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An Analytical Model for Shot-Peening Induced Residual Stresses

Shengping Shen', S. N. Atluri °

Abstract: To improve the fatigue life of metallic com-
ponents, especially in aerospace industry, shot peening is
widely used. There is a demand for the advancement of
numerical algorithms and methodologies for the estima-
tion of residual stresses due to shot peening. This paper
describes an analytical model to simulate the shot peen-
ing process and to estimate the residual stress field in the
surface layer. In this reasonable, convenient, and simple
model, no empirical relation is used, and the effects of
shot velocity are included. The results of validation of
this model against the test data are very good.

keyword: Shot-peening, Residual Stress, Analytical
Model

1 Introduction

Shot-peening is a cold-working process primarily used to
extend the fatigue life of metallic structural components.
Small spherical particles, typically made of metal with
a high hardness, are made to impact the surface of the
structural component at a velocity of 40-70 m/s. The shot
peening process consists of multiple repeated impacts of
a structural component by these hard spheres. Resulting
from each impact, the structural component undergoes
local plastic deformation. The elastic sub-surface layers
should theoretically recover to their original shape dur-
ing unloading, however continuity conditions between
the elastic and the plastic zones do not allow for this to
occur. Consequently, a compressive residual stress field
is developed in the near-surface layer of the structural
component. Since, fatigue cracks generally propagate
from the surface of structural components, the resulting
surface compressive residual stress field is highly effec-
tive in improving the early fatigue behavior of metals.
The compressive residual stress field can significantly
decrease the crack growth rate of short surface-cracks;
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therefore inherently causing the fatigue life extension of
shot peened structural components.

Substantial experimental studies regarding residual stress
distributions, and the influence of the processing param-
eters in relation to shot peening effectiveness has been
conducted. And while, computer simulations of the shot
peening process have also begun to receive attention in
scientific literature, a comprehensive review of the cur-
rent status of analytical and/or numerical approaches to
the modeling of the shot-peening process reveals that the
general field of shot peening is insufficiently developed.
Further advancements in analytical/numerical algorithms
and methodologies for the estimation of residual stresses
due to shot-peening are clearly warranted.

The shot peening process is considerably complex: the
system is dynamic, and includes contact. Despite the
complicated nature of the problem, there were attempts
to determine the residual stress field using approximate
approaches and closed form solutions [Khabou, et al.
(1990); Li, et al. (1991)]. Application of the Hertzian
contact theory and an approximate elastic-plastic analy-
sis for the surface-layer, allows for the estimation of the
distribution of the compressive residual stress field due
to shot peening. It is however, difficult to find the appro-
priate boundary conditions for the solution of quasi-static
problem. One approach to overcoming this difficulty is
to perform shot peening with a low coverage of the mate-
rial surface, and then to estimate the force for the contact
problem by measuring the size of shot dents [Khabou, et
al. (1990)]. It was determined [Khabou, et al. (1990)]
that it is more difficult to obtain good results for alu-
minum alloys because they show a complex hardening
evolution.

Hertz’s and Davis’ contact theory furnishes the only rel-
evant analytical solution: the static contact of a rigid
sphere on an elastic semi-infinite space [Davis (1948);
Johnson (1985)]. Residual stress distributions with bet-
ter precision can be obtained with the use of numeri-
cal methods and computer simulation of the whole shot
peening process. The finite element method is the most
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suitable modeling method because of its reliability, and
the possibility to implement complex material constitu-
tive models. Some recent publications [Schiffner, et al.
(1999); Deslaef, wt al. (2000); Meguid, et al. (1999)]
show the potential of the finite element method for shot
peening simulation. Many authors have proposed nu-
merical solutions for the contact between a single sphere
and an elasto-plastic half space, in the static and dynamic
cases (a review can be found in [Al-Hassani (1981)] and
[Zarka, et al. (1990)]). Meguid et al. (1999) presented a
detailed analysis of two indentations on a semi-infinite
medium, under dynamic conditions. Very few studies
present the analysis of shot peening modeled by multi-
ple indentations.

