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Asymptotic Solutions for Multilayered Piezoelectric Cylinders under
Electromechanical Loads

Chih-Ping Wu' and Yun-Siang Syu

Abstract: Based on the three-dimensional (3D) piezo-
electricity, we presented asymptotic solutions for multi-
layered piezoelectric hollow cylinders using the method
of perturbation. The material properties in the gen-
eral formulation are firstly regarded to be heterogeneous
through the thickness, and then specified as the layer-
wise step functions in the cases of multilayered cylinders.
The transverse normal load and normal electric displace-
ment are respectively applied on the lateral surfaces of
the cylinders. The boundary conditions of cylinders are
considered to be simply supported at the two edges. In
the formulation the twenty-two basic equations of piezo-
electricity are reduced to eight differential equations in
terms of eight primary variables of elastic and electric
fields. After performing nondimensionalization, asymp-
totic expansion and successive integration, we finally de-
compose the 3D problem into a series of 2D problems
with the same governing equations for various orders ex-
cept for the nonhomogeneous terms. In view of the re-
current property, it is illustrated that the present asymp-
totic solutions can be obtained in a hierarchic manner and
asymptotically approach 3D piezoelectricity solutions.

keyword: Piezoelectric material, Cylinders, Exact so-
lutions, Piezoelectricity, Asymptotic expansion, Pertur-
bation

1 Introduction

In recent years, laminated composite structures bonded
with piezoelectric actuators and sensors on the outer sur-
faces of the structures were widely used as intelligent
or smart structures in the engineering applications. De-
termination of exact solutions of piezoelectric laminates
naturally becomes an attractive research subject. It is
well known that there are twenty-two basic equations
of three-dimensional (3D) piezoelectricity governing the
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electro-elastic behavior of piezoelectric laminated struc-
tures. In view of the considerable number of equations,
the exact solution of piezoelectricity is hard to be ob-
tained and is scarce in the literature.

Heyliger (1997) presented exact solutions for the static
behavior of simply-supported laminated piezoelectric
cylinders. In his analysis, the laminated piezoelectric
cylinders are subjected to either transverse normal loads
or electric potential on the outer surfaces. The primary
field variables are expanded as Fourier series in the in-
surface directions where the edge boundary conditions
in axial direction and periodical continuity conditions in
the circumferential direction are satisfied. By using the
set of double Fourier series functions, Heyliger reduced
basic equations of 3D piezoelectricity as a set of ordinary
differential equations. The Frobenious method is used to
evaluate the coupling effects of elastic and electric fields
on the structural behavior of multilayered piezoelectric
cylinders. The similar methodology is used to obtain ex-
act solutions of orthotropic cylindrical shells with piezo-
electric layers under the cylindrical bending type of lat-
eral loads or electric potential (Chen, Shen and Wang,
1996). By expanding the field variables as a product of
an exponential function and a power series in the thick-
ness coordinate, Kapuria, Sengupta and Dumir (1997)
also used the aforementioned methodology to present ex-
act solutions for simply-supported piezoelectric cylindri-
cal shells under axisymmetric electromechanical loads.

Tarn (2002) presented a state space formalism for
electro-thermo-elastic analysis of a linear piezoelectric
body. Exact solutions both for a piezoelectric half-space
under a line of electromechanical loading and for an infi-
nite piezoelectric plate with an elliptical notch subjected
to in-plane loads are determined. Lee and Jiang (1996)
presented an analytical approach for the electromechani-
cal analysis of laminated piezoelectric structures. In their
analysis, the state space equations for a 3D piezoelec-
tric lamina are derived. By using the method of transfer
matrix, Lee and Jiang studied the coupled electro-elastic
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behavior of piezoelectric laminates. Comprehensive re-
views of theoretical analysis and numerical modeling for
piezoelectric laminates were presented by Saravanos and
Heyliger (1999) and Gopinathan, Varadan and Varadan
(2000).

An alternative analytical approach to obtain exact so-
lutions of doubly curved laminated piezoelectric shells
was proposed by Wu and his colleagues (2005, 2006).
By means of the perturbation method, the 3D asymp-
totic formulations for the static and dynamic analyses
of laminated piezoelectric shells were developed. Sev-
eral benchmark problems were studied by applying the
asymptotic approach.

After a close examination on the exact analysis of piezo-
electric laminates in the literature, we found that most
of the aforementioned articles dealt with the structural
behavior of piezoelectric laminates under applied elec-
tric potential rather than normal electric displacement on
the lateral surfaces. Based on the generalized Hamilton’s
principle, Tiersten (1969) indicated that there are two
possibilities for electric loading conditions on the lateral
surfaces (i.e., either electric potential or normal electric
displacement is prescribed). To replenish the benchmark
solutions for 3D piezoelectricity, we presented exact so-
lutions for multilayered piezoelectric hollow cylinders
under transverse normal loads and normal electric dis-
placement. By using the different dimensionless forms
of electric field variables from the previous work (Wu et
al., 2005), it turns the variable of electric potential to be
one of the primary variables in the governing equations
for various orders problems. Since the successive inte-
gration is performed through the thickness coordinate to
the differential equation of normal electric displacement,
unlike to that of electric potential in the previous work
(Wu et al., 2005), the present analysis for applied normal
electric displacement cases can then be considered. The
coupled electro-elastic effect on the structural behavior
of piezoelectric cylinders subjected to two different types
of electric loads was evaluated using the present and pre-
vious asymptotic formulations, respectively. The illus-
trative examples show that both two formulations yield
satisfactory results and the present asymptotic solutions
converge rapidly.

