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Micro-macro Approaches Coupled to An Iterative Process for Nonlinear Porous
Media
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Abstract: An iterative homogenization approach is
proposed in order to predict the nonlinear hydro-
mechanical behaviour of porous media. This process is
coupled to classical and modified secant extended meth-
ods and linear homogenization predictive schemes. At
convergence of the iterative process, same equivalent be-
haviour is obtained for any secant method, any simplified
homogenization used for the linear comparison material
and for any initial porosity of the media. An application
to the study of the nonlinear behaviour of clayey sedi-
ments is presented. The model parameters quantification
is based on oedometric experimental results for different
clays.
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1 Introduction

Biot (1941) and then Coussy (1995) have proposed a
rigourous thermodynamical framework for the modelling
of hydro-mechanical behaviour of porous media. This
theory assumes that the porous medium can be repre-
sented by two continuous media in interaction : a solid
phase which constitutes the skeleton and a fluid phase
which saturates the pores. Macroscopic constitutive laws
can so be derived from this formalism for linear and non-
linear porous materials, Biot (1973), Coussy (1995).
In this paper we adopt a micromechanical approach
which allows us to take into account the geometry of the
microstructure and the mechanical properties of the solid
phase constituting the skeleton in the overall behaviour
of the porous medium. An elementary volume is cho-
sen as to be representative of the porous medium and is
submitted to an hydro-mechanical uniform loading char-
acterized by a macroscopic strain and a fluid pressure.
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The resolution of the induced local problem posed on
this volume gives the generated local fields. Then an ad-
equate averaging scheme allows us to link the microscale
to macroscale and to determine the overall response of
the porous medium.
Various averaging schemes have been developped for
saturated porous media with linear skeleton. They are
mainly based on homogenization works devoted to the
prediction of the effective properties of composites in
which the phases have a linear behaviour. Auriault and
Sanchez-Palencia (1977) have so used the framework of
the homogenization theory of periodic media to predict
the poro-elastic behaviour of materials with periodic pat-
terns. In this approach the local problem must be solved
by finite element method, Devries, Dumontet, Duvaut,
and Léné (1989). This numerical homogenization makes
it possible to simulate the global stress-strain responses
of nonlinear materials, for example nonlinear viscoelas-
tic composites or damaged materials, Zhang and Xia
(2005). This approach is also essential to estimate the ef-
fective properties of materials which exhibit an ordered
complex microstructure like textile reinforced materials,
Haasemann, Kastner, and Ulbricht (2006). For disor-
dered microstructure, various explicit approaches based
on Eshelby’s result, Eshelby (1957), for a review refer to
Aboudi (1991), Bornert, Bretheau, and Gilormini (2001),
and analytical solutions of the local problem, can also
be applied to predict the linear poro-elastic behaviour
of satured porous media. These linear homogenization
schemes lead to different predictions following the as-
sumed representation of the microstructure. They might
not be sufficiently accurate, especially in the case of high
contrast between the phase properties like in porous ma-
terials or in the case of significant porosities.
Micromechanical formulations for nonlinear porous ma-
terials have more recently received attention, Suquet
(1997), Ponte-Castaneda and Suquet (1998), Bornert,
Bretheau, and Gilormini (2001). These modelling are too
often obtained as extensions of linear homogenization
methods. In a first stage the nonlinear local equations are