The whole shot peening simulation can be performed
during one finite element dynamic elastic-plastic analy-
sis. However, such an approach appears to be compu-
tationally inefficient. Typically the shot peening simu-
lation is divided into two steps. The first step is a dy-
namic analysis of the shot-workpiece contact, which is
aimed at the determination of boundary conditions for
the second elastic-plastic step. The second step is a
quasi-static elastic-plastic analysis, which produces the
distribution of residual stresses. The dynamic contact
problem for one shot is solved as an axisymmetric one
by Schiffner et al. (1999). Displacements at the con-
tact surface are used as boundary conditions for three-
dimensional elastic-plastic multi-shot problem. A sim-
ilar approach to the shot peening modeling is included
in reference [Deslaef, wt al. (2000)]. Numerical analy-
ses have been performed using the finite element package
ABAQUS. The effect of shot velocity, size and shape on
the residual stresses of a target exhibiting bilinear mate-
rial behavior is examined in References [Meguid et al.
(1999)]. The three-dimensional dynamic elastic-plastic
analysis is performed using the finite element code AN-
SYS. Dynamic single and twin elastic-plastic spherical
indentations were examined using rigid spherical shots
and metallic targets. The results reveal that near-surface
residual stresses are significantly influenced by the shot
velocity, shot shape and separation distance between the
co-indenting shots and to a much lesser extent by the
strain-hardening rate of the target

Based on an elastic-perfectly plastic body, Al-Hassani
(1981, 1982, 1984) developed an analysis model to pre-
dict residual stresses, which depend on the experimental
results (there exist empirical relations to fit experimental
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results) to obtain certain critical relations. Guechichi et
al. (1986) proposed a very complex model for elastic-
plastic body. Li et al. (1991) developed a simplified an-
alytical model for elastic-plastic body by regarding the
shot peening process as a quasi-static case, which cannot
take the velocity of the shot into account; and in addition,
depends on empirical parameters to develop a theoretical
model. In this paper, a new theoretical model is devel-
oped based on the initial models of Al-Hassani (1984)
and Li et al. (1991) for modeling the shot-peening pro-
cess and estimating the residual stress field in the surface
layer. Principal developments are made to take the pri-
mary shot peening factors into consideration: character-
istics of the material, diameter and velocity of the shot.

2 Fundamental equations for the elastic loading
process

In this paper, it is assumed that the shot peened part
(target material) is a semi-finite body. A homogeneous
residual stress field and associated plastic strain exist at
any specified depth due to the assumption that a semi-
finite body has been uniformly loaded. To describe the
maximum elastic loading, the impact of an elastic sphere
on the surface of an elastic semi-finite body is analyzed.
This can be considered as a particular application of
Hertzian contact theory of between two elastic spheres.

According to the Hertzian contact theory, when the elas-

tic compression is at its maximum, the radius of the elas-

tic contact circle between the shot and the semi-finite
body, is expressed as

1
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and the maximum normal elastic pressure is given by
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These two equations were initially proposed in Davies’
work (1948) on dynamic elastic contact between a half-
space and a ball of radius R, with:
I e
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where V is the initial velocity of the shot, p is the maxi-
mum normal pressure, R is the radius of the shot, and a,
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is at maximum the radius of the elastic contact circle, £
and v, E; and vy, are Young’s modulus and Poisson’s ratio
of the target and shot, respectively. k is an efficiency co-
efficient that stands for the thermal and elastic dissipation
during the impact. The value of & is fixed at 0.8 according
to Johnson (1985). A 100% k value will describe purely
elastic rebound energy.

The classical Hertz results are used to model the elastic
stress field created by the impact. The Hertzian elastic
stress tensor can be written as follows:

o, 0 O
=0 o5 0
0 0 of

where the subscripts 1, 2, and 3 represents the axis X, X
and x3, respectively. The axis x3 directs along the depth
of the target, and goes away from its surface. The elastic
stress field is then obtained from the Hertzian theory. The
stresses in the target material reach their maximum under
the shot and can be written as

2

o = p(1+) [ (3) =1+t
4)
— 3 —1 X u%
o% =) [t (2) -1 4y
X 2 B
053 = —p 1+<—3) ] 5)
ae

According to the Hook’s law, the strains are expressed as
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Thus, we can obtain the Von Mises equivalent stress in
the target material as

1
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)

Then, the equivalent strain can be obtained through the
Hook’s law as

€)

And the mean stress and strain can be written as

G, = %(071 +0%, +03%3)
(10)
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Now, the stress deviators in the target material can be
derived as

e __ e e __ 1 e
511 =011 — O = 30;
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Similar to the stress deviators, the strain deviators are de-
rived as

€] =€ —&, = %(1‘1"’)31
(13)
=8¢, =5(l+v)e
2
€53 = €53 —€, = 3 (1+v)ef = —2ef, (14)

Now, the stress and strain tensors in the elastic field are
derived. The elastic-plastic analysis of the loading pro-
cess will be discussed in the subsequent section.