2 Basic equations of piezoelectricity

Consider a multilayered piezoelectric hollow cylinder as
shown in Fig. 1 in the present formulation. The cylindri-
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cal coordinates system with variables x, 0, r is used and
located on the middle surface of the cylinder. 24, L and R
stand for the total thickness, the length and the curvature
radii to the middle surface of the cylinder, respectively.

The linear constitutive equations of piezoelectric mate-
rial in the cylindrical coordinates system are given by

)\ r T )\

Ox cii ci2 ¢z 0 0 ci6 €x
(o7 ci2 ¢ 3 0 0 o €g
6, | _|c3 c3 ¢33 0 0 36 €
Tor (|0 0 0 caa cas O Yor
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L Txo L c16 26 c36 0 0 ce6 | | Teo
[0 0 €31 i
0 0 €3 E
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o Rl R M)
ely ey 0
Er
e;s exs 0
L0 0 e3 |
€ )
€o
Dx 0 0 0 €14 €15 0 e
De = 0 0 0 €24 €75 0 "
D, e31 exn ex3 0 0 e3 Tor
Yxr
\ Yx6
Mt N2 0 Ey
+ | M2 M2 O Ey o, ()
0 0 ms E,

where Gy, 09,0y, Ty, Tor, TxoANdEy, €9, €, Yrs Yor, Yoo de-
note the stress and strain components, respectively.
Dy,Dg,D, and E,, Eg, E, denote the components of elec-
tric displacement and electric fields, respectively. ¢;;, ¢;;
and m;; are the elastic coefficients, piezoelectric coeffi-
cients and dielectric coefficients, respectively, relative to
the geometrical axes of the hollow cylinder. The mate-
rial is regarded to be heterogeneous through the thickness
(i.e., ¢ij(€), €;j(€) andm;;(C)). For a typical multilayered
piezoelectric cylinder considered in the paper, its mate-
rial properties are the layerwise step functions through
the thickness coordinate.

The kinematic equations in terms of the cylindrical coor-
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dinates x, Oandr are

g ) [d, O 0
€ 0 %ae %
g 0 0 o, e
Yoo (|0 —1+49, Lo up 5 O
Yer 9% 0 O .
\ Y0 L %ae ax 0 |

in which u,,ugandu, are the displacement components;
0y = 0/0y, dg = d/dg, 9, = 9/ 0,

The stress equilibrium equations without body forces are
given by

FOxox TTx0,0 +Tur + 7 Txryr = O, (4)
YTx0,x +Gg,0 +1Tor,r +216r = O, (5)
ITyrsx +Tor,0 +70r,r +0r — O = 0. (6)

The charge equation of the piezoelectric material without
electric charge density is

1 1
Dx7x+;D676 +Dr7r+;Dr =0. (N

The relations between the electric field and electric po-
tential are

E,=-@,, (8a)
1
r

Er - —(I)”,’ (8C)

where @ denotes the electric potential.

The boundary conditions of the problem are specified as
follows:

On the lateral surface the transverse load g (x,0) and
normal electric displacement Bri (x,0) are prescribed,

[Ter Tor]=[0 O] on r=R+h, (9a)
6, =¢q (x,0) on r=R+h, (9b)
D, =D, (x,0) on r=R+h. (10)

The edge boundary conditions require one member of
each pair of the following quantities be satisfied,
(11a)

— —%
n10x + 13T = Py or Uy = U,,

1Ty + 1209 = P, or Ug :ﬁg, (11b)

N1 Ty + N2 Ter = D3 or u, =T, (11c)
where pj,p; and p; are the applied edge loads;
u,,ug and u, are the prescribed edge displacements;
niandnydenote the outward unit normal at a point along

the edge.

In addition, the edges are suitably grounded so that the
electric potential @ at the edges are zero and given by

o =0. (12)
According to Egs.(1)-(8), it is listed that there are twenty-
two basic equations for the present electroelastic analysis
of piezoelectric hollow cylinders. For a 3D analysis, we
must determine the aforementioned twenty-two unknown
variables satisfying the basic equations (Egs.(1)-(8)) in
the shell domain, the boundary conditions at outer sur-
faces (Egs. (9)-(10)) and the edges (Egs. (11)-(12)). In
the following derivation, we present an asymptotic for-
mulation for the 3D analysis of single-layer and multi-
layered hybrid piezoelectric hollow cylinders.

3 Nondimensionalization

A set of dimensionless coordinates and variables are de-
fined as

xi=x/Re, x,=0/e, x3=(/h and r=R+C(;
uy =uy/Re, up=ug/Re, u3=u,/R;

61 =0,/Q, 02=0p/Q, T12="Tw/0;

T3 =Ty/Q8, T3 =To,/Q¢, O3=0,/Q¢%

D1 =D,/eV Ve, Dy,=Dy/eV Ve, D3=D,/e;

¢ = De/e'ROQ; (13)
where €2 = h/R; Q and e denote a reference elastic mod-
uli and a reference piezoelectric moduli, respectively. In
the present formulation, the superscript j is taken as zero
that corresponds to the analysis where the normal elec-
tric displacement is prescribed on the lateral surfaces;
whereas j=2 is used in the previous work (Wu et al.,
2005) where the electric potential is prescribed on the
lateral surfaces.