154 Copyright c© 2006 Tech Science Press CMC, vol.4, no.3, pp.153-162, 2006

linearized by affine or secant formulations for example.
The tangent or secant stiffness tensors depend to local
strains in the skeleton which generally evolve the overall
load. At each step of loading, complementary relations
are then introduced in order to replace the local strains
with averaged strains following the concept usually re-
ferred to as linear comparison material, Ponte-Castaneda
(1991). Various linearization procedures have been pro-
posed like the affine approach, Masson, Bornert, Su-
quet, and Zaoui (2000), second order affine procedures,
Ponte-Castaneda and Suquet (1998), Bornert, Masson,
Ponte-Castaneda, and Zaoui (2001), incremental, Hill
(1965a), the classical secant method, Chu and Hashin
(1971), Berveiller and Zaoui (1979), Weng (1990) or sec-
ond order secant, called modified secant method, Suquet
(1997), and some of their variants, Bardella (2003), Qiu
and Weng (1992). The second stage consists in solving
at each step of loading the linearized local problem by
an usual linear homogenization method appropriate for
the geometry of the microstructure. The relevance and
the performance of the nonlinear effective properties of
the porous media so obtained depend on both approxi-
mations induced by the linearization procedure and by
the linear homogenization scheme. Comparisons of these
different procedures have been made, see for example,
Suquet (1997) and Rekik, Bornert, Auslender, and Zaoui
(2005).
In this work we propose an iterative homogenization pro-
cess which gives consistency to some secant homoge-
nization procedures for random porous material by lead-
ing to a same prediction of the effective behaviour. In
previous work this iterative process has been success-
fully proposed to predict the behaviour of linear rein-
forced composites, Benhamida and Dumontet (2003) and
porous materials, Benhamida, Djeran-Maigre, Dumon-
tet, and Smaoui (2005). Here it is extended in the non-
linear domain in order to predict the hydro-elastoplastic
behaviour of porous materials.
The iterative process is based on an iterative process
of homogenization which consists in building Represen-
tative Elementary Volume of the porous material, by
adding low porosities gradually to the skeleton, until
reaching the final porosity of clay, according to a method
close to differential scheme, Zimmerman (1991). At a
given stage of the process, the behaviour of the porous
intermediate media, if it is linear elastic, can be ob-
tained by any simplified homogenization method and
then becomes the skeleton of the following step. The

equivalent homogeneous behaviour of the porous ma-
terial is then obtained at the convergence of the pro-
cess. The introduction of this process leads to the same
equivalent behaviour whatever the used homogenization
method is and this is valued even for significant porosi-
ties, Benhamida and Dumontet (2003). One can use
for example the approach of the diluted distributions,
Aboudi (1991), the self-consistent method, Hill (1965a),
the concentric spheres, Christensen and Lo (1979), the
Hashin’s bounds, Hashin and Shtrikman (1963) or even
the morphological representative pattern, Hervé and Za-
oui (1993). This convergence can be explained by the
use at each iteration of the predictive homogenization
models with low porosities where the various estimates
coincide. This iterative homogenization is coupled here
with the secant methods of nonlinear homogenization.
Two secant procedures have been considered, the clas-
sical secant method, Berveiller and Zaoui (1979), where
the local strain in the skeleton is simply averaged on the
phase or secant modified method, Suquet (1997), where a
second-order moment of the averaged strain is used. We
show that these classical or modified secant approaches
coupled to iterative process lead to the same nonlinear
behaviour for all rates of porosities whatever the selected
simplified homogenization approach is.
This approach is here applied to the study of the non-
linear hydro-mechanical behaviour of compacted clays.
The model parameters quantification is based on oe-
dometric experimental results obtained with an origi-
nal oedometric cell, Grunberger, Djeran-Maigre, Velde,
and Tessier (1994), Djeran-Maigre, Tessier, Velde, and
Vasseur (1998). This cell allows us to apprehend the
three-dimensional phenomena by measuring simultane-
ously the lateral strain and the pore pressure. From these
measurements of compaction, we identify the geome-
try and mechanical parameters of the micromechanical
model. A nonlinear behaviour is chosen with power law
dependency for the skeleton and the microstructure of
clays is modelled by spherical pores.
After having recalled in section 2 the principle of non-
linear homogenization methods, we describe in section
3 the iterative process and its coupling with the secant
approaches. We present finally in section 4 the applica-
tion of the modelling to the prediction of the linear and
nonlinear hydroelastic behaviour of clayes.
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2 Recalls of nonlinear homogenization