3 Elastic-plastic analysis of the loading process

The elastic-plastic regime presents a difficult theoretical
problem that is still a subject of serious research effort. In
the elastic-plastic deformation stage, the equivalent stress
in the target material is greater than the yield stress, i.e.,
O; > Oj; the stress-strain analysis becomes too compli-
cated and inconvenient to apply in practice. It is very
difficulty to directly use the complex elastic-plastic con-
stitutive relation in engineering. It is however, worth
resorting to a simple analytical treatment. As in many
elastic-plastic analyses, the elastic-plastic constitutive re-
lationship associated with the target material can be sim-
plified to a multi-linear one. A simplified relation [Li,
et al. (1991)] will be implemented here. By adopting a
modifying coefficient, 0, the elastic-plastic strain € at
any depth x3 is calculated from the elastic strain €], at the
corresponding depth x3:

{ g¢ for € < g;

y4
el
{ g+ 0u(ef —g) foref > g

15)
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where €”and €¢ are functions of x3 only, & is the strain
corresponding to the yield stress Gy, and « is the ratio of
plastic to elastic deformation and is defined as

_%D
a,

o (16)

where a, is given in equation (1), and a, is the radius
of a dent produced by the same shot on an elastic-plastic
target under the same velocity. It is assumed that the ratio
of €/ to € on the x3-axis inside the target is equal to the
ratio o of the deformation at the surface.

The derivation of the plastic radius a,, is begins with the
equation of motion during contact:

4t LdV
—pR°—

-
3Py TR

a7

As in reference [Al-Hassani (1984)], the stress field sur-
rounding the indentation is assumed to be the same as for
a pressurized spherical cavity in an elastic-plastic mate-
rial. The cavity expands to accommodate the material
displaced by the indenter. The model gives an approxi-
mate value for the average pressure p resisting the motion
[Al-Hassani (1984)], as:

D 2. Ea
— =0. -1 18
O 06+3HGSR (18)
It then follows that:
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and Zzis the final indentation [Al-Hassani (1984)]. This
equation governs the initial stages of deformation but as
soon as the pressure p reaches 3G, a rigid plastic analysis
will hold. This may be found theoretically and has also
received considerable experimental confirmation. By as-
suming pressure p to remain constant during the indenta-
tion process, the expression (19) will become

T (2) (V)
R \3 1
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By means of

a®> =27R —7* (20)

A nonlinear equation of a is now formed, and the plastic
radius a,can be obtained by solving this nonlinear equa-
tion. These equations are derived for elastic-perfect plas-
tic materials, but we still use them to approximate the
plastic radius a,, for strain-hardened materials.

According to the elastic-plastic stress-strain curve (multi-
linear), the elastic-plastic stress 67 is calculated as

o; for 8? < &
ol = o;+E (€7 —¢) fore, <€l <eg,
op for el > ¢,

2D

The definitions of the parameters are shown in Fig. 1,
and o} is the ultimate tension strength.

To obtain the stress deviators, we should derive the strain
deviators first. Due to the fact that the relationship be-
tween the strain deviators and €, as in equations (13) and
(14) for the elastic stage results from the axisymmetry of
loading and geometric conditions, the corresponding re-
lationship in the elastic-plastic stage will be kept to be
same. Hence, the elastic-plastic strain deviators can be
expressed as

el = %(1""’)3?