By eliminating the secondary field variables (o, Cg,
Tx0> va D67 €y, €95 &5 Yurs Yor> Yo, Exv Ee7 Er) from
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Eqgs.(1)-(8), and then introducing the set of dimension-
less coordinates and variables (Eq. (13)) in the resulting
equations, we can rewrite the basic differential equations
in the form of

uz,3 = —€"Liu— e l33u3 + €' 403 + €2 535D3, (14)
u;3=—Dus +e’Lou+¢e’So, + e L36, + Ly, (15)
D3 ;3= -D"d—¢&’x3D1,1 —€*luDs, (16)

Os,3= —Lsu— Lguz —€’L;0, — e*ysL] 63 —LgD3, (17)

= 2
03,3 = Lou+ls3u3 — D' 6, — €*L0;

—€%l6403 +lgs D3, (18)
0,3=—€> (1/ve) LEu—¢* (1/ve) losus
+e*l3503 — €Iy D3, (19)

where

|
o

Ui di ha s
, D= , S=| =+ 7 )
U } { ) } [ his I ]

Li=[h L], Lz—[g ?22]7
bl k]l
w-ln sl
S ER A Al
Lo=[ls1 l], Lio=[x01 0],

Yo = 1+¢€%x3,and [; ; are given in Appendix A.

The in-surface stresses and electric displacements can be
expressed in terms of the primary variables as follows:
G, =Biju+Bjyus +82B3(53 +B4D;3 (20)

d = €’Bso, + B0, 1)
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where
01 éll élZ §13
Gp=9q 02 ¢, Bi=| by byp |, Ba=| Do
T1n b3 b3 b33
[ 514 515 ~ ~
= - b b
By=| D |, Ba=| bos |, Bs= [ 13: 79:2 ] ;
| D34 b3s
[ bas
B6 - I 553 )

and b; ; are given in Appendix A.
The dimensionless form of boundary conditions of the
problem are specified as follows:

On the lateral surface the transverse load and electric po-
tential are prescribed,

[‘513 ‘523] = [O O] on x3==+1, (22a)
03 =75 (x1,%) on x3==l1, (22b)
Dy =D; (x1,12) on x3=+I. (23)

At the edges one member of each pair of the following
quantities is satisfied,

n101 +nT12 = P,y or uj =1u, (24a)
n1T12 +n202 =p,p or up =1up, (24b)
n1Ti3 +n2T23 = P3 or uz=1uj. (24¢)
In addition,

=0, (25)
where T q:/0¢%; D; = D, /e

(Pp1>Pu2:Pn3) = (P1/0Q,P5/0Q,P5/0¢);  (ty,12,13) =
(1} /Re,us/Re,u; [R).

4 Asymptotic expansions

Since Eqs.(14)-(19) contain terms involving only even
powers of €, we therefore asymptotically expand the pri-
mary variables in the powers €2 as given by

f(X],XQ,X:J,,E) = f(O)(x17x27x3) +82f(1)(x17x27x3)

+84f(2) (x1 ,XQ,X3) +... (26)
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Substituting Eq.(26) into Eqs.(14)-(19) and collecting co-
efficients of equal powers of €, we obtain the following
sets of recurrence equations.

Order €0 :
W 5= 0, 27)
u® ;= —Dugo) —|—L4¢(0), (28)
0 3=0, (29)
0¥ 5= —Lsu® — Ll —LgDY, (30)
ol 3= Lou® 4+ 75ul” — D7 6!" + 75D, 31)
DY) ;= -pTa®, (32)
o) =Bu® 1+ B +B,DY (33)
d¥ = B0 (34)
Order €%* (k=1, 2, 3,... ):
Mgk)ﬁ = —Lju* - l~33ugk_]) + %40§k‘2)
+IsDY Y, (35)
u® 5= —Dul? + 1,00 + Lyu® Y 4 Sol
T (36)
0% 3=~ (1/70) LTu®V — (1 /y) Tosull ™"
+hsoy ) — Iy Dy (37)
o) 3= —Lsu® — Lﬁugk) —LyoiY
—vLlo} " — LDy, (38)
o 3= Lou® 4 [zl — D7 ¥
—Liooy" " ~Iguol ™V + 75D, (39)
DY 3= —D7d® — ;DY — 1D, (40)
G[()k) = B]u(k) —|—B2ugk) —|—B3ng_l) —|—B4ng), 41
d® = Bsclt " + Beo®. 42)

The transverse loads and electric potential at the lateral
surfaces are given as

Order €Y :

Y W]=0 o on x3=l, (43a)
o) =& (x1,x2) on x3=+l, (43b)
DY) =Dy (x1,x2) on x3=+l. (44)

Ordere* (k=1,2,3,...):

) @ o= 0 0] on x=u1, (43)
3
Dy’ =0 on x3==I. (46)

Along the edges one member of each pair of the follow-
ing quantities must be satisfied,