The porous medium considered here is supposed to be
made up of a porous phase embedded into a connected
solid skeleton. The skeleton is supposed to have a non-
linear elastic behaviour. The porous phase is saturated
with a fluid. Small deformations are assumed. Let Y
be a Representative Elementary Volume of this porous
medium. This volume consists of a solid part YS occu-
pied by the skeleton and of a part YV which represents the
pores of the medium. The interface between the skeleton
and the pores is noted by Γv and the external boundary of
Y by ∂Y . In a strain approach of homogenization, the rep-
resentative volume is subjected to an hydro-mechanical
macroscopic loading in terms of a mechanical strain EEE
and a uniform pressure p. This loading generates at the
microscale local fields of displacement uuu(y), strain εεε(y)
and stress σσσ(y) solutions of a cellular problem, which are
written after secant linearization, in the following way :

∇.σσσ(y) = 0,∀y ∈ Y,

σσσ(y) =CCCsct
s (εεε(y)) : εεε(y),∀y ∈ Ys,

εεε(y) =
1
2
(∇uuu(y)+∇Tuuu(y)),∀y ∈ Ys,

σσσ(y).nnn = −p nnn,∀y ∈ Γv,

<< εεε(y) >>= EEE, (1)

where CCCsct
s denotes the secant tensor of the skeleton

which depends on the local deformation, nnn the unit nor-
mal at the considered boundary, the double dot products
: is the product of a fourth-order tensor with a second-
order tensor, the single dot . is the product of a second-
order tensor with a vector and the notation (uuu⊗nnn)S de-
notes the symmetrized tensorial product of the displace-
ment defined by :

(uuu(y)⊗nnn)S)i j =
1
2

(ui n j +u j ni). (2)

Due to the difficulty of defining the strain in the pores, it
was here necessary to introduce a specific strain average
defined by :

<< εεε(y) >>=
1
|Y |

∫
∂Y

(uuu(y)⊗nnn)SdS = EEE. (3)

The equivalent homogeneous behaviour is then defined
by the following relation between strain-stress averages,
Dormieux, Molinari, and Kondo (2002) :

ΣΣΣ =< σσσ(y) >= CCChom(EEE) : (EEE − pBBB (EEE)), (4)

where CCChom denotes the equivalent stiffness tensor, BBB the
Biot tensor where both depend on the macroscopic load-
ing and the simple brackets < . > denote the classical
average on Y defined by :

< σσσ(y) >=
1
|Y |

∫
Y

σσσ(y)dy, (5)

with σσσ(y) the stress solution of the local problem (1).
In a similar way, the stress homogenization approach
consists in imposing to the Representative Elementary
Volume a macroscopic stress loading ΣΣΣ instead of the
macroscopic strain EEE. The effective behaviour is then
defined by the following relation :

<< εεε(y) >>= SSShom(ΣΣΣ) : ΣΣΣ + p SSShom(ΣΣΣ) : BBB(ΣΣΣ), (6)

where εεε is the solution of the local problem with stress
loading and SSShom the equivalent compliance tensor. Gen-
erally, even in linear case, the two approaches don’t lead
to the same behaviour, SSShom and CCChom don’t be inverse
and consequently the two Biot tensors differ.
Approximations of these effective properties can be ex-
plicitly obtained by introducing the concept of linear
comparison composite, Ponte-Castaneda (1991), and by
exploiting the classical homogenization methods of lin-
ear elasticity. We assume in order to simplify the de-
veloppements that the skeleton has a linear behaviour
for purely hydrostatic loading and a nonlinear behaviour
in shear. The skeleton behaviour is also considered
isotropic, so the secant tensor of the skeleton is written
as :

CCCsct
s (εεε(y)) = 3ks JJJ + 2µsct

s (εeq(y)) KKK, (7)

where ks denotes the bulk modulus supposed to be con-
stant, µsct

s the secant shear coefficient of the skeleton
which evols with the local equivalent strain εeq defined

by εeq(y) =
√

2
3 ei j(y)ei j(y) with eee(y) the deviatoric part

of the strain tensor given by eee(y) = εεε(y)− 1
3 (trεεε) I, with

I the second order identity tensor. JJJ and KKK are the fourth-
order tensors defined by :

