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Progression of failure in fiber-reinforced materials

R. Han1, M.S. Ingber1 and H.L. Schreyer1

Abstract: Decohesion is an important failure mode
associated with fiber-reinforced composite materials.
Analysis of failure progression at the fiber-matrix inter-
faces in fiber-reinforced composite materials is consid-
ered using a softening decohesion model consistent with
thermodynamic concepts. In this model, the initiation of
failure is given directly by a failure criterion. Damage
is interpreted by the development of a discontinuity of
displacement. The formulation describing the potential
development of damage is governed by a discrete deco-
hesive constitutive equation. Numerical simulations are
performed using the direct boundary element method. In-
cremental decohesion simulations illustrate the progres-
sive evolution of debonding zones and the propagation of
cracks along the interfaces. The effect of decohesion on
the macroscopic response of composite materials is also
investigated.

keyword: composite materials, decohesion model, in-
cremental debonding, boundary element method.

1 Introduction

High-performance composite materials comprised of a
dispersed phase (inclusions) suspended in a matrix ma-
terial combine the advantage of high structural strength
with complementary properties such as light weight, high
or low thermal and electrical conductivity, and prescribed
coefficient of thermal expansion. The versatility and low
unit cost of these materials make them well-suited for
lightweight structural components, shock and thermal
insulators, encapsulants for electronic components, and
functionally graded materials (FGMs).

The performance of these materials is highly depen-
dent on the interfacial characteristics between the inclu-
sions and the matrix material. There is a large body
of literature on the effective thermomechanical proper-
ties for this class of composite materials under the as-
sumption of perfect bonding, i.e., no jump in displace-
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ment and no contact resistance. Models for these ef-
fective properties have been based on (i) semiempiri-
cal techniques [Agaipou (1989); Lee, Batt, and Liaw
(2000); O’Rourke, Ingber, and Weiser (1997)], (ii) vari-
ational approaches using extremum principles [Hashin
and Shtrikman (1963); Davis (1991); Avellaneda and
Milton (1989)], (iii) self-consistent schemes [MacKenzie
(1949); Chou, Nomura, and Taya (1980); Nemat-Nasser,
Iwakuma, and Hejazi (1982)], and (iv) numerical exper-
iments [Ingber, Womble, and Mondy (1994); Cruz and
Patera (1995); Juhlin, Chen, and Papathanasiou (2002)].
Several excellent review articles and books have been
written on this subject [Hashin (1983); Torquato (1991);
Nemat-Nasser and Hori (1993)].

There have been some investigations of the effective
properties of composite materials with imperfect inter-
faces such as contact resistance for the thermal prob-
lem [Cheng and Torquato (1997); Lipton (1998)] and
debonding for the elasticity problem [Hashin (1991);
Sangani and Mo (1997); Chati and Mitra (1998)]. How-
ever, these studies have assumed somewhat idealized in-
terfacial conditions. For example, Chati and Mitra (1998)
and Sangani and Mo (1997) assume that segments of
the interface are either fully adhered or completely de-
cohered (traction free). That is, these studies have not
accounted for the progression of failure along the inter-
face.

Needleman (1987) proposed a debonding mechanism
based on interfacial ductility by allowing two initially
coincident points, one on the inclusion and one on the
matrix material, to move apart from each other when un-
der load. The interfacial traction was then a function of
the jump in displacement. Needleman adopted a function
that initially produced increasing traction as the interfa-
cial separation increased, went through a maximum, and
subsequently decayed to zero as the separation increased
further.

Salvadori (2003) proposed a similar approach in terms
of a smoothing locking constitutive law, which provided
normal and shear tractions as a function of interface
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opening and sliding, i.e., the tangential and normal jump
in displacement. Tractions and displacement discontinu-
ities were related through an exponential function which
essentially spanned the region from perfectly bonded to
a stress free surface at the interface. The numerical im-
plementation for problems with traction-free cracks and
rigidly bonded perfect interfaces was performed using a
symmetric Galerkin boundary element method (BEM).