(22)
ey = %(1 +v)e]
2
& =2 (14 =2, e

By appealing to the elastic-plastic theory, the elastic-
plastic stress deviators can be derived from the following
relationship

P
p 1 o ,

S.. = — ..
Yoo l+4vel Y

(24)

Thus, the elastic-plastic stress deviators can be obtained
as

_ 19 p _1.wp
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After the stress and strain tensors in the elastic-plastic
field are obtained, we will derive an expression for the
residual stress field after unloading, in the next section.
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Figure 1 : Schematic diagram for calculating residual stress

4 The residual stress after unloading

Similar to Li, et al. (1991), three assumptions are in-
volved, that are: (a) the deformation is small; (b) unload-
ing is an elastic process before reversed yielding starts;
and (c) hydrostatic stresses do not introduce plastic de-
formation. By means of these assumptions, the basic for-
mula for calculating the residual stress can be written as

r o __ P
Ojj = Sij —Sij

27

The shot peened material (target material) is assumed to
be isotropic. Therefore, the residual stresses can be de-
rived from the following relation:

0 for 67 < o,

L—
ij p e e P
4 { s;; — s§; for oy < 0f < 20;

(28)

which illustrates that there is no residual stress in elas-
tic loading stage. Thus, the residual stresses can be ex-
pressed as

)
o}y =3 (0] —of)
o5, = 1 (of —of) for o, < ¢ <207 (29)

P~

r S r
033 = —207,

The target material will experience reversed yielding and
hardening ifc¢ > 267 . Figure 4 shows schematically how
to calculatec”. A stress of 267 is elastically unloaded
first, then reversed yielding take place, but there are still
some stresses that have not been unloaded, as shown in
figure 4, which can be expressed as

Ac{ = of — 207 (30

1

Now, from the elastic Hook’s law and the assumption that
the ratio of €7 to €¢ on the x3-axis inside the target is equal
to the ratio o of the deformation at the surface, the elas-
tic and elastic-plastic strains corresponding to AG; are
obtained, respectively, as

Aoy
Agf = = 31)
Ae! = aAef (32)

Then, as in Figure 1, the corresponding stress AGY can
be obtained by using the multi-linear stress-strain curve.
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Thus, the residual stress can be obtained as

o}, = % (of =207 — Ac?)

o5, = 1 (of —207 —Ac?) (33)

r S r
033 = —207,

o’is only the residual stress after loading and unloading a
single ball. After shot peening with 100% coverage it is
assumed that the plastic deformation is steady and con-
tinuous. As there is no particular direction on the surface
of the semi-infinite body, all the tensors only depended
on the depth x3. The residual stress tensor in the sta-
bilized state is independent of the coordinates (x;, x)
and remains constant on any plane parallel to the sur-
face, with of = o%,. The superscript R indicates the
residual stress after 100% coverage, i.e. the final residual
stress. The boundary conditions on the surface enable us
to write:

613 (0) = 633 (0) = 053 (0) = 0

The equilibrium equations are reduced to:

80’53 _
=0
30§3 _
Fral
80§3 _
o =0

So at any depth x3 we have
ol (x3) :Gll% (x3) = G§3 (x3) :G§3 (x3) =0

The equilibrium equations and the boundary conditions
for the residual stresses lead to the following residual
stress and strain fields

of| =05, = f(x3),

(34)
ef, =€5,=0,
el = g (x3)

It is noted that the stresses (33) fail to satisfy the equi-
librium conditions. To obtain the correct residual stress
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field, equation (33) must be partially relaxed. By means
of the Hooke’s law, the relaxation values of 6}, and 05,,
i.e. 0}, and G,,, can be obtained as
! v 1
611 = 1033
(35)

/
O = 15033
Thus, the final residual stressed 6f, and 64, can be ob-
tained as

R __ ~r v roo__ r
011 =011 — 1933 = 1,011
(36)
R __ ~r v r _ 14+v r
OG22 =02 — 15933 = 1,011

The above procedure is similar to that in reference [Li,
et al. (1991)]. However, it is noted that in reference [Li,
et al. (1991)], they assume the shot peening procedure
is a static phenomenon, so they did not consider the ef-
fect of the velocity. Their model is an empirical relation
between the plastic radius a, of the dent and the equiv-
alent static load F of shot peening which, is extracted
by fitting experimental results. The quantity a, is mea-
sured directly from experimental data, and then applied
using the empirical relation to evaluate the equivalent
static load of shot peening, F. No empirical relations are
used in the analyses discussed in this newly developed
model, as the quantity a,, is determined by the shot veloc-
ity. Therefore, this model is more reasonable, convenient,
and simple than that of reference [Li, et al. (1991)].

