BI

I (x)
∂n

1
k

(3 ≤ I ≤ N)

B21 = x1W
BI
1 (x)+x1

∂W BI
1 (x)
∂n

1
k

B22 = x2W BI
2 (x)+x2

∂W BI
2 (x)
∂n

1
k

B2I = xI
∂W BI

I (x)
∂n

1
k

(3 ≤ I ≤ N)

B31 = y1W
BI
1 (x)+y1

∂W BI
1 (x)
∂n

1
k

B32 = y2W
BI
2 (x)+y2

∂W BI
2 (x)
∂n

1
k

B3I = yI
∂W BI

I (x)
∂n

1
k

(3 ≤ I ≤ N)

(22c)

and, where, O(k−2) means that the remainder is
the order of k−2.

If we multiply γ to the third row and add α-
multiple of the first row and β -multiple of the sec-
ond row to the third row, then we can obtain the
relation (23).

Ãk(x)ak(x) = B̃k(x)u (23a)

where,

Ãk(x) =

⎡
⎢⎢⎣

Ã11 Ã12 Ã13

Ã21 Ã22 Ã23

Ã31 Ã32 Ã33

⎤
⎥⎥⎦+O(k−2)

Ã1I = A1I (1 ≤ I ≤ 3)
Ã2I = A2I (1 ≤ I ≤ 3)

Ã31 = g(x1)W BI
1 (x)+g(x2)W BI

2 (x)

+
N

∑
I=1

(
g(xI)

∂WBI
I (x)
∂n

)
1
k

Ã32 = x1g(x1)W BI
1 (x)+x2g(x2)W BI

2 (x)

+
N

∑
I=1

(
xIg(xI)

∂WBI
I (x)
∂n

)
1
k

Ã33 = y1g(x1)W BI
1 (x)+y2g(x2)W BI

2 (x)

+
N

∑
I=1

(
yIg(xI)

∂WBI
I (x)
∂n

)
1
k

(23b)

B̃k(x) =⎡
⎢⎢⎣

B̃11 B̃12 B̃13 · · · B̃1N

B̃21 B̃22 B̃23 · · · B̃2N

B̃31 B̃32 B̃33 · · · B̃3N

⎤
⎥⎥⎦+O(k−2)

B̃1I = B1I (1 ≤ I ≤ N)
B̃2I = B2I (1 ≤ I ≤ N)

B̃31 =
(

g(x1)W BI
1 (x)+g(x1)

∂W BI
1 (x)
∂n

1
k

)

B̃32 =
(

g(x2)W BI
2 (x)+g(x2)

∂W BI
2 (x)
∂n

1
k

)

B̃3I = g(xI)
∂W BI

I (x)
∂n

1
k

(1 ≤ I ≤ N)

(23c)

Here, we can assume that x1 �= x2 without loss of
generality. If not, it is sufficient to change the
roles of x and y coordinates, since both of x and y
coordinates for x1 and x2 cannot be same simulta-
neously. Also, it is noted that the solution ak(x) is
not changed by elementary row operations.

Since x1 and x2 are located on the concerned edge
e, g(x1) = α + β x1 + γy1 and g(x2) = α + β x2 +
γy2 are zero in Eq. (23b) and Eq. (23c). After
substituting zero for g(x1) and g(x2), multiplying
k to the third row and taking k to be infinity yield
the final form which may be solved with no diffi-
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culty.

Ã∞(x)a(x) = B̃∞(x)u (24a)

Ã∞(x) =

⎡
⎢⎢⎣

Ã∞
11 Ã∞

12 Ã∞
13

Ã∞
21 Ã∞

22 Ã∞
23

Ã∞
31 Ã∞

32 Ã∞
33

⎤
⎥⎥⎦

Ã∞
11 = W BI

1 (x)+W BI
2 (x)

Ã∞
12 = x1W BI

1 (x)+x2W BI
2 (x)

Ã∞
13 = y1W

BI
1 (x)+y2W BI

2 (x)

Ã∞
21 = x1W

BI
1 (x)+x2W BI

2 (x)

Ã∞
22 = x2

1W BI
1 (x)+x2

2W BI
2 (x)

Ã∞
23 = x1y1W BI

1 (x)+x2y2W BI
2 (x)

Ã∞
31 =

N

∑
I=3

(
g(xI)

∂W BI
I (x)
∂n

)

Ã∞
32 =

N

∑
I=3

(
xIg(xI)

∂W BI
I (x)
∂n

)

Ã∞
33 =

N

∑
I=3

(
yIg(xI)

∂W BI
I (x)
∂n

)

(24b)