Ji jkh =
1
3

δi jδkh, Ki jkh =
1
2
(δikδ jh +δihδ jk) − Ji jkh, (8)

with δi j the components of I.
The strain classical secant approach, Berveiller and Za-
oui (1979), consists in approximating the nonlinear be-
haviour of the cellular problem (1) with (7) by the linear
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comparison material with the stiffness tensor :

CCCs = CCCsct
s ((< εεε(y) >YS )eq), (9)

where the brackets < . >YS indicate here the classical av-
erage of the strains taken on the skeleton part YS.

In the strain modified secant method, Suquet (1997),
the behaviour law uses the second moment order of the
equivalent local strain :

CCCs = CCCsct
s (

√
< ε2

eq(y) >Ys ). (10)

The homogenized stiffness tensor CCChom can be then de-
fined by the relation :

CCChom(EEE) = CCCs −φ CCCs : << AAA(y) >>Yv , (11)

where CCCs denotes the stiffness tensor of the linear com-
parison porous media defined by (9) or (10) according to
the adopted secant approach, φ is the porosity of material
and AAA(y) is the localization tensor defined by :

<< AAA(y) >>Yv : EEE =
1
|Yv |

∫
Γv

(uuu(y)⊗nnn)S dS, (12)

where uuu(y) is the displacement solution of the linearized
cellular problem (1) with the laws (7)-(9) or (7)-(10)
without pore pressure (p = 0). The Biot tensor is ob-
tained then by the following relation, Dormieux, Moli-
nari, and Kondo (2002) :

BBB(EEE) = III −CCC−1
s : CCChom : III. (13)

In a similar way, the linearization of the stress homoge-
nization approach leads with classical secant method to
the compliance tensor :

SSSs = SSSsct
s ((< σσσ(y) >YS )eq), (14)

and with modified secant method :

SSSs = SSSsct
s (

√
< σ2

eq(y) >Ys ), (15)

where SSSsct
s denotes the secant compliance tensor of the

skeleton, σeq is the Von-Mises equivalent stress defined

by σeq(y) =
√

2
3 si j(y) si j(y) and sss(y) is the deviatoric

part of the stress tensor. The homogenized compliance
tensor SSShom can be then defined by the relation:

SSShom(ΣΣΣ) = SSSs −φ SSSs : << DDD(y) >>Yv , (16)

where DDD(y) is the concentration tensor defined by :

<< DDD(y) >>Yv : ΣΣΣ = SSS−1
s :

1
|Yv |

∫
Γv

(uuu(y)⊗nnn)S dS, (17)

where uuu(y) is the displacement solution of the linearized
cellular problem (1) in stress approach with the laws (7)-
(14) or (7)-(15) without pore pressure (p = 0). The Biot
tensor in stress approach is obtained then by the follow-
ing relation :

BBB(ΣΣΣ) = III − (SSShom)−1 : SSSs : III. (18)

For simplified geometry of the REV with spherical or el-
lipsoidal pores, Ehselby’s results, Eshelby (1957), can
be used to solve the linearized local problems at each
step of loading with explicit developpements. The clas-
sical linear approximations of the homogenized coeffi-
cients for the elastic comparison porous media, such as
the diluted approximations in strain or stress approaches,
the self-coherent scheme, the Mori Tanaka’s method, or
the Hashin-Shtrikman bounds, allow then to estimate the
nonlinear homogenized behaviour of the porous media,
Aboudi (1991), Bornert, Bretheau, and Gilormini (2001).
However, these estimates have same inherent limitations
of the simplified homogenization methods in linear elas-
ticity, which coincide for low porosities, but quickly
diverge and can become not exploitable for significant
porosities. Moreover, these approaches often give a very
imprecise estimate of local fields and remain not eas-
ily usable in local criteria of damage. The classical and
modified secant methods lead in addition to different pre-
dictions for the nonlinear behaviour, Suquet (1997). To
remedy these various limitations, we propose to couple
the nonlinear homogenization presented above with an
iterative process.