It is easy to implement the aforementioned theory to cal-
culate the residual stresses due to shot peening.

5 Verification of the model for shot peening induced
residual stresses

We employed this model to simulation the experimen-
tal data. The test data include shot-peening residual
stress distribution for Al7075-T73, Ti-6Al-4V alpha-
beta, and Ti-6Al-4V Beta-STOA. The residual stress
measurements have been obtained by the method of x-
ray diffraction, which is known to have some measure of
error. The Al7075-T73 stress distributions include test
data for Almen intensities of 0.009N to 0.011N which is
a very light shot-peening intensity for aluminum. Also
included is measured residual stress data from Metal Im-
provement for an Almen intensity of 0.016A which is a
fairly heavy intensity. Common aluminum shot-peening
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Table 1 : Shot Peen Residual Stress

Material Intensity Shot Size
A17075-T7351 0.009 -0.011N S170 est.
0.0016A S170 est.
Ti-6Al-4V Beta-STOA 0.006 —0.008N S170 est.
0.008-0.012A S170 est.
Ti-6Al-4V Alpha-Beta 0.011A S170

AL7075-T73 Shot Peen Stress Distribution (Metal Impr, 16A)

0.2

Stresslyield

-1.2

—e— Theoretical

—a— Experimental

depth (mm)

Figure 2 : Comparison of the residual stress for A17075-T73 Metal Improvement

Almen intensities at the test are around 0.012A. The Ti-
6Al1-4V Beta-STOA residual stress distributions include
test data for Almen intensities of 0.006N to 0.008N,
0.009N to 0.013N, and 0.008A to 0.012A. It is interesting
to note that the residual stress distributions for the light
(N) intensities and the heavier (A) intensities are similar.
The Ti-6Al-4V alpha-beta residual stress distributions in-
clude test data for an Almen intensity of 0.011A. The in-
tensity and shot size are shown in Table 1.

For the Al17075-T73 Metal Improvement residual stress
data the shot size and velocity are specified. For some
test residual stress data these parameters are not pro-
vided. This is because it is common practice in the in-
dustry to specify the Almen intensity, but not shot size or
velocity. The shot size is generally not specified which
allows the operator to use any shot size and velocity that
achieves the specified Almen intensity. This minimizes
the need for the time consuming process of changing the
shot in the shot-peening machine. The only restriction on
shot size is that the shot size (diameter) must be less than

half the radii in the areas being peened. Common shot
sizes are S110, S170, and S230. The corresponding nom-
inal diameters are 0.011 inches, 0.017 inches and 0.023
inches, respectively. Virtually all shot-peening at this test
has been done with cast steel in conformance with Mil-S-
851. In the analysis, we use the following typical values:

Al7075-T73

op = 69 ksi, 6, =57 ksi, E =10.5 msi
Ti-6Al-4V Alpha-Beta

o = 145 ksi, 6, = 135 ksi, E =16.5 msi
Ti-6A1-4V Beta-STOA

op = 150 ksi, 65 = 140 ksi, E =16.5 msi
Other Typical Properties needed are:

Aluminum: Poison’s Ratio=0.33, Density=0.101 Ib/in®,
Thickness=0.50 inches, elongation=9%

Titanium: Poison’s Ratio=0.33, Density=0.16 1b/in’,
Thickness=0.50 inches, elongation=11%

The Almen intensity is measured using SAE 1070 cold
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AL7075-T73 Shot Peen Stress Distribution (§170, 9-11N)
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Figure 3 : Comparison of the residual stress for A17075-T73
Ti-6Al-4V Alpha-Beta
Shot Peen Stress Distribution, S170 shots
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Figure 4 : Comparison of the residual stress for Ti-6Al-4V Alpha-Beta

rolled spring steel strips. These strips measure 3 by 0.75
inches, and when blasted on one side the plastic defor-
mation causes a curvature that is measured on an Almen
(dial) gauge. For intensities below 0.004A the type “N”
test strip should be used. For comparison of the nominal
intensity designations, type “A” test strip deflection may
be multiplied by three to obtain the approximate deflec-
tion of a type “N” test strip. The relationship between
the Almen intensity, shot velocity and shot size can be
found in Guagliano (2001). In this paper, we employ

