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Enforcing Boundary Conditions in Micro-Macro Transition for Second Order
Continuum

Lukasz Kaczmarczyk'

Abstract:  Inrecent years the multiscale computational
homogenisation has been extensively developed. Such
micro-macro modelling does not require any constitutive
assumptions at the macro-level. The multi-scale compu-
tational homogenisation has also been extended for the
second order continuum at the macro level Kouznetsova
V.G., Geers M.G.D., and Brekelmans V.A.M (2004). The
second-order framework is based on incorporation of the
gradient of macroscopic deformation in micro to macro
multiscale transition. The introduction of the second-
order continuum at macro-scale takes into account the
size effect and gives more accurate results in case of
insufficient scale separation. The general framework
of computational homogenisation has been presented in
Kouznetsova V.G (2002).
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1 Introduction

In this paper the well-known framework of linking ma-
terial properties at two levels of description is be pre-
sented. The materials are heterogeneous on one level
(microscale), while the material is considered as homo-
geneous at macroscale level of observation. Typical ex-
amples of homogeneous material include metal alloys
systems, porous media, policristaline materials and com-
posites, i.e textile reinforced composites Haasemann G.,
Kastner M., and Ulbricht V. (2006), reinforced composite
laminates Zhang Y. and Xia Z. (2005). Moreover, all ma-
terials, are heterogeneous at a certain scale, i.e nanoscale
Shengping Shen S. and Atluri S. N. (2004). There are a
number of strategies that are used in multiscale analysis,
in this paper we consider a numerical approach, i.e. com-
putational homogenisation (fig. 1). This micro-macro
modelling does not led to closed form overall constitu-
tive equations, insted it determines the stress-strain rela-
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Figure 1 : Computational homogenisation

tion at every point of interest at macroscale by detailed
modelling of microstructure attached to that point.

After Feyel F. (2003), multiscale models are constructed
using three main ingredients (fig. 2):

1. a modelling of mechanical behaviour at microscale
(the representative volume element RVE)

2. a localisation rule which determines the local solu-
tion inside the RVE, for given macroscopic defor-
mation measures

3. ahomogenisation rule giving the macroscopic stress
measures, knowing the micromechanical stress
state.

In Section 2 the boundary equations as well as macros-
train and macrostress expressed in terms displacements
and traction forces on the boundary of RVE are given. In
Section 3 after finite element discretisation and with de-
formation driven microstructures, the overall stresses and
tangent moduli are exclusively defined in terms of dis-
crete forces and stiffness properties of RVE. To enforce
boundary conditions and to compute stresses and tangent
moduli the projection matrices are used. Next the analyt-
ical solution of the stress-strain relation for a special case
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Figure 2 : Computing inhomogeneous material response

of homogeneous material with intrinsic length scale will
be given. In Subsection 5 a numerical solution of a bend-
ing problem for a material with titanium matrix and sil-
icon cabride fibres for (first-order and second-order ho-
mogenisation) will be presented. At the end conclusions
are presented.

2 Macro to micro and micro to macro transitions

This paper concentrates on some issues of the fully cou-
pled second order homogenisation scheme. Attention is
focused on micro-macro transitions of the discretised mi-
crostructure. In the present paper a new approach is pro-
posed which can handle any type of boundary conditions
(i.e. displacement, periodic and static). The boundary
conditions enforce the deformation of representative vol-
ume element (RVE) according to a given gradient and
second gradient of displacements in average sense. We
note that the method is used to couple two different con-
tinua: classical one at the microscale, and Mindlin’s con-
tinuum Mindlin R.D (1965) at the macroscale. After ex-
pansion of the displacement vector at the geometric cen-
tre of RVE and truncation after second order term we ob-
tain

u(X,X):uo(X)—i—X-E(X)—|—%X®X:T_](X)—|—r(X,X), ()

where € = sym[grad[u]] is macrostrain tensor, 1| =
grad[grad[u]] is second-order macroscopic strain tensor,
r is the microfluctuation of displacement added to fulfill
equilibrium equation in RVE.