Crouch and Mogilevskaya (2006) developed a method
for simulating localized slip and separation along in-
terfaces by allowing displacement discontinuities to de-
velop along the inclusion/matrix interface in accordance
with a linear Mohr-Coulomb yield condition combined
with a tensile strength cut-off. Their method was based
on a direct boundary integral approach for elastic inclu-
sions in an infinite elastic plane. In this method, the in-
terfacial displacements and tractions are represented by
truncated Fourier series. They found that, for problems in
which damage occurs, relatively large numbers of terms
are required in the truncated Fourier series in order to
adequately characterize the interface.

Zhang and Xia (2005) developed a method to study the
initiation and evolution of interface damage for fiber rein-
forced composite laminates and the influence of the dam-
age on the global stress-strain relation. Their method was
based on a finite element analysis of a micro-mechanical
unit cell model. They introduced a thin layer of interface
elements and a stress-strain relation based on a cohesive
law which described both the normal and tangential dis-
placement jumps. A viscous term was added to the cohe-
sive law to overcome the convergence difficulty induced
by the snap-back instability in the numerical analysis.

The discrete constitutive equations of Needleman (1987)
and Salvadori (2003) can be considered special cases
of a broad category that are analogous to both elastic-
plastic and damage constitutive equations for a contin-
uum. Schreyer, Sulsky, and Zhou (2002) provide a fairly
general formulation of a discrete constitutive equation
under the assumption that the displacement discontinuity
contains no elastic component. Both associated and non-
associated forms were given to illustrate the generality
of the approach. A plastically softening decohesion for-
mulation can be used in conjunction with any continuum
constitutive equation to provide a method for modeling
failure either interior to the matrix or along an interface.

In the current research, a particular form of the model
with an associated flow rule of Schreyer, Sulsky, and

Zhou (2002) is extended to include the situation where
the normal component of the traction vector can be neg-
ative. The resulting formulation is combined with the
boundary element method (BEM) to investigate decohe-
sion of fiber-reinforced composite materials. The bound-
ary element formulation for the multiply-connected
zoned-homogenous domain is presented in Section 2.
The decohesion model along with its numerical imple-
mentation is presented in Section 3. Several example
problems are considered in Section 4 for both brittle and
ductile failure. Finally, conclusions are presented in Sec-
tion 5.

2 Boundary element formulation

In the current study, the computational domain is con-
sidered to be comprised of a matrix material with em-
bedded aligned long fibers allowing the governing equa-
tions to be reduced to the plane strain equations. These
equations can be recast in integral form by considering
the associated weak form, applying the Green-Gauss di-
vergence theorem twice, and choosing the fundamental
solutions for displacement and traction as the weighting
functions [Brebbia, Telles, and Wrobel (1984)]. The ap-
propriate expressions for the two-dimensional fundamen-
tal displacements and associated tractions for plane strain
are given by

u∗i j (x,y) =
−1

8π(1−ν)G

{
(3−4ν) logrδi j − r,ir, j

}
(1)

t∗i j (x,y) =
−1

4π(1−ν)r

{
[(1−2ν)δi j +2r,ir, j]

∂r
∂n

−(1−2ν)(r,in j − r, jni)
}

(2)

where r is the distance between x and y, ni is the com-
ponent of the unit outward normal vector to the bound-
ary, G is the shear modulus, ν is the Poisson ratio and
the comma denotes differentiation with respect to the ap-
propriate Cartesian coordinate. The resulting boundary
integral equation (BIE) for the displacement components
is given by

ci j (x)u j (x) =
∫

Γ
u∗i j (x,y)t j (y)dΓ(y

−
∫

Γ
t∗i j (x,y)u j (y)dΓ(y) (3)

where Γ is the boundary of the domain Ω, u j and t j are
the components of displacement and traction on the sur-
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face Γ, respectively. The coefficient ci j can be deter-
mined from the equation

ci j(x) = −
∫

Γ
t∗i j (x,y)dΓ(y) (4)

The boundary integral equation is discretized by sub-
dividing the boundary Γ into boundary elements. The
boundary element used in this research is the three-node,
isoparametric quadratic element. Hence, within each el-
ement ui(y) and ti(y) are approximated as

ue
i (y) | Γe ≈

3

∑
k=1

ue
ikΨk(y) (5)

te
i (y) | Γe ≈

3

∑
k=1

te
ikΨk(y) (6)

where ue
ik and te

ik represent the values of ui and ti, respec-
tively, at the kth node within the eth element, and Ψk rep-
resents the quadratic shape functions.