B̃∞(x) =⎡
⎢⎢⎣

W BI
1 (x) W BI

2 (x) 0 · · · 0

x1W BI
1 (x) x2W BI

2 (x) 0 · · · 0

0 0 B̃∞
33 · · · B̃∞

3N

⎤
⎥⎥⎦

B̃∞
3I = g(xI)

∂W BI
I (x)
∂n

(1 ≤ I ≤ N)

(24c)

Further, if we rearrange the first and second equa-
tions obtained from (24) for a1(x) + a2(x)xI +
a3(x)yI(I = 1,2), then we can obtain the relation
(25).[

W BI
1 (x) W BI

2 (x)

x1W BI
1 (x) x2W BI

2 (x)

]

·
{

a1(x)+a2(x)x1 +a3(x)y1

a1(x)+a2(x)x2 +a3(x)y2

}

=

[
W BI

1 (x) W BI
2 (x)

x1W BI
1 (x) x2W BI

2 (x)

]{
û1

û2

}
(25)

Since x1 is not the same as x2 from the assump-
tion, Eq. (25) is solvable, and the solution is given
by

a1(x)+a2(x)xI +a3(x)yI = ûI (I = 1,2) (26)

On the other hand, for the point x = λ x1 + (1−
λ )x2 (0 < λ < 1) on the interior of boundary edge
e, the value of MLS approximation can be rewrit-
ten as shown below.

For (0 < λ < 1)
uh(x) = a1(x)+a2(x)x+a3(x)y

= λ [a1(x)+a2(x)x1 +a3(x)y1]
+(1−λ ) [a1(x)+a2(x)x2 +a3(x)y2]

(27)

Therefore, substituting Eq. (26) into Eq. (27)
yields the relation (28) which is a linear combi-
nation of the given nodal values û1 and û2.

uh(x) = λ û1 +(1−λ )û2 (0 < λ < 1) (28)

If the location of interest x is x1(or x2) located at
the end of edge, the derivation procedure should
be changed slightly from the case of point located
on the interior of edge. For the point x = x1,
W BI

2 (x) is zero, and the second row of Eq. (24)
becomes x1-multiple of the first row. Thus, Eq.
(24) becomes singular. In this case, x1-multiple
of the first row of (23) is subtracted from the sec-
ond row of (23) before taking k infinity. Then one
can obtain the following equation.

Âk(x)ak(x) = B̂k(x)u (29a)

where,

Âk(x) =

⎡
⎢⎢⎣

Â11 Â12 Â13

Â21 Â22 Â23

Â31 Â32 Â33

⎤
⎥⎥⎦+O(k−2)

Â11 = W BI
1 (x)+

N

∑
I=1

(
∂W BI

I (x)
∂n

)
1
k

Â12 = x1W
BI
1 (x)+

N

∑
I=1

(
xI

∂W BI
I (x)
∂n

)
1
k

Â13 = y1W
BI
1 (x)+

N

∑
I=1

(
yI

∂W BI
I (x)
∂n

)
1
k

Â21 =
N

∑
I=1

(
(xI −x1)

∂W BI
I (x)
∂n

)
1
k

Â22 =
N

∑
I=1

(
(xI −x1)xI

∂W BI
I (x)
∂n

)
1
k

Â23 =
N

∑
I=1

(
(xI −x1)yI

∂W BI
I (x)
∂n

)
1
k

(29b)
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Â31 = g(x1)W BI
1 (x)+

N

∑
I=1

(
g(xI)

∂W BI
I (x)
∂n

)
1
k

Â32 = x1g(x1)W BI
1 (x)+

N

∑
I=1

(
xIg(xI)

∂W BI
I (x)
∂n

)
1
k

Â33 = y1g(x1)W BI
1 (x)+

N

∑
I=1

(
yIg(xI)

∂W BI
I (x)
∂n

)
1
k

B̂k(x) =⎡
⎢⎢⎣

B̂11 B̂12 B̂13 · · · B̂1N

0 B̂22 B̂23 · · · B̂2N

B̂31 B̂32 B̂33 · · · B̂3N

⎤
⎥⎥⎦+O(k−2)

B̂11 = W BI
1 (x)+

∂W BI
1 (x)
∂n

1
k

B̂1I =
∂W BI

I (x)
∂n

1
k

(2 ≤ I ≤ N)

B̂2I = (xI −x1)
∂W BI

I (x)
∂n

1
k

(2 ≤ I ≤ N)

B̂31 = g(x1)W BI
1 (x)+g(x1)

∂W BI
1 (x)
∂n

1
k

B̂3I = g(xI)
∂W BI

I (x)
∂n

1
k

(2 ≤ I ≤ N)

(29c)

Finally, since g(x1) and g(x2) are zero, multiply-
ing k to the second and third rows, and taking k to
be infinity yields the equation shown below.