The boundary conditions can be written in a integral form
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as
/St-rdF:O, /n®rdF:0, /n®x®rdF:0, )
r r r

where n is the normal vector field and ot is statically ad-
missible variation of tractions on the boundary. If the
first integral satisfies the Hill-Mandel theorem, the sec-
ond and third integral enforce the deformation of RVE
according to a given macrostrain tensor and given gradi-
ent of macrodeformation tensor in an average sense, cor-
respondingly. For a further FE discretisation the bound-
ary conditions can be expressed in terms of microscopic
displacement tensor and macrostrains

/St-(u—x-?:—%x@X:'r_])dl“:O, 3)
r
/n®(6u—x-€—%x®x:ﬁ)dl“:0, )
r
/n®x®(6u—x-€—%X@X:ﬁ)dl“:(). 5)
r

For completeness, the macroscopic strain and stress mea-
sures in terms of microquantities are given. For a sta-
tistically homogeneous body macroscopic quantities can
be defined as averages microquantities over volume RVE
Nemat-Nasser S. and Horoi M (1999), for simplicity
for geometrically linear problem and quadratic RVE, we
have

_ 1 1
£=— dl., o=— tdI’ 6
v/r“®“ , v/r"® , ©)
1 _
5/(x®x@§>1+x®1®x+1®x®x)dv:'rl
|4
:/n®x®udl“, (7
T
T 1/ ®x@tdl’ (®)
= — [ X®X
2V Jr ’

where 6 is second-order macrostress tensor work-
conjugate to €, T is third-order macrostress tensor work-
conjugate to M. It can be noted that macro quantities are
given exclusively by displacements and traction forces
on the boundary of RVE. According to Hill-Mandel theo-
rem it can be shown that for the given equations the work
of macrostrains on macrostresses is equal to the work of
microstrains on microstresses in the RVE attached to a
macroscopic point.



Enforcing Boundary Conditions in Micro-Macro Transition for Second Order Continuum

57

3 Finite element discretisation and enforcing
boundary conditions for RVE

The application of boundary conditions and other con-
straints to the stiffness matrix and load vector is an inte-
gral part of finite element code. This process can present
difficulties when certain combinations of boundary con-
ditions for RVE occur. A general approach to the prob-
lem of enforcing constraints for any finite element code
is shown in Ainsworth M (2001).

After FE discretisation of RVE for nodal displacement u
is defined to be a solution of the constrained quadratic
programming problem:

1
muin Q= EuTKu —u'F, ©)
subjectto Cu—g =20,

where K is stiffness matrix, F is load vector, C is con-
straint matrix and g is displacement constraint vector.
The common solution method is to introduce Lagrange
multipliers A:
1

L= EuTKu—uTF—i—XT(Cu—g). (10)
The Euler conditions for the stationary point of the La-
grangian are found to be

Ku+C™A =F,

Cu=g. (1)
However, this solution approach increases the number of
unknowns and the character of the matrix is altered (to an
indefinite saddle point problem). The numerical solution
of such problem is inefficient, so is not adequate for solv-
ing computationally complex multiscale problems where
for each Gauss integration point the solution of the con-
strained quadratic problem has to be found.

In papers Miehe C. and Koch A (2002); Kouznetsova
V.G., Geers M.G.D., and Brekelmans W.A.M (2004) the
solution for micro-to-macro transition of discretised mi-
crostructure by the computation of condensed matrices
associated with the boundary of RVE can be found. In
this paper an alternative approach for solving such prob-
lems in case second order homogenisation is presented.
Under the assumption that the problem is well-posed the
following matrices are well defined

Q=I-RC, (12)

R=CT(cchH. (13)
where R is auxiliary matrix and Q is projection matrix.
If matrix K and right hand vector F are defined by ex-
pressions

K =C"C+Q'KQ, (14)
F=C"g+Q"(F-KRg). (15)
there exists a unique solution u of the problem (9)
Ku=F, (16)
and the Lagrange multipliers are given by

A =R"(F-Ku). (17)

Matrix K involves of computation the global stiffness
matrix K. However, in practical computations there is no
obligation to preform global operations on matrices, or
to assemble global matrix K.Enforcing constraints can
be performed element by element subassembly proce-
dure.Ainsworth M (2001).

This approach enables one to apply any boundary con-
dition, e.g. displacement, periodic or traction boundary
conditions on the boundary of RVE. This method can
also easily be applied to any shape of RVE.

3.1 Matrix form of boundary conditions

After FE discretisation of RVE the boundary conditions
(3-5) can be written in a matrix form as:

Cu=De+En=g, (18)
matrices C is given by

C= /r HN'NdT, (19)
where matrix D and E are given by

D= /r HN'Xdr, (20)
E= /r HN'Zdr, (1)

N is the matrix of shape functions and matrices X and Z
are defined by

112x 0 vy
2 Y

X= 0 2y x

(22)
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xy O

0 x| (23)

In each row of matrix H there are nodal values of ad-
missible distribution of traction forces on the boundary
of RVE. For example in the case of first order homogeni-
sation and periodic boundary conditions all antiperiodic
and self-equilibred boundary conditions are admissible.
Matrix H contains nodal values of all linearly indepen-
dent antiperiodic self-equlibred distributions of traction
on the boundary of RVE.