Using the above approximations, the discretized form of
the boundary integral equation is given by

ci j(x)u j(x) =
ne

∑
e=1

3

∑
k=1

∫
Γe

te
jku∗i jΨk(y)dΓ(y)

−
ne

∑
e=1

3

∑
k=1

∫
Γe

ue
jkt

∗
i jΨk(y)dΓ(y) (7)

where ne is the total number of boundary elements used
in the discretization.

In the current application where the domain consists of
zoned-homogeneous regions representing the fibers and
the matrix material, a boundary integral equation is writ-
ten for each region. Collocating Eq. 7 at the boundary
element nodes yields a system of linear equations relat-
ing the components of traction to the components of dis-
placement. These equations can be represented symboli-
cally as[
Hi]{

ui} =
[
Gi]{

ti} , i = 1,N +1 (8)

where N is the number of inclusions, the superscript i
represents the region number, and

{
ui

}
and

{
ti
}

rep-
resent the components of displacement and traction, re-
spectively, at the collocation nodes.

On the outer boundary of the matrix material, either the
displacement or the traction is prescribed. On the interfa-
cial nodes between fiber and matrix, neither the displace-
ment nor traction components are known a priori. The

system of equations is closed by setting the following in-
terfacial boundary conditions.{

ui
j

}−{
um

j

}
= [u] (9)

{
t i

j

}
= −{

tm
j

}
(10)

where [u] represents a jump in displacement along the
interface as discussed in the next section, the superscript
i and m represent the zoned-homogeneous region, and the
subscript represents the global node.

3 Decohesion model

Initially, all interfaces between the matrix material and
the inclusions are assumed to be perfectly bonded, that
is, continuity of traction and displacement is assumed
along the interface. The composite is then incremen-
tally stressed by assuming displacements along the outer
boundary of the matrix material. At each increment
of displacement, the boundary integral equations are
solved and the tractions along all interfaces are evaluated.
The development of damage (decohesion) is determined
through the use of a damage function F given by

F =

[(
τn

τn f

)2

+
(

τt

τt f

)2
] 1

2

− f when τn ≥ 0

F =
∣∣∣∣ τt

τt f

∣∣∣∣− f when τn < 0 (11)

where τn is the normal component of traction, τt is the
tangential component of traction, τn f is the value of fail-
ure initiation traction in a pure tensile mode, τt f is the
value of failure initiation traction in a pure shear mode,
and f is the so-called softening function. The function F
is defined so that no damage occurs if F < 0 and F > 0 is
not allowed. Damage develops only if F = 0. The soften-
ing function f is chosen so that f = 1 for an undamaged
interface and f = 0 for a fully decohered interface. For
0 < f < 1, a linear relationship is chosen between the
absolute value of the jump in displacement [u] at the in-
terface so f is given by

f = 1− | [u] |
u0

(12)

where the model parameter u0 is the value of |[u]| at
which complete decohesion has occurred. Although the
choice of f is somewhat arbitrary, in the special case of
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uniaxial tension, the softening function translates into a
curve of normal traction versus normal displacement dis-
continuity in which case the area under the curve is the
fracture energy, G f defined by

G f =
1
2

τn f u0 (13)

where here u0 is interpreted as the magnitude of the jump
in normal displacement [un] at which separation occurs.
A similar statement holds for a pure mode II (shear) re-
sponse, and a general statement can be made for mixed
mode failure. Note that Eq. 11 could equally well be
replaced with a Coulomb model, especially if f = 0, if
such a model is considered to be more representative of
physical behavior at debonded interfaces.