Order €° :

nlcgo) + nz‘cgg) =Dl or ugo) =, (47a)
nlrﬁ‘? + nzcgo) =Dmn or ugo) =y, (47b)
nlrﬁ? + nz‘cgg) =Dn or ugo) =13, 47¢)
0@ =0. (48)
Order e* (k=1,2,3,...):

nlcgk) —I—nz‘cs’;) =0 or usk) =0, (49a)
mtl) +moe® =0 or WP =0, (49b)
nl‘cg? + nz‘cg;) =0 or ugk) =0, (49¢)
0% =0. (50)

5 Successive integration

Examination of the sets of asymptotic equations, it is

found that the analysis can be carried on by integrat-

ing those equations through the thickness direction. For

brevity of the derivation, the material properties of each

layer are assumed to be orthotropic. We therefore inte-

grate Eqs.(27)-(29) to obtain
(0)

uy) = u§(x1,x2), (51)

09 = ¢° (x1,x2), (52)
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£15
0) — w0 — x:Du? — Eqp (x3) 01 ] 0 53
1'% =u’ — x;Du - ,

S [Egg(xs)az ¢ ©3)
where u3(x1,x2), W = [ud(x;,x;) ug(xl,xz)}T and

do(x1,x2) represent the displacements and electric poten-
tial on the middle surface; E&) (x3) = o (Qeg/ecyp)dn.

By observation from Eq.(53), it is noted that the in-
surface displacements at the leading-order level are de-
pendent on the electric potential. Based on the previous
study, we may consider Eqs.(51)-(53) as the basic kine-
matics assumptions for the analysis of thin piezoelectric
shells.

Proceeding to derive the governing equations for the
leading order, we successively integrate Eqs.(30)-(32)
through the thickness with using the lateral boundary
conditions on x3=-1 (i.e., Eqs.(43)-(44)), we obtain

DY) =D + Fy (x3) 0% 11 +F o0 (x3) %22, (54)
o) _ /’”[ ( 0 0 [Eéé(n)al ] 0)
Oy = — Ls{u —mDu; — | =
—1 i et ESé(n)az ¢
Lt + gD |an, (55)
(- /x3 ( 0 0 [Eéé(n)al ] 0)
o3 = L —nDuz — | A
O [ oo (- [ RO Jo
+l~63u(3) + l~65DgO)} dan
S nT 0 _n0_ | EggM)o
+/_] (x3—m)D [Ls (U NDuj [Egg(n)az
Lot +LgD | an,
where

Fag (x3) . > Yo
~ X3 e

Fyy (x3) :/ (%) <ﬂ+nkk> 1 dn.
By —1\e?) \eu

Fop (x3) 1/7e

Imposition of the remaining lateral boundary conditions
on x3=1 (i.e., Eqs.(43)-(44)) in Eqs.(54)-(56) yields

Ky + Ko + Kizu3 +K140° = F31 D5 1, (57
0 0 0 0_ 5 7
Kouy + Kppuy + Kpzuz + Kpad™ = F3D5 5, (58)

o

(56) _ (B3} —F35) 011 — (Eig - F3224> 022,
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K311 + Kapu + K33ud + K34¢°

=q; —qs — F52D5 +H3 D5 11 +H3D5 0, (59)
_+ —_—
K u) + Kapu + Kazu3 + K440° = D3 — Dy, (60)

in which
Ky = —A11011 —Age022,

Ko = — (A2 +Ae6) 912,

Ki3=B110111+ (Bio+Be +Bes) 0122 —A1291,
K= (B17— £35) o1 + (B4 B34+ B3~ F2) o
Ky = — (A3 +Ags) 012,

Ky = —Ag6011 —A2202,

Ky3 = (B2 + Bee + Bes ) 0112 + B220222 — A0,
- " N " —24  ~
Koy = (Ex} +Egg +Egs —F5) din + (Ezz - F3224> 0222,

K3 = —B110111 — (321 + Bes +§66) dizz  +Az0,

K3 = — (Bi2+Beo + Bo) 0112 — B220222 +A05,

K33 =Dy101111 + (Dlz + D31 + Deg +2Des +D66) di122
+D202222 — (Bi2+ Ba1) 011 — 2B2202 4+ An,

A . —15 ~ ~ ~
(GH _H31]5) diin+ (G(,(,-I-G%EL—I-G%—I—G%?

~ N N - —24 o~
+Gyg +Geg — Hyl —H33) 0110+ (Gzz - H32§> 022

K41 = K4p = K43 =0,

- —24
Kiy = F011 +F 0,

éij 1 Yo

éij = ' Qz] 1 dxs,
LAy | 1/7e
[ I?ij ] 1 AC

Eij - Ql]x3 1 dxz,
| Bij | 7 1/7e
[ @ij -, Yo

Dijj | = Qijxs | 1 dxs,
| Dy - 1/7e
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|
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1 Yo
:/lQij 1 /0 (gcekz)dnd .
N 1/7e i

p—

/] (ﬁ) <C3i€33—€3ic33> "
-1\Q €3+ c33M33 1/

_/1 ﬁ) <C3i€33—€3ic33> Xe
1\ 0 €35 +c33M33 1/%

c3ie33 — 6’31033> ( e ) Xe i
€35 +c33M33 0 1/% ’

<
(oo
g
@)

p—

B

/] . (f?) <C3i€33—€3i633> ¥
— (L) (SiEB i
-1 o €35 +c33M33

1/ve
2
%) (i —I-Thl) dndxsz,
e C55

0

/] . <6’> <C3i€33—€3i633> ¥
— (&) (BB
~1 0 €33+ c33M33

1/ve
2
%) (ﬁ —|—le2) dndxsz,
€Yo C44

p—

U (eye—encn ) (e | 1
=] n|—"7—)| 5 1 dxs.
-1 €33 +¢33M33 o

1/7e

Solution of Egs.(57)-(60) must be supplemented with the
edge boundary conditions Eqs.(47)-(48) to constitute a
well-posed boundary value problem. Once u?, udandu)
and ¢° are determined, the leading-order solutions of
displacements, transverse shear and normal stresses, in-
surface stresses, in-surface and normal electric displace-
ments can be obtained by Eqs.(51)(53), Egs.(55)-(56),
Eq.(33), Eq.(34) and Eq.(54), respectively.