3 Iterative process

This iterative process is inspired in its principle by the
homogenization method known as differential scheme,
Norris (1985), McLaughlin (1977), proposed for the lin-
ear elastic porous media by Zimmerman (1991). The
porous media is built by adding low porosities Δφ j grad-
ually to the skeleton until reaching the final porosity of
the medium φ = ∑n

j=1 Δφ j. At a stage (i) of the process,
the porous material is then composed of a skeleton whose
behaviour is that of the equivalent homogeneous medium
of the preceding stage and whose porosity is given by :

φ(i) = Δφi (φs + ∑i
j=1 Δφ j )−1. (19)
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The behaviour of this intermediate porous medium is ob-
tained by a classical homogenization method in linear
elasticity and becomes that of the skeleton of the follow-
ing stage (i + 1). At each step of loading, the equivalent
homogeneous behaviour of the linear comparison porous
medium is obtained with convergence of the succession
of these intermediate homogenizations, the process be-
ing initialized with the secant mechanical properties of
the solid part of a material. Thus, the stiffness tensor at
an intermediate stage (i) is written :

CCC(i)
s = CCC(i−1)

s − φ(i)CCC(i−1)
s : << AAA(y,CCC(i−1)

s ,φ(i)) >>YV ,

(20)

where the localization tensor AAA differs following the lin-
ear schemes. For the diluted approximations, it is given
by :

<< AAA(y,CCC(i−1)
s ,φ(i)) >>YV = (III − PPP(i−1)

s : CCC(i−1)
s )−1

(21)

with the polarization tensor PPPs given by :

PPP
(i−1)
s = SSS(i−1)

E : (CCC(i−1)
s )−1, (22)

where SSS(i−1)
E is the Esheby tensor of the skeleton phase

given in the case of spherical pores by Mura (1987):

SSS(i−1)
E = p(i−1)

E JJJ + q(i−1)
E KKK, (23)

with the coefficients pE and qE :

p(i−1)
E =

1
3

1+ν(i−1)

1−ν(i−1) , q(i−1)
E =

2
15

4−ν(i−1)

1−ν(i−1) , (24)

ν(i−1) being the Poisson’s ratio of the homogenized
medium at the step (i−1).
The localization tensor becomes with the upper Hashin-
Shtrikman bound, Hashin and Shtrikman (1963) :

<< AAA(y,CCC(i−1)
s ,φ(i)) >>YV = (III − φ(i)PPP(i−1)

s : CCC(i−1)
s )−1

(25)

With a stress approach, the compliance tensor at the step
(i) is written :

SSS
(i)
s = SSS(i−1)

s − φ(i)SSS(i−1)
s : << DDD(y,SSS(i−1)

s ,φ(i)) >>YV

Figure 1 : Algorithm of the iterative process.

(26)

with the concentration tensor given for the diluted ap-
proximations by :

<< DDD(y,SSS(i−1)
s ,φ(i)) >>YV = (III − QQQ(i−1)

s : SSS(i−1)
s )−1

(27)

and

QQQ(i−1)
s = (SSS(i−1)

s )−1 : (III − SSS(i−1)
E ). (28)

In practice, the construction of the nonlinear homoge-
nized response involves two nested loops, one internal for
the loading steps and one external for the iterative pro-
cess, Figure 1. The local equivalent strain in the skele-
ton or equivalent stress in strain approach is here con-
sidered as a parameter t following the suggested method,
Bornert, Bretheau, and Gilormini (2001), with t = (<
ε(y) >YS )eq for the classical secant method (CLSA) and
t =< ε2

eq(y) >Ys for the modified secant method (MSA).