After each increment of displacement, the damage func-
tion F is evaluated at each interfacial node. If F > 0, the
threshold to initiate decohesion has been exceeded and is
not allowed by the decohesion model. As an example, if
the traction at an interfacial node had no tangential com-
ponent, F > 0 would imply that τn f had been exceeded.
In order to drive F to within a specified tolerance ε of 0,
the following algorithm is used. First, the node is iden-
tified at which the largest positive value of F has been
calculated. Next, a jump in displacement at that node is
determined by the following evolution equation

Δ [u] = Δλg (14)

where [u] =
{

[u]2n +[u]2t
} 1

2
, g = ∂F

∂τττ , and Δλ = δλ1 +
δλ2 + · · ·
The secant algorithm is applied to determine Δλ in order
to bring F to within a tolerance ε of 0. An initial small
value for δλ1 is assumed. This then provides the initial
assumed value for Δ [u] as shown in Eq. 14. This jump in
displacement provides stress relief which is quantified by
performing the boundary element analysis with the mod-
ified boundary conditions (Eq. 9). The damage function
is re-evaluated at the node. If F is still positive and above
the tolerance, δλ2 is determined using the equation

δλ2 = δλ1
F1

F0 −F1
(15)

where the subscript on F indicates the interation number.
The procedure is continued until F < ε. In the majority
of cases, 2 to 3 iterations were used in the secant method
to drive F below the tolerance. The maximum number

of iterations required was 8. During any iteration, if |[u]|
reaches u0, the boundary condition at that node is set to
traction free indicating that the node is completely deco-
hered.

Once the damage function F is reduced below the tol-
erance or the node becomes completely decohered, a
search is performed for the next highest positive value
of F at the remaining nodes, and the process is repeated
to reduce F at that node to below the tolerance. Once the
damage function at all nodes is below the tolerance, the
next increment in displacement is applied.

4 Results

The composite material considered in this research is
composed of an aluminum matrix with embedded boron
fibers, which is widely used because of its light weight
and versatility. The phase properties are Eal = 67.51GPa,
νal = 0.35557; Eboron = 413.04GPa, νboron = 0.2. The
two geometries shown in Fig. 1 are investigated. For
each geometric configuration, the total areal fraction of
the fiber(s) is 20%. Both tensile and shear tests are per-
formed. Two additional configurations with embedded
fibers were also considered, namely, two horizontally-
aligned fibers and two vertically-aligned fibers. How-
ever, the results were similar to the two cases shown in
Figure 1 and are not included here.

In the tensile tests, an incremental uniform tensile dis-
placement loading is applied to the left and right lateral
sides of the square domain while the top and bottom sides
are traction free. In the shear tests, the right lateral side
of the domain is subjected to uniform upward shear dis-
placement loading, the left lateral side is subjected to a
uniform downward shear displacement loading, and the
top and bottom sides are again traction free. In both the
tensile and shear tests, the increment of displacement is
0.0005a where a is the length of the sides of the square
specimen. Appropriate boundary constraints are imposed
in the boundary element formulation to remove the rigid
body modes and maintain a well-posed problem.

For all tests considered, the normal failure parameter
is chosen as τn f = 1.2. Two values are chosen for the
shear failure parameter, namely, τt f = 0.6 and τt f = 6.0.
Hence, in one case, τt f /τn f = 0.5 and, in the other case,
τt f /τn f = 5.0. Roughly speaking, as the shear failure pa-
rameter is increased, the dominant failure mode transi-
tions from shear to normal, or equivalently, from duc-
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tile to brittle failure. The value in jump displacement at
which complete decohesion is assumed to have occured
is chosen as u0 = 0.01.

Figure 1 : The geometry of one and two boron fiber
inclusion(s) in an aluminum matrix at areal fraction of
20%.