Proceed to order 2% (k=1, 2, 3, etc) following the same
line as was done before, we readily obtain

ugk) = 1§ (x1,%2) + Q3¢ (x1,%2,%3) 6
q)(k) = q)k (X] ,xz) + Q4 (X] ,XQ,X?,) ) (62)
(15
®_ ok P @00(x3)al k| ok
u u X3DM3 |: Egg (X3) 82 ¢ + o, (63)

0 o= =24
Dg ) = Fog (x3) 05,11 +F g (x3) 0% 20 — fae (x1,32,x3) ,

(64)
kK _ (" k ook | Ego(3)0r |«
o /Q[LS@‘ nous [a%umaz ¢
Lot + Ls DA | dn — £ (x1,%2,33). (65)
® _ 7 k v [ Ego () |«
%‘LF%‘W%[%mw¢
+l~63 u’§ + fﬁng} dan
T koo | Eg(a)ar ] ok
[ e (ot - | IS o
+Leu} +L8DI3C} dn — far (x1,%2,%3) , (66)

where

X3 ~
Q3x(x1,x2,X3) = —/0 [Llu("‘”+133u§"‘”

—l~35ng_l) — lEmﬁ"‘”} dn,

T
u = (i) )]

o4
D = Fyg (x3) 0511 +F g0 (x3) 0522,
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oF = {
(k—1)

—So;
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(Plk(xlax27x3) }
(sz(xl ,x27x3)

D(P3k — Ly@gp —LouV

(=]

(k=2)

L3 (o} ) dTl

X3 ~ _
<P4k:_/0 [(I/Ye)LsTU(k_l)+(1/Ye)165”§k g

—l~35<5gk_2) + iSngk_])} dn,

X3
fk:/] [Ls(Pk+L6(P3k +L7G§k_])

+1oL{ ol — Ly fuu d,

X3 ~ _
f3k:—/] [L9(Pk+163(P3k_L10(5§k b

_l~646gk_1) — s fax + DTfk} dn,

w5 —24
far = —/_] [Fol(f (M) @ares11 +F o0 (M) Paxr22

_D'Bso Y — nD%’fl_]) — l~44ng_l)} an.

u'3c ., u* and ¢ represent the modifications to the elas-

tic displacements and electric potential on the middle
surface. Upon imposing the associated lateral bound-
ary conditions Eqs.(45)-(46) on Eqgs.(64)-(66), we arrive
again at the same governing equations at the leading or-
der level, except for nonhomogeneous terms that can be
calculated from the lower-order solution. The governing
equations for e?*-order are given by

Ky i 4 Kipus + Kizub + K140 = fig (x1,20,1) (67)
Kayutf 4 Kol + Kozl + KogoF = for (x1,%2,1),  (68)
Ks1uf + Kapus + Kzzub + K340% = far (x1,x2, 1)
0 fik (x1,x2,1 0 for (x1,x2,1
n fik (x1,x2 )_|_ for (x1,X2 )7 (69)
8x1 BXQ

Kaulk + Kgpuk + Kazul + Kaa0f = 1 70
a1y + Kgpuy + Kazuz + Kga 0 = far (x1,x2,1).  (70)
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6 Applications to benchmark problems

The benchmark problems of simply supported, single-
layer and multilayered piezoelectric hollow cylinders un-
der lateral mechanical loads or lateral electric displace-
ment on outer surfaces are studied using the present
asymptotic formulation. The material of orthotropic or
transverse isotropic piezoelectric cylinders is considered
so that the following elastic moduli in Eqs.(1)-(2) are
identical to zero.

(c16)i = (c26)i = (c36)i = (€a5)i = O (71a)
(e14)i = (e25)i = (e36)i =0, (71b)
(M12); =0, (71c)

where the subscript i denotes the ith layer.