4 Application to hydro-mechanical behaviour of
clays

The application of the previous described micromechan-
ical approach requires the knowledge of mechanical be-
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Figure 2 : Equivalent shear modulus of the clay normal-
ized by the shear modulus of the skeleton versus porosity
for diluted approximation in strain and stress approaches
coupled to the iterative process after 1, 3, 6 and 100 iter-
ations.

haviour of the skeleton, as well as porosity of the me-
dia.These parameters were identified from compaction
tests carried out on various clays by Djeran-Maigre,
Tessier, Grunberger, Velde, and Vasseur (1998) at G3S
Laboratory of the Ecole Polytechnique on an original oe-
dometric cell.

4.1 Identification of the skeleton’s elastic properties

In this experimental tests the axial stress is applied and
with the axial strain, the radial stresses and the pore
pressure were measured thanks to this specially designed
cell. The experimental data allowed us to identify clays
behaviour on a macroscopic scale with an elastoplastic
law of modified Cam-Clay type, Pouya, Djeran-Maigre,
Lamoureux-Var, and Grunberger (1998), Djeran-Maigre
and Gasc-Barbier (2000). The skeleton’s elastic proper-
ties of clays were identified by inverse homogenization
from beginning of the unloading compaction curve mea-
surements. The elastic behaviour of three clays, the illite-
Salins-14, the Bouzule and the Marais Poitevin, was
then characterized, Benhamida, Djeran-Maigre, Dumon-
tet, and Smaoui (2005). In this study, we present only the
results concerning the Bouzule whose bulk modulus of
the skeleton ks was identified to be 461 MPa, the elastic
shear modulus µe

s to be 445 MPa and initial porosity to
be 20.5%. The nonlinear evolution of the shear modulus
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Figure 3 : Biot coefficient of the Bouzule clay versus
iteration numbers for various homogenization methods.

is put as a power law :

µsct
s (εeq(y)) =

σ0

3ε0

(
εeq(y)

ε0

)m−1

, (29)

with σ0 = 3µe
s ε0 and m a parameter which varies be-

tween 0 and 1. In the following applications m is taken
equal to 0.3.

4.2 Hydro-elastic behaviour

First, we study the elastic phase of the equivalent homo-
geneous hydro-mechanical behaviour of the clay. For
that, the iterative process of homogenization presented
at section 3 is coupled with various simplified homoge-
nization methods. The evolutions of the equivalent ho-
mogeneous shear modulus versus porosity are presented
in Figure 2 for diluted approximations in strain (DD) or
stress (DC) approaches coupled with the iterative process
after 3, 6 and 100 iterations and without coupling (1 it-
eration). We show that the stress and strain approaches,
which lead to different predictions without iterative pro-
cess, converge to a same prediction with the increasing
number of iterations even for significant porosities. Ini-
tially the strain approach gives nonphysical predictions
for porosities beyond 30% to 40% but after convergence
of the iterative process they tend to zero as expected. The
predictions obtained by the two approaches become in
particular inverse of each other.

Same commentaries can be made on the prediction of
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Figure 4 : Equivalent homogenous shear modulus of the
clay normalized by the shear modulus of the skeleton ver-
sus porosity for various homogenization methods cou-
pled or not with the iterative process. Here (it) means
method coupled with iterative process

the Biot coefficient according to the iteration numbers
plotted in Figure 3 for a porous media with an initial
porosity of 50% . The diluted distributions method (DD)
and (DC), the Hashin’s upper bound (HS) and the self-
consistent model (AC) give the same prediction after 100
iterations.