Â∞(x)a(x) = B̂∞(x)u (30a)

where,

Â∞(x) =

⎡
⎢⎢⎣

W BI
1 (x) x1W BI

1 (x) y1W BI
1 (x)

Â∞
21 Â∞

22 Â∞
23

Â∞
31 Â∞

32 Â∞
33

⎤
⎥⎥⎦

Â∞
21 =

N

∑
I=1

(
(xI −x1)

∂W BI
I (x)
∂n

)

Â∞
22 =

N

∑
I=1

(
(xI −x1)xI

∂W BI
I (x)
∂n

)

Â∞
23 =

N

∑
I=1

(
(xI −x1)yI

∂W BI
I (x)
∂n

)

Â∞
31 =

N

∑
I=3

(
g(xI)

∂W BI
I (x)
∂n

)

Â∞
32 =

N

∑
I=3

(
xIg(xI)

∂W BI
I (x)
∂n

)

(30b)

Â∞
33 =

N

∑
I=3

(
yIg(xI)

∂W BI
I (x)
∂n

)

B̂∞(x) =

⎡
⎢⎢⎣

W BI
1 (x) 0 0 · · · 0

0 B̂∞
22 B̂∞

23 · · · B̂∞
2N

0 0 B̂33 · · · B̂3N

⎤
⎥⎥⎦

B̂∞
2I = (xI −x1)

∂W BI
I (x)
∂n

B̂∞
3I = g(xI)

∂W BI
I (x)
∂n

(30c)

And rearrangement of the first equation in (30) for
a1(x)+a2(x)x1 +a3(x)y1 is written as

W BI
1 (x) (a1(x)+a2(x)x1 +a3(x)y1) = W BI

1 (x)û1

(31)

where a1(x) + a2(x)x1 + a3(x)y1 is the same as
uh(x1) and W BI

1 (x) is equal to W BI
1 (x1), since x

is equal to x1. Therefore, Eq. (31) reveals that
the value of MLS approximation uh(x1) is exactly
the same as û1, because W BI

1 (x1)is non-zero. The
same is also true for the other node x2. Conse-
quently, we can confirm that the relation (32) is
satisfied along the whole boundary edge e.

∀ x = λ x1 +(1−λ )x2 (0 ≤ λ ≤ 1),
uh(x) = λ û1 +(1−λ )û2 (32)

The relation (32) is the exact interpolation prop-
erty which is not satisfied in original MLS ap-
proximation. This relation of convex combina-
tion implies more than Kronecker delta condition.
Therefore the BI MLS nodal shape functions sat-
isfy Kronecker delta condition along the bound-
ary. However it is noted that mere Kronecker
delta condition does not guarantee the relation
(32) generally.

Furthermore, one can handle the boundary con-
dition in exactly the same manner of conventional
finite element method because of this property, al-
though such is difficult only with Kronecker delta
property for the nodal points like in the singular
weight approach.

Similar to the value of coefficient vector a(x), its
directional derivative da(x) on the boundary can
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be defined in the sense of limit as follows.

da(x) = lim
k→∞

dak(x) (33)

where the sequence of derivative dak(x) is defined
as follows.

Ak(x)dak(x) = −dAk(x)ak(x)+dBku (34)

It is noted that the expression for directional
derivative da(x) can be also obtained through a
similar method used to obtain the expression for
value of a(x).

4 Numerical Examples

4.1 Rectangular Domain

In this section, the proposed BI MLS approxima-
tion scheme is applied to the rectangular domain
as shown in Fig. 24.
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Figure 24: Rectangular domain and nodal points
for MLS approximation

The total number of nodal points, to which data
values ûI are assigned, is ten. The left and right
sides of the model are given as essential boundary
and natural boundary, respectively.

For approximation, linear monomial basis (1, x,
y) and C1 continuous weight function (16) are uti-
lized, and the radius of support of weight function
is adopted as 2.9.

The BI weight functions are constructed by us-
ing edge distance function c1De(x)(1−c2De(x))2

along with local edge finding algorithm in or-
der that the BI weight values are zero along the

edges which are included in the essential and nat-
ural boundaries. The edges in bottom and upper
sides are not considered as the candidate bound-
ary edges in the BI weight construction procedure.
Therefore the BI weight values are not zero on the
bottom and upper sides in this example.

In Fig. 25 and 26, the BI MLS nodal shape func-
tions for interior nodal points are presented, and it
can be observed that the values of BI MLS nodal
shape functions are completely zero along the es-
sential and natural boundary, whereas it is not
zero along the upper and bottom sides.