The boundary conditions at two edges are of a shear di-
aphragm type and specified by

on x;=0 and x;=L/Re

(72a)

61:u2:u3:0

The boundary conditions at two edges are suitably
grounded and specified by

0=0 on x;=0 and x;=L/Re (72b)
The mechanical load or normal electric displacement act-
ing on lateral surface of the shell ({ = h) is considered in
the following illustrative examples and are expressed by

the double Fourier series in the dimensionless form of

gl (x1,x0) = Z Z Gy SINFALX] COSTIX, (73)
m=1n=0
D, x1 ,X0) Z Z D, Sinfix; cosiixs, (74)
m=1n=0

where /i = mnv/Rh/Landii = n\/h/R.
The governing equations of the leading-order problem
(i.e., Eqs.(57)-(60)) can be easily solved by letting

e
I

HMS

Z U]y COS HIX | COSTiXy, (75)

HMS

I\JO

Z Uy, SINALX] SINAXD, (76)
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u(3) _ Z Z ugmn sin i, cos fixy 77 According to Eq. (80), we can rewrite Eq. (79) in the
m—1n—0 form of
o oo 0 _ 0
o = Z Z ¢9,m sinix| cosiixy (78) kir ki ki3 u(l)mn k14¢6nn
m=1n—=0 ka1 koo ko3 M%mn =q —koaby, .
o . . ka1 k32 k33 u Gomn — k34
Substituting Eqs.(75)-(78) into Eqs.(57)-(60) gives Smn D O @)
ki ki kiz kg ud 0
0 0 0 . .
kot ko ks kog ugzz 0 Ulyps Uz a0 185, Can be obtained by solving the
kay ks ks kag 0 =\ 7 (79)  simultaneously algebraic equations (81). Once
g = u? ul and u) are determined, the €%-order solution
0 0 0 kaa Opn D, Lmn> *2mn <5 2 3mn i :
can be obtained as aforementioned. The summation
where sigr.ls \yould be dropped for brevity in the following
derivation.
ki = ﬁzzfin —I—ﬁZZM,, Carrying on the solution to higher-order (e*-order, k=1,
N _ 2, 3, etc), we find that the nonhomogeneous terms for
kio = —mmit (A1 +Aes) , fixed values of m and n in the £2-order equations are
— 3P -2 (R 5 ] -
ki3 = —m’ By —mi (312—1_366—1_366) — 1A f]k(xl,XQ, ) 1k(1)COSﬁ1X1 COS7ixy, (82)
23 (B15 _ RIS _jmi? F24 | 24 po4 o
kg = —m* (Ef} —F57) — <E66 +E7; +Egs — F3) ) s for(xr,x2,1) = for(1) sinsmxy sinfixy, (83)
ko = —mii (AZI +A66) ’ f3k(xl X2, ) 3k(1) Sinix| cosfixy, (84)
Ky = n~12A"66 +ﬁ2Z22’ f4k(x1 , X2, ) f4k(1) sinﬁvq COS7ixy. (85)
~ _ R — — : : 2k
ks = i ( By + Beg + 366) + BBy + Ay In view of the recurrence of thej equations, the €*-order
solution can be obtained by letting
A » ~3 (=24 =04
kyg = i (B3} + ER + EX — FD) +7° (E —F )
4 ( 2 66 66— 732 ) 2% u'f = u'fmn COS71X| COS TixXy, (86)
3P =2 (R 5 1R\ =i
k31 = —ii’ By — iii* (By1 + Bee + Beo) — 1Ay, ub = ub, . sinimx siniix,, (87)
ks = it (B12 + Boe + Bes ) +71° By + Az, uf =ik, sinfx; cosiixy (88)
oF = oF sin/mx; cosiix,. (89)

ky3 = m*Dyy +*ii* (D12 + D21 + Deg + 2De6 + Do)

4 Dy + 172 ( Byt 321) L+ 2iPByy + A, Substituting Eqs.(86)-(89) into Eqs.(67)-(70) gives

kii ki ki3 kg S
i ALS - . kor koo ko3 ko uk,
kg = iii* (G} —H37 ) +m’ii <G66 +Gi3 + G kst ks ki3 ki T
y y N A k
O+ Gl 2 AR — ) 0 0 0 k]l
_ . . N — N 1
() R (). [
bl i ) (D) —afu() Fafu(l)
k44:—ﬁ’l F —fi F . f4k(1)

The electric potential variable ¢y, can be determined Following the similar solution process of the leading-
from the last equation in Eq. (79) and be given by order level, we obtain

D far (1
O = 22 30 oh, =240 o

mn k44 mn k44
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Table 1 : Elastic, piezoelectric and dielectric properties of composite and piezoelectric materials

Moduli PVDT Graphite/Epoxy PZT-4
¢,,(Gpa) 0.3e+01 183.433 138.499
¢, (Gpa) 0.3e+01 11.662 138.499
¢5 (Gpa) 0.3e+01 11.662 114.745
¢, (Gpa) 0.15e+01 4363 77.371
¢1;(Gpa) 0.15e+01 4.363 73.643
¢, (Gpa) 0.15e+01 3.918 73.643
¢4y (Gpa) 0.75 2.870 25.6
css(Gpa) 0.75 7.170 25.6
¢es (Gpa) 0.75 7.170 30.6
e [C1m?) 0.0 0.000 52
ers (c1m?) 0.0 0.000 5.2
ey (c1m?) -0.15¢-02 0.000 15.08
es, [C1m?) 0.285¢-01 0.000 12.72
ey (C/m?) -0.51¢-01 0.000 12.72
1, (F/m) 0.1062e-09 1.53e-08 1.306e-08
1y (F/m) 0.1062¢-09 1.53¢-08 1.306e-08
1y (F/m) 0.10838¢-09 1.53e-08 1.151e-08

Eq.(90) can then be rewritten as

k
kiy ki2 ki3 U
ka1 ko ko3 o
i
k31 k3o k33 U3

Fir(1) = k1a®),
=1 F(1) —kaad), 3
For(1) =i fie (1) + 7 for (1) — ka0l

By solving the system of algebraic equations (92) and us-
ing Eq.(91), we may obtain the primary geometric vari-
ables uf uX  uk = and ¢k, for the higher-order prob-
lem. Afterwards, the €>-order corrections are determined

from Eqs.(61)-(66) and Eqs.(41)-(42). It is shown that

92)

the solution process can be repeatedly applied for vari-
ous order problems and the asymptotic solutions can be
obtained in a hierarchic manner.