This convergence to the same equivalent behaviour for all
homogenization methods and porosities, including now
significant rates, can also be observed in Figure 4 and
Figure 5 where the direct application of the diluted distri-
butions method with a strain approach (DD) and a stress
approach (DC), the Hashin’s upper bound (HS), the three
phases method (3Ph) and the differential scheme (Zim-
mer) are compared with those obtained by iterative pro-
cess at convergence coupled to these methods and sym-
bolized by (it). The experimental point used for the iden-
tification of elastic skeleton properties is also located on
the curves. This convergence can be explained from the
use at each iteration of the predictive homogenization
models with low porosities where the various estimates
coincide. The case of reinforced or unidirectional com-
posites was also successfully studied, Benhamida and
Dumontet (2003). Lastly, it has been shown that the lo-
calization or concentration tensors are also corrected by
the introduction of the iterative process so that the strain
and stress local fields become exploitable for the predic-
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Figure 5 : Biot coefficient of the Bouzule clay versus
porosity for various homogenization methods coupled or
not with the iterative process. Here (it) means method
coupled with iterative process

tion of the microstructure damage, Brini, Pradel, Ben-
hamida, and Dumontet (2003).

4.3 Nonlinear elastic behaviour

The same analysis is carried out now on the nonlinear
homogeneous equivalent behaviour. The coupling of the
iterative process is used, at each step of the loading, fol-
lowing the method presented at section 3. We present
at Figures 6 the evolution of the deviatoric macroscopic
stress depending on the deviatoric macroscopic strain,
for an initial porosity of 50%, obtained by the classical
secant approach coupled with the diluted distributions,
strain approach (DD) and stress approach (DC), after 3,
6 and 100 iterations and without coupling (1 iteration).
As previously in linear case, we show that the stress
and strain approaches, which lead to different nonlin-
ear predictions without iterative process, converge here
to a same prediction with the increasing number of it-
erations. The comparison with the prediction given by
the Hashin’s upper bound (HS) coupled to classical se-
cant approach is presented in Figure 7. At convergence
of the iterative process, the two linear homogenization
schemes give the same evolution of the deviatoric macro-
scopic stress versus the deviatoric macroscopic strain, for
an initial porosity of 20,5%. The same result of conver-
gence can be found in Figure 8 with the modified secant
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Figure 6 : Evolution of deviatoric equivalent stress
according to equivalent strain by classical secant ap-
proach with diluted approximations coupled to the it-
erative process after 1, 3, 6 and 100 iterations. Initial
porosity 50%.
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Figure 7 : Evolution of deviatoric equivalent stress ac-
cording to equivalent strain by the classical secant ap-
proach for various homogenization methods with (it)
and without coupling of the iterative process. Initial
porosity of 20,5%.
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Figure 8 : Evolution of deviatoric equivalent stress ac-
cording to equivalent strain by the modified secant ap-
proach for various homogenization methods with (i) or
without coupling of the iterative process. Initial poros-
ity 50%.
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Figure 9 : Evolution of equivalent deviatoric stress
depending on the equivalent strain by the classical
and modified secant approaches and the upper limit of
Hashin with or without iterative process. Initial porosity
50%.

method for a material with higher porosity. Finally the
two secant methods can be compared in the Figure 9.
Without coupling with the iterative process, the classical
secant method leads to a stiffer prediction of the equiva-
lent behaviour than that provided by the modified secant
extension, which is in accordance with Suquet’s results,
Suquet (1997). With the iterative process, the two se-

cant methods coincide. This result remains valid for any
porosity.

The introduction of the iterative process leads then to the
same nonlinear equivalent behaviour whatever the sim-
plified method that is used for the homogenization of the
linear comparison porous media, whatever the secant ap-
proaches and rates of porosity.
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5 Conclusion

The iterative process of homogenization proposed in
this work enables to simulate the nonlinear behaviour
of porous material by unifying the predictions resulting
from the classical and modified secant approaches, as
well as the linear simplified homogenization methods.
Applied to the hydro-mechanical behaviour of a clay, it
allows us to simulate the nonlinear response of the ma-
terial in a purely deviatoric loading. Currently, we con-
tinue with the simulation of a compaction test, which will
allow us to compare the model with the experimental re-
sults. A more realistic microstructural geometry can be
considered. The iterative method is particularly adapted
to taking into account for example ellipsoids of the same
sizes in order to represent, as well as possible, the dis-
tributed homogeneous clay particules or even different
sized particules in order to take into account granulomet-
ric dispersion.
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