A series of convergence tests were run to insure the ade-
quacy of the mesh density. As an example for the single
inclusion geometry, results were obtained for the tensile
test using a coarse mesh containing 68 nodes on the outer
boundary of the matrix material and 64 nodes on the in-
terface between the inclusion and matrix material and us-
ing a fine mesh containg 164 nodes on the outer boundary
and 128 nodes on the interface. Before the onset of de-
cohesion, relative errors between components of traction
and displacement making up the solution vector were on
the order of 10−6. (Note that all computations were per-
formed in double precision.) Because of the discrete na-
ture of the decohesion algorithm, a true convergence test
after the onset of decohesion is problematic. However,
the relative error between the integrated normal traction
on the right outer edge of the specimen between the two
meshes was less that 3.8% during the entire incremental
procedure, and during most incremental steps was less
than 1%. This integrated normal traction is a relevant pa-
rameter to consider since, as discussed later, it is used
to determine the effective Young’s modulus. The actual
plot of the normalized effective Young’s modulus using
the coarse and fine meshes is shown at the end of this
section. Based on the convergence tests, the coarse mesh
was used in the subsequent results.

The first case considered is the single inclusion under-
going a tensile test. The progression of failure for the
two values of the shear failure parameter, τt f , are shown
in Figs. 2 and 3. The arrows indicate the displacement
jump along the interface between the matrix and inclu-
sion, and are magnified by a factor of 10. Although the

geometry and loading are symmetric, symmetry is lost as
soon as the failure model is first implemented since any
jump in displacement is implemented only one node at a
time as described in the previous section.

For the first case where τt f = 0.5τn f , the decohesion pro-
cess starts at the leftmost node (Fig. 2(a)). Since the dom-
inant failure mode in this case is the shear mode, the fail-
ure progresses predominantly along the left side of the
inclusion towards the top and bottom of the inclusion in
the tangential (shear) directions (Fig. 2(b)). Near the top
and bottom of the inclusion, the stresses are compres-
sive (normal) and the failure abates along the left side of
the inclusion as the debonding region approaches these
compressive regions. Upon further loading, decohesion
progresses along the right side of the inclusion towards
the compressive regions on the top and bottom of the in-
clusion (Figs. 2(c,d)).

For the second case where τt f = 5.0τn f , the debonding
process again starts at the leftmost node. However, in this
case since the shear (sliding) mode of failure is inhibited,
the debonding process is seen to occur far more symmet-
rically (Fig. 3). The failure progresses along both sides
of the inclusion almost simultaneously moving towards
the top and bottom of the inclusion until the compressive
zones are reached.

The second case considered is a single inclusion under-
going a shear test. Results for the two different values of
τt f are shown in Figs. 4 and 5. For the case τt f = 0.5τn f

(Fig. 4), the debonding process starts along the interface
at an angle of 45o from the center of the inclusion and
progresses towards the compressive regions in the second
and fourth quadrants. When the failure region reaches the
compressive region, a new failure zone is initiated in the
third quadrant originating at an angle of 225o. This new
failure region again progesses until reaching the com-
pressive zones in the second and fourth quadrants. For
the case τt f = 5τn f (Fig. 5), the failure pattern is seen to
be far more symmetric about the line of symmetry angled
at 135o from horizontal similar to the symmetry seen in
the tensile test. The failure progresses from the initiation
points at 45o and 225o towards the compressive zones
more or less simultaneously on both sides of the inclu-
sion.

Effective elastic constants have been defined for a vari-
ety of composite materials containing a dispersed phase
[Torquato (1991); Lee, Batt, and Liaw (2000); Pap-
athanasiou, Ingber, Mondy, and Graham (1994)]. For the
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(a)

(b)

(c)

(d)

Figure 2 : The progression of failure for the tensile test
with τt f /τn f = 0.5. The normal displacements (nondi-
mensionalized by the length of the side of the specimen)
are given by (a) 0.0098, (b) 0.01, (c) 0.037, and (d) 0.039.

(a)

(b)

(c)

(d)

Figure 3 : The progression of failure for the tensile test
with τt f /τn f = 5.0. The normal displacements (nondi-
mensionalized by the length of the side of the specimen)
are given by (a) 0.013, (b) 0.016, (c) 0.022, and (d) 0.35.
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(a)

(b)

(c)

(d)

Figure 4 : The progression of failure for the shear test
with τt f /τn f = 0.5. The tangential displacements (nondi-
mensionalized by the length of the side of the specimen)
are given by (a) 0.02, (b) 0.0235, (c) 0.03, and (d) 0.58.