6.1 Mechanical loads

6.1.1 single-layer piezoelectric hollow cylinders

For comparison purpose, the present asymptotic formula-
tion is applied to the static analysis of simply-supported,
single-layer piezoelectric hollow cylinders. The cylin-
ders are considered to be composed of polyvinyledence
fluoride (PVDF) polarized along the radial direction. The
elastic, piezoelectric and dielectric properties of PVDF
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Table 2 : Mechanical and electric components at the crucial positions in a single-layer piezoelectric cylinder (PVDF)

=4).

under loading condition of case 1 (L/R

(L661° Te 12 eLndey)

16150 1S0°T 1007 0SLS0- 07950  ¥PIOT  T6660  SLISO  61€S0 oot a1
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tained by letting the circumferential wave number (n) be

= 0C/m?, Zero in the present one.

material are given in Table 1. The loading conditions on axisymmetric piezoelectric cylinders can be further ob-

lateral surfaces are considered as case 1 and given by

The dimensionless variables are denoted as the same

+
r

goN/m? g~ =0N/m?* D

Case 1. g5 =
. =0C/m>.
The loading condition of case 1 can be regarded as an

D,

forms of those in the Reference (Kapuria, Sengupta and

Dumir, 1997) and given as follows:

axisymmetric load. It is reasonable to expect all the field
variables are independent upon the circumferential coor-

) = (u/2h,ur/2h) / (l90] $*/E7)

Uy, Uy

dinate. In that case, the asymptotic formulation of these (
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Figure 1 : The geometry and cylindrical coordinates system for a multilayered piezoelectric hollow cylinder.

(Dx,Dy) = (Dx/ |qoldr|,D;/ |qo| S|dr|),
(6){766761’7%)0’) - (Gx/5706/570r7‘5xr)/\6]0\7

& = 1000®E7 |dr| /2h|q0] S,

and S = R/2h, Er = 2.0GPa, |dr| = 30x10~12CN~1.

The Fourier sine series of uniform load g is given as

M
qo = Z 4o sin m—nx.
m=1,3,-- mmn L
Table 2 shows the present asymptotic solutions of elastic
and electric field variables for various orders at crucial
positions in the cylinders under a uniform load gg. Since
the convergence of Fourier series form of a uniform load
was evaluated by Kapuria, Sengupta and Dumir (1997),
it is not repeated in the present analysis. The solution,
based on the present asymptotic formulation is computed
up to the £!%-order level with L/R=4 and R/2h= 6, 10, 20.
It is shown that the convergent speed in the cases of thin
shells is more rapid than that in the cases of thick shells.
The convergent solutions are also compared with the 3D
piezoelectricity solutions available in the literature (Ka-
puria, Sengupta and Dumir, 1997). It is shown that the

convergent solutions of the present asymptotic theory are
in good agreement with the 3D piezoelectricity solutions.

6.1.2  Multilayered hybrid piezoelectric hollow cylin-
ders

The direct piezoelectric effect of [p/0/90/90/0/p] multi-
layered hybrid piezoelectric hollow cylinders, as shown
in Fig. 1, is studied where the character p in square
brackets stands for a piezoelectric layer of PZT-4 ma-
terial. Each layer of the cylinder is of equal thickness.
The composite material is made of Graphite/Epoxy. The
elastic, piezoelectric and dielectric properties of PZT-4
and Graphite/Epoxy materials are given in Table 1.

Two cases of mechanical loads are given by

Case 2. g = qosinZxcos40N/m? g, = ON/m?;
O =0V, D, =0V.

Case 3. g = gosinfxcos460N/m? g, = ON/m?;
D =0C/m?, D, =0C/m?2

For the applied transverse load cases, the dimensionless
variables are denoted as

u; = uic* /qo(2h), Tij = Tij/qo,
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Figure 2 : Variations of mechanical and electric components along the thickness of a [p/0/90/90/0/p] multilayered
hybrid piezoelectric cylinder under g;" = gosin (mx/L) cos46 N/m?, g, = 0 N/m?, 5:r =0Vand ® =0V on the

lateral surfaces.

@ =Pe*/q9(2h), D;=Djc*/qoe’;

where ¢* = 10x10°N / m?, ¢* = 10C / m®.

Figures 2-3 illustrate the variations of transverse shear
and normal stresses, electric potential and normal electric
displacement through the thickness of the cylinder under
loading conditions of cases 2 and 3, respectively. The
geometric parameters of the cylinder are L/R = 4 and
§=5,10,20 (S =R/2h).