this relation to determine the shot velocity. The com-
parisons of the residual stress distribution from our the-
oretical model with the experimental data from test are
depicted in Figures 2-7. In Fig. 3, there are 2 sets of ex-
periment data: 2d2-4 and 2f2-1. In Fig. 4, there are 3 sets
of experiment data: Manual, Coupon and 0.010A, where
the “0.010A” means the Almen intensity for this set of
experiment results is 0.010A, however, the other sets of
experiment data and the numerical result are for Almen
intensity 0.011A.
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Ti-6Al-4V Beta STOA
Shot Peen Stress Distribution (S170, 6-8N)
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Figure 5 : Comparison of the residual stress for Ti-6Al-4V Beta STOA

Ti-6Al-4V Beta STOA
Shot Peen Stress Distribution (S170, 8-12A)
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0.3 0.4 0.5
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Figure 6 : Comparison of the residual stress for Ti-6Al-4V Beta STOA

From these figures, we can find that the theoretical mode
can simulate the experimental results very well. It is also
can be found that the high velocity of the sphere will pro-
duce a large compressive residual stress zone, and the
maximum value of the compressive residual stress in-
creases, as does the velocity of the sphere. However, the
simulation results for Ti-6Al-4V Alpha-Beta are some-
what different with the experiment data for 6-8N (Fig. 5)
and 9-13N (Fig. 7). The experiment results for the light
(N) intensities and the heavier (A) intensities are similar,

which is unreasonable.

In the present model, no empirical relation is used, and
the quantity a,, is determined by the shot velocity. Very
few numerical computations are needed when a classi-
cal numerical computation would have been nearly im-
possible. So, the analysis model appears to be a very
suitable tool for industrial purposes. These numerical re-
sults were instrumental in concluding that the newly de-
veloped analysis model is:

e very simple and quick;
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Ti-6Al-4V Beta STOA
Shot Peen Stress Distribution (S170, 9-13N)
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Figure 7 : Comparison of the residual stress for Ti-6Al-4V Beta STOA

e cffects of velocity of the shot, diameter of the shot,
and the materials characteristics are considered;

e the material can be strain-hardening;

e no empirical parameters are used.

The analysis model can be generalized to arbitrary cover-
age and finite-thickness work-piece. It should be pointed
out that the current model couldn’t give the tensile resid-
ual stress field that is partly due to the assumption that
the target material is semi-infinite. The tensile residual
stress field would appear, for finite-thickness target ma-
terial, as a result of the reflection of the stress waves.
The tensile residual stress in finite-size (finite thickness
as well as finite in-plane dimensions) specimens, can be
introduced by considering that the sum (integration) of
residual stresses along the x3-axis should be zero.

6 Conclusions

The analytical model that is developed in this paper for
shot peening is promising. The results of validation of
this model for predicting residual stress field, against
the test data, are very good. Within reasonable accu-
racy, the experimentally observed effects were found
in the present analytical model, and very few numeri-
cal computations are required. In contrast, a complete
numerical computation, such as finite element method
(FEM) would have been extremely intensive, computa-
tionally inefficient, and entirely unrealistic. Therefore,

the present analysis model appears to be a very suit-
able tool for commercial analyses, although the MLPG
method [Sladek, et al. (2004); Han and Atluri (2004a,
b); Atluri and Shen (2005); Han, et al. (2005, 2006);
Atluri, et al. (2004, 20064, b); Liu, et al. (2006)] may be
another powerful tool.

Acknowledgement: This work was supported by the
Federal Aviation Administration, Materials and Struc-
tures Branch, AAR-450, located at the William J. Hughes
Technical Center, Atlantic City International Airport,
New Jersey.

References

Al-Hassani, S. T. S. (1981): Mechanical aspects of resid-
ual stress development in shot peening. ICSP1, Paris.

Al-Hassani, S. T. S. (1982): Shot peening mechanics and
structures. SAE paper, 821452.

Al-Hassani, S. T. S. (1984): An engineering approach to
shot peening mechanics. Proc. Of the second Int. Conf.
On Shot Peening, ICSP-2 (H. O. Fuchs ed.). Paramus,
NJ: ASPS, p275.

Atluri, S. N.; Han, Z. D.; Rajendran, A. M. (2004):
A New Implementation of the Meshless Finite Vol-
ume Method, Through the MLPG “Mixed” Approach.
CMES: Computer Modeling in Engineering & Sciences
6: 491-514.