(a)

(b)

(c)

(d)

Figure 5 : The progression of failure for the shear test
with τt f /τn f = 5.0. The tangential displacements (nondi-
mensionalized by the length of the side of the specimen)
are given by (a) 0.041, (b) 0.042, (c) 0.054, and (d) 0.65.
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Figure 6 : The normalized effective Young’s modulus as
a function of displacement for the single inclusion case
undergoing a tensile test.

tensile case, an effective Young’s modulus can be deter-
mined by first integrating the normal traction over either
lateral side of the specimen to determine the resultant
normal force, Fn. The effective Young’s modulus Ee f f

of the composite is then given by

Ee f f =
Fn

a ·d (16)

where a is the length of the lateral side over which the
normal displacement of d/2 is applied. The effective
Young’s modulus can then be normalized as follows

Enor =
Ee f f

Emat
(17)

where Emat is the Young’s modulus of the matrix mate-
rial.

The normalized Young’s modulus as a function of the im-
posed lateral normal displacement for the two values of
τt f is shown in Fig. 6. For the case of τt f = 0.5τn f , there
are essentially three plateau regions for the normalized
effective Young’s modulus. The first plateau occurs for
small displacements where Enor ≈ 1.27 indicating the in-
crease in the Young’s modulus caused by the boron re-
inforcement. The second plateau is a little less distinct
and occurs at Enor ≈ 0.65 which corresponds to the de-
cohesion region along the left side of inclusion before

Displacement
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tf / nf = 5.0
tf / nf = 0.5

Figure 7 : The normalized effective shear modulus as
a function of displacement for the single inclusion case
undergoing a shear test.

the onset of decohesion along the right hand side of the
inclusion. The third plateau occurs at Enor ≈ 0.56 and
corresponds to decohesion along both sides of the inclu-
sion. There is a precipitous drop off from the first plateau
to the second plateau corresponding to decohesion pro-
gressing along the left hand side of the inclusion. There
is a less severe drop off from the second plateau to the
third plateau corresponding to the decohesion progress-
ing along the right side of the inclusion.

For the case of τt f = 5.0τn f , there are essentially only two
plateaus at Enor ≈ 1.28 and Enor ≈ 0.68 corresponding
to the initially undamaged material and the completely
decohered interface in the tensile regions, respectively.
There is a far smoother transition between the plateaus
as compared to the case where τt f = 0.5τn f . This is a
result of the fact that the decohesion process occurs far
more symmetrically.

In a similar manner, an effective shear modulus can be
determined for the shear test by integrating the shear trac-
tion over either lateral side of the specimen to determine
the resultant shear force, Fs. The effective shear modulus
Ge f f of the composite is then given by

Ge f f =
Fs

a ·d (18)

where, in this case, a tangential displacement of d/2 is
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(a)

(b)

(c)

(d)

Figure 8 : The progression of failure for the tensile test
with τt f /τn f = 0.5. The normal displacements (nondi-
mensionalized by the length of the side of the specimen)
are given by (a) 0.011, (b) 0.012, (c) 0.04, and (d) 0.045.

(a)

(b)

(c)

(d)

Figure 9 : The progression of failure for the tensile test
with τt f /τn f = 5.0. The normal displacements (nondi-
mensionalized by the length of the side of the specimen)
are given by (a) 0.014, (b) 0.016, (c) 0.02, and (d) 0.04.
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(a)

(b)

(c)

(d)

Figure 10 : The progression of failure for the shear test
with τt f /τn f = 0.5. The tangential displacements (nondi-
mensionalized by the length of the side of the specimen)
are given by (a) 0.022, (b) 0.032, (c) 0.05, and (d) 0.58.