By observation of Figs. 2-3, we can find that the pre-
scribed lateral surface conditions are exactly satisfied. It

is noted from Figs 2(a), 2(b), 3(a) and 3(b) that the dis-
tributions of transverse shear and normal stresses across
the thickness are approximately layerwise parabolic and
the maximum value occurs in the vicinity of the middle
surface of the cylinder. As the cylinder is thin enough
(say R/2h=20), the cylinder produces a value of trans-
verse normal stress that exceeds the magnitude of applied
load. It is also shown that there is no much difference
on the distributions of the transverse stresses through the

thickness between loading conditions of case 2 and case
3.
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Figure 3 : Variations of mechanical and electric components along the thickness of a [p/0/90/90/0/p] multilayered
hybrid piezoelectric cylinder under g~ = gosin (nx/L) cos48 N/m2, g~ = ON/m2, D,” = 0C/m? and D, = 0 C/m>

on the lateral surfaces.

It is observed from Figs. 2(c), 2(d), 3(c) and 3(d) that the
deviations of normal electric displacement through the
thickness coordinate between case 2 and case 3 is more
remarkable than that of electric potential. The distribu-
tions of electric potential across the thickness are approx-
imately layerwise linear and those of normal electric dis-
placement are approximately layerwise parabolic. The
maximum values of electric potential and normal electric
displacement occur at the interfaces between the elastic
and piezoelectric layers.

6.2 Electric loads
6.2.1 Single-layer piezoelectric hollow cylinders

The single-layer piezoelectric hollow cylinders under
two types of electric loads are considered in Tables
3-4. The piezoelectric material of PZT-4 is used for the
present analysis and its material properties are given in
Table 1.

Two cases of electric loads are given by
Case 4. g, =ON/m?, g, =ON/m? 5:r = QosinFx V,
@, =0V.

r
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Figure 4 : Variations of mechanical and electric components along the thickness of a [p/0/90/90/0/p] multilayered
hybrid piezoelectric cylinder under g = 0 N/m?, g~ = ON/m?, 5:r = ¢osin(mx/L) cos40 V and ®, =0 V on the

lateral surfaces.

Case 5. g =ON/m% g = ON/m%* D, =
DysinFxC/m?, D, = 0C/m?.

The mechanical and electric field variables are nondi-
mensionalized as follows:

For the applied electric potential case (case 4),
u = uic" /doe”,  Tij =1T;j (2h) /doe”,

D =0/dy, D;=Dic* (2h) /oo (e*)?;

For the applied normal electric displacement case (case

5),

Ui =uie” [Do(2h), Tij =Tije" /Doc”,

® =@ (e")? /Dyc* (2h), Di=D;/Dy.

The geometric parameters are L/R=4; R/2h=4, 10 and
100.

Tables 3-4 show the present asymptotic solutions of elas-
tic and electric field variables for various orders at cru-
cial positions in the cylinders under loading conditions
of cases 4 and 5, respectively. Again, it is shown that the
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Figure 5 : Variations of mechanical and electric components along the thickness of a [p/0/90/90/0/p] multilayered
hybrid piezoelectric cylinder under g = 0 N/m?, g = ON/m%, D, = Dy sin (mx/L) cos48 C/m? and D, = 0 C/m?

on the lateral surfaces.

present asymptotic solutions converge rapidly. In gen-
eral, the convergent solutions are obtained at €%-order
level in the cases of thick shells (Ry/aq=4), at e*-order
level in the cases of moderately thick (Ry/aq=10) and at
e2-order level in the cases of thin shells (R, /as=100).

6.2.2  Multilayered hybrid piezoelectric hollow cylin-
ders

The converse piezoelectric effect of [ p/0/90/90/0/p] mul-
tilayered hybrid piezoelectric hollow cylinders is studied.

The configuration, lamination and layer material are the
same as used in Example 6.1.2.

Two cases of electric loads are given by

Case 6. g =ON/m?, g = ON/m? ®, =
GosinFxcos4d V, d, =0 V.
Case 7. g& = ON/m? g = ON/m?> DS =

Dysin Fxcos40C/m?, D, = 0C/m?.

The dimensionless variables are the same as used in Ex-
ample 6.2.1.
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Figures 4-5 illustrate the variations of transverse shear
and normal stresses, electric potential and normal elec-
tric displacement through the thickness coordinate under
loading conditions of cases 6 and 7, respectively. It is
shown that the distribution of the transverse shear stress
across the thickness is approximately layerwise parabolic
and the maximum value occurs at the interfaces either be-
tween two elastic layers or between the elastic and piezo-
electric layers. It is noted from Fig.4(d) that the distribu-
tions of normal electric displacement through the thick-
ness coordinate dramatically change in the case of thick
shells.

7 Conclusions

Based on the method of perturbation, we develop an
asymptotic formulation for the static analysis of multi-
layered hybrid piezoelectric cylinders under either trans-
verse normal loads or normal electric displacement on
the lateral surfaces. The present solutions are illustrated
to converge rapidly and be in good agreement with the
3D piezoelectricty solutions available in the literature. A
parametric study on the analysis of laminated piezoelec-
tric cylinders under asymmetric electromechanical loads
is presented. It is noted that the maximum values of
transverse stresses occur at the interfaces either between
two elastic layers or between elastic and piezoelectric
layers. The distributions of normal electric displacement
through the thickness of the shell dramatically change,
especially in thick shells. According to the present anal-
ysis, it is suggested that an advanced shell theory used
for the piezoelectric analysis is more necessary than that
used for the elastic analysis.
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Appendix A:

The relevant functions /; ; in Eqs.(14)-(19) are given as
follows:
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The relevant functions b; ;in Egs.(20)-(21) are given by
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