Figure 25: The 5th BI MLS nodal shape function

Figure 26: The 6th BI MLS nodal shape function

Fig. 27 shows the BI MLS nodal shape func-
tions associated with the 5th, 6th, 7th, and 8th

nodal points. One can observe that the functions
are completely zero along the essential boundary
edges.
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Figure 27: The 5th, 6th, 7th, and 8th BI MLS
nodal shape functions

In Fig. 28, the BI MLS nodal shape functions, as-
sociated with nodal points on the natural bound-
ary, are presented. From the results, it can be con-
firmed the BI MLS nodal shape functions have
Kronecker delta property as predicted theoreti-
cally in previous section.

 

Figure 28: The 7th, 8th, 9th, and 10th BI MLS
nodal shape functions along the natural boundary
edges

Further, it can be known that one may enforce the
natural boundary condition as well as the essential
boundary condition in exactly the same manner of
traditional finite element method.

4.2 Complex Shaped Domain

To demonstrate practical applicability and use-
fulness of the BI MLS approximation scheme,
the proposed scheme is applied to the complex
shaped domain which looks like human face. In
Fig. 29 the domain and nodal points are pre-
sented.

 
Figure 29: Domain and nodal points for BI MLS
approximation

In BI MLS approximation, linear monomial ba-
sis (1, x, y) and C1 continuous weight function
(16) are utilized, and the radius of support of
weight is chosen as 2.0. The BI weight functions
are constructed by using edge distance function
c1De(x)(1− c2De(x))2 and local edge finding al-
gorithm, and all of the boundary edges are con-
sidered as candidate boundary edges.

In Fig. 30, the BI MLS nodal shape function for
interior nodal point is presented, and one can ob-
serve that the interior BI MLS nodal shape func-
tion becomes completely zero along the boundary.
Fig. 31 shows the BI MLS nodal shpae functions
associated with the nodal points located on the
boundary. Likewise in previous example, it can
be confirmed numerically that the BI MLS shape
function on the boundary edge is the same as the
linear Lagrange interpolation along the boundary,
as predicted in theoretical approach.

From the numerical observation on the com-
plicated model, it is identified that the pro-
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Figure 30: BI MLS nodal shape function associ-
ated with interior nodal point

Figure 31: BI MLS nodal shape function associ-
ated with boundary nodal points

posed BI MLS approximation scheme can be
also efficiently utilized for complex geometric do-
main, in order to construct nodal shape functions,
which satisfy Kronecker delta condition along the
boundary, without mesh.

Furthermore, it can be known that there is no in-
trinsic trouble in dealing with the model with cuts
along which the functions may have jumps, since
both of arbitrary convexity and concavity can be
handled by the proposed scheme with no diffi-
culty.

Additionally, it is noted that the situation is simi-
lar to the given examples although there are a lot
of nodal points in the problem domain, because
usually the size of support of weight is adopted
to be a multiple of nodal distance and the number
of nodal points contained in the support of weight
for each nodal point is maintained with no regard
to the total number of nodal points in problem do-
main.

5 Conclusions

In this work, a novel approach is proposed in
order to make meshless nodal shape functions
which satisfy Kronecker delta condition along the
boundary, after investigating the critical charac-
teristics of original moving least squares approx-
imation. In the proposed approach, the original
MLS weight is modified to BI(boundary interpo-
latable) weight. In BI weight function, its val-
ues are zero along the boundary edges except the
edges containing the corresponding nodal point.
And consequently the resulting BI MLS nodal
shape function becomes zero along the boundary
edges if the edges do not contain the correspond-
ing nodal point, since the support of MLS weight
is exactly the same as the support of MLS nodal
shape function.

For constructing the BI weight efficiently, concept
of edge distance function is introduced, and the
algorithm to construct the BI weight is presented.
The algorithm can be applied to 2D and 3D as
well as 1D.

Because the number of non-zero weights is not
sufficient to calculate the boundary value of BI
MLS function through the direct inversion of ma-
trix, the boundary value of BI MLS function is de-
fined in the sense of limit. And based on the def-
inition, it is proved theoretically that the BI MLS
approximation scheme has the exact interpolation
property along the boundary edges, which guaran-
tees Kronecker delta condition along the bound-
ary edges.

Further, two test problems are worked out for rect-
angular model and complex shaped model in or-
der to justify the validity and usefulness of the
proposed BI MLS scheme in numerical way. Test
results are the same as predicted theoretically.
The BI MLS nodal shape function obtained by the
proposed scheme is exactly the same as linear La-
grange interpolation along the boundary edges.

Also numerical example shows that it is suffi-
cient to select only the limited number of edges
on the essential boundary as candidate edges in
BI weight construction procedure in order to ful-
fill Kronecker delta condition along the essential
boundary.
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From the theoretical and numerical results, it can
be confirmed that one can handle the essential and
natural boundary conditions through the proposed
BI MLS scheme in exactly the same manner used
in traditional finite element methods.
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