(a)

(b)

(c)

(d)

Figure 11 : The progression of failure for the shear test
with τt f /τn f = 5.0. The tangential displacements (nondi-
mensionalized by the length of the side of the specimen)
are given by (a) 0.034, (b) 0.038, (c) 0.05, and (d) 0.99.
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applied. The effective shear modulus can be normalized
as follows

Gnor =
Ge f f

Gmat
(19)

where Gmat is the shear modulus of the matrix material.

The normalized shear modulus as a function of the im-
posed lateral shear displacement for the two values of
τt f is shown in Fig. 7. For the case of τt f = 0.5τn f , the
three plateaus are even more distinct than seen in the cor-
responding tensile test (Fig. 6). These plateaus, occur-
ring at Gnor ≈ 1.31, Gnor ≈ 1.00, and Gnor ≈ 0.88, corre-
spond to no decohesion, decohesion in the first quadrant
only, and decohesion in the first and third quadrant, re-
spectively. For the case of τt f = 5.0τn f , there are essen-
tially only two plateaus at Gnor ≈ 1.32 and Gnor ≈ 0.98
corresponding to the initially undamaged material and
the completely decohered interface in the first and third
quadrants. The second plateau is again eliminated in this
case since the decohesion progresses almost simultane-
ously in the first and third quadrants. Similar to the ten-
sile test, the augmentation of the shear modulus of the
composite specimen due to the boron inclusion deterio-
rates rapidly as the decohesion process progresses.

The next geometry considered is two inclusions with
their line-of-centers making a 45o angle with the horizon-
tal. The results for the progression of failure in the tensile
test is shown in Fig. 8 for the case τt f /τn f = 0.5 and in
Fig. 9 for the case τt f /τn f = 5.0. For the case τt f /τn f =
0.5, the decohesion is seen to progess first along the outer
sides of the two inclusions, that is, the two sides nearest
the edges of the composite specimen. Once these deco-
hered outer portions of the interface reach the compres-
sive regions on the top and bottom of the inclusions, the
inner portions of the interfaces begin to decohere. Sim-
ilar to the case of one inclusion when the shear failure
mode is dominant, the decohered damaged portion of the
interface slides along one side of each inclusion before
the decohesion process begins along the other side of the
inclusion. For the case in which τt f /τn f = 5.0, the deco-
hesion progesses fairly simultaneously along both sides
of both inclusions from the tensile to the compressive re-
gions along the interface since the shear failure mode
is inhibited as seen in Fig. 9. Unlike the single inclu-
sion case, the displacement jump is seen to be somewhat
larger along the outer sides of the two inclusions which
is caused by the fact that the outer edge is far closer to
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Figure 12 : The normalized effective Young’s modulus
as a function of displacement for the two inclusion case
undergoing a tensile test.

the edge of the specimen where the normal displacement
is imposed.

For the shear test, the results for the progression of fail-
ure are shown in Fig. 10 for the case τt f /τn f = 0.5 and in
Fig. 11 for the case τt f /τn f = 5.0. As seen in Fig. 10 for
the mode dominated by shear failure, the decohesion pro-
gresses one side at a time. That is, the decohesion starts
in the third quadrant of the upper right inclusion and pro-
gesses towards the compressive zones in the second and
fourth quadrants, then sequentially continues in the first
quadrant of the lower left inclusion, the third quadrant of
the lower left inclusion, and finally, the first quadrant of
the upper right inclusion. Once decohesion begins along
a side, the sliding failure takes over and decohesion con-
tinues exclusively along that side until the compressive
zones are reached. By contrast as seen in Fig. 11 for the
mode dominated by normal failure, the decohesion be-
gins fairly simultaenously in the third quadrant of the up-
per right inclusion and the first quadrant of the lower left
inclusion, and subsequently, simultaneously in the first
quadrant of the upper right inclusion and the third quad-
rant of the lower left inclusion.