Atluri, S. N.; Liu, H. T.; Han, Z. D. (2006a): Mesh-



An Analytical Model for Shot-Peening Induced Residual Stresses 85

less Local Petrov-Galerkin (MLPG) Mixed Collocation
Method For Elasticity Problems. CMES: Computer Mod-
eling in Engineering & Sciences 14: 141-152.

Atluri, S. N.; Liu, H. T.; Han, Z. D. (2006b): Meshless
Local Petrov-Galerkin (MLPG) Mixed Finite Difference
Method for Solid Mechanics. CMES: Computer Model-
ing in Engineering & Sciences 15: 1-16.

Atluri, S. N.; Shen, S. (2005): MSimulation of a 4’ Or-
der ODE: Illustration of Various Primal & Mixed MLPG
Methods. CMES: Computer Modeling in Engineering &
Sciences 7: 241-268.

Davis, R. M. (1948): The determination of static and
dynamic yield stresses using a steel ball. Proc. Roc. Soc.
A 197: 416.

Deslaef, D.; Rouhaud, E.; and Rasouli-Yazdi, S.
(2000): 3D finite element models for shot peening pro-
cesses. Materials Science Forum 347-349: 241-246.

Guagliano, M. (2001): Relating Almen intensity to
residual stresses induced by shot peening: a numerical
approach. Journal of Materials Porcessing Technology
110: 277-286.

Guechichi, H.; Castex, L.; Frelat, L.; Inglebert, G.
(1986): Predicting residual stress due to shot peening.
Impact surface treatment, (S.A.. Meguid edited), Else-
vier, Applied Science Publishers LTD.

Han, Z. D.; Atluri, S. N. (2004a): Meshless Lo-
cal Petrov-Galerkin (MLPG) approaches for solving 3D
Problems in elasto-statics. CMES: Computer Modeling
in Engineering & Sciences 6: 169-188.

Han, Z. D.; Atluri, S. N. (2004b): A Meshless Local
Petrov-Galerkin (MLPG) Approach for 3-Dimensional
Elasto-dynamics. CMC: Computers, Materials & Con-
tinua 1: 129-140.

Han, Z. D.; Rajendran, A. M.; Atluri, S. N. (2005):
Meshless Local Petrov-Galerkin (MLPG) Approaches
for Solving Nonlinear Problems with Large Deforma-
tions and Rotations. CMES: Computer Modeling in En-
gineering & Sciences 10: 1-12.

Han, Z. D.; Liu, H. T.; Rajendran, A. M.; Atluri, S.
N. (2006): The Applications of Meshless Local Petrov-
Galerkin (MLPG) Approaches in High-Speed Impact,
Penetration and Perforation Problems. CMES: Computer
Modeling in Engineering & Sciences 14: 119-128.

Johnson, K. L. (1986): Contact Mechanics, Cambridge
University Press.

Khabou, M. T.; Castex, L.; and Inglebert, G. (1990):
The effect of material behavior law on the theoretical
shot peening results. Eur. J. Mech., A/Solids 9: 537-
549.

Li, J.K.; Yao, M.; Wang, D.; and Wang, R. (1991):
Mechanical approach to the residual stress field induced
by shot peening. Materials Sci. and Engineering A 147:
167-173.

Liu, H. T.; Han, Z. D.; Rajendran, A. M.; Atluri, S.
N. (2006): Computational Modeling of Impact Response
with the RG Damage Model and the Meshless Local
Petrov-Galerkin (MLPG) Approaches. CMC: Comput-
ers, Materials & Continua 4: 43-54.

Meguid, S. A.; Shagal, G.; Stranart, J. C. (1999):
Finite element modeling of the shot-peening residual

stresses.  Journal of Materials Processing Technology
92-93: 401-404.

Schiffner, K.; Helling, C.D.G. (1999): Simulation of
residual stresses by shot peening. Computers and Struc-
tures 72: 329-340.

Sladek, J.; Sladek, V.; Atluri, S. N. (2004): Meshless
Local Petrov-Galerkin Method in Anisotropic Elasticity.

CMES: Computer Modeling in Engineering & Sciences
6: 477-490.