The normalized Young’s modulus as a function of the
imposed lateral normal displacement for the two values
of τt f is shown in Fig. 12. Similar to the single inclu-



174 Copyright c© 2006 Tech Science Press CMC, vol.4, no.3, pp.163-176, 2006

Displacement

G
no

r

0 0.02 0.04 0.06
0.8

0.9

1

1.1

1.2

1.3

1.4

tf / nf = 5.0
tf / nf = 0.5

Figure 13 : The normalized effective shear modulus as
a function of displacement for the two inclusion case un-
dergoing a shear test.

sion specimen, for the case τt f = 0.5τn f , there are essen-
tially three plateau regions for the normalized effective
Young’s modulus. The first plateau region at small dis-
placements where Enor ≈ 1.26 results from the increase
in the Young’s modulus caused by the two boron rein-
forcements. The second plateau region at Enor ≈ 0.6
is less distinct and corresonds to the decohesion region
along the outside of the two inclusions but before the on-
set of decohesion along the inside of the two inclusions.
The third plateau occurs at Enor ≈ 0.5 and corresponds to
decohesion along all four sides of the two inclusions.

The normalized shear modulus as a function of the im-
posed shear displacement for the two values of τt f is
shown in Fig. 13. For the case τt f = 0.5τn f , there are
four distinct plateaus of the normalized shear modulus at
Gnor ≈ 1.35, Gnor ≈ 1.15, Gnor ≈ 1.1, and Gnor ≈ 0.9.
The plateaus can be identified as corresponding to the
undamaged material, decohesion in the third quadrant of
the upper right inclusion, decohesion in the third quad-
rant of the upper right inclusion and the first quadrant of
the lower left inclusion, and decohesion in the first and
third quadrants of both inclusions, respectively. How-
ever, there appears to be a missing plateau corresponding
to decohesion in the first and third quadrants of the lower
left inclusion and in the third quadrant of the upper right
inclusion as seen in Fig. 10(c). It is possible that this
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Figure 14 : The normalized effective Young’s modulus
as a function of displacement for calculations using the
coarse and fine meshes.

missing plateau might only occur over a very small range
of shear displacements and is not seen in Fig. 13 because
the increment of shear displacement was too large. For
the case τt f = 5.0τn f , the relationship between shear dis-
placement and the normalized shear modulus is more ir-
regular resulting from the way in which the decohesion
model is implemented. That is, the displacement jumps
are imposed one node at a time depending on where the
maximum of the damage function exists.

Finally, as discussed at the beginning of this section, a
comparison of the numerical results for the normalized
Young’s modulus is shown in Fig. 14 using the coarse
and fine meshes. The specific case considered is for the
single inclusion geometry and τt f /τn f = 5.0. Again, the
coarse mesh contained 68 nodes on the outer boundary of
the matrix material and 64 nodes on the interface between
the inclusion and matrix material and the fine mesh con-
tained 164 nodes on the outer boundary and 128 nodes on
the interface. As seen in the figure, the two curves follow
each other closely with the largest relative discrepancy
being approximately 3.8%. This shows that the solution
using the coarse mesh has achieved an acceptable level
of convergence especially in light of the discrete nature
of the decohesion algorithm.
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5 Conclusions

A softening decohesion model has been combined with
linear elasticity to describe the evolution of interfacial
failure in fiber-reinforced materials. As softening occurs,
the sum of the work performed by the traction and the
stored energy released by the material equals the energy
dissipated. Progressive evolution of the debonding zones
and the propagation of decohesion along the interface
have been illustrated by incremental simulations. The
material failure parameters, τn f and τt f , play an impor-
tant role in the decohesion process and may explain the
difference between failure in ductile and brittle materials.
In particular, if the ratio τt f /τn f is small, then the mate-
rial is more likely to fail in shear. In these cases once a
portion of the interface becomes partially decohered, the
damage zone slides tangentially along the interface un-
til a compressive region is reached. On the other hand,
if τt f /τn f is large, then this shear mode failure is in-
hibited and damage tends to progress simultaneously on
both sides of the inclusion. Decohesion has significant
effect on the macroscopic response of the composite ma-
terials. In particular, the effective composite properties
are adversely affected to the point where the partially
decohered inclusion can actually diminish the effective
shear and Young’s moduli.
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