3.2 Computation stress and higher order stress

If the equilibrium equation is fullfield, the work of dis-
placements on tractions is equal to the work of gener-
alised displacements on Lagrange multipliers:
u't=(DE+En)"A, 24)
After the solution of boundary value problem according
to Hill-Mandel theorem, the first order macrostress vec-
tor is given in terms of the Lagrange multiplier vector and
matrix D:
_ 1
6=-DI (25)
Vv
and the second order macrostress vector is given in terms
of the Lagrange multiplier vector and matrix E:

1
T——E\

v (26)

3.3 Computation of tangent matrices

Close-form stress-strain relation is unknown at all stages
of the computational homogenisation approach. For the
finite element method at the macro level only the ma-
terial tangent stiffness matrices and stress vectors or in-
crements of strain vectors have to be determined at each
Gauss integration point. The linearised relation between
strain increments and stress increments stress for the sec-
ond order continuum are given by

AG =C AE+C A, 27)

At=C AE+C AR (28)

To compute tangent stiffness matrices, (3 +6 + 3 + 6)
linear equations at equilibrium for each RVE have to be
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. . .=l
solved. For example material tangent stiffness matrix C
is computed as the:

C'=[56',56%,567). (29)

where columns 86', i = 1,2, 3 are computed for given in-
crements of the strain vectors

&': for d&=[100]T, M =[000000]",

5>: for &=1[010]", &M =[000000]",

5°: for &=1[001]T, M =[000000]".
(30)

We can that only the right hand side of the linear equa-
tions is different for each case, so after the decomposition
of left hand side of linear equations the computation of
tangent stiffness matrices can be made efficient.

4 Analitical solution for stress-strain relation

In this a special case of homogeneous Hooke’s material
with intrinsic length scale L section is considered. First
and second order approach is elaborated in terms of finite
element solution procedure. The approximation space of
9-node finite element contains the solution for the dis-
placement field for quadratic RVE of size L. The stiffness
matrix for 9-node FE and auxiliary matrices are com-
puted analytically and after enforcing traction boundary
conditions, from equations given in former sections tan-
gent stiffens matrices were computed.

. =l .
For tangent material matrix C  the Hooke’s equations are
recovered

61] A + 2/4 A 0 E]]
Gyn | = A A+2u O €7 31D
6]2 0 0 2,Lt 2512

It can be noted that the solution does not depend on
L, since for the first-order homogenisation approach we
assume that the intrinsic length size is infinitesimally
small comparing to the characteristic size of a structure at
macroscale of observation. Higher order tangent matrix
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C'is computed analytically as

- - - - - T
[‘Cm’ T222, T221, T112, T121, lez]

a 0 —da 0 0 —b ﬁ]]]
0 a 0 —a —b 0 ﬁzzz
—d —da 0 a 0 0 b ﬁzz]
- 0 —a 0 a b 0 ﬁ]]g ’
0 —b 0 b C 0 2?]121
L —b 0 b 0 0 ¢ 1L 2?]122 |
(32)
where:
a=L*Q2u+M\)/2, b=L,
=*Bu+A), d=-—"1—". 33

The higher order tangents C’ and C are both zero for
the problem considered. We note that higher order tan-
gent matrix C" for the second-order continuum clearly
depends on size L of the RVE considered, since higher-
order homogenisation approach is able to take into ac-
count size effects.

The analytically derived stiffness matrices for periodic
and traction boundary conditions are the same for the
considered problem, since if material is homogeneous
microfluctuation of displacement field is zero for each
point in RVE.

In the case of displacement boundary conditions an an-
alytical solution is difficult to obtain, since microfluctu-
ation field of displacement contains higher order poly-
nomials. Thus, for homogeneous material higher order
macrostress T is dependent on type the of boundary con-
ditions. It can not be treated as inconsistency because it
can be shown that for statically admissible strain € and
higher order strain M} (at macro level of observation) the
microfluctuation of displacements vanishes for the given
problem.

It must be added that for a centrosymmetric material the
Mindlin’s model not can be recovered, because quadratic
RVE exhibits only four symmetries.

5 Numerical example

An academic type example of this framework is discused
in this section, following the results obtained by Feyel

H

.- Section AA (see fig. 8, fig. 9)

Figure 3 : Discretisation for direct computation and ref-
erence mesh (left), discretisation for multiscale model.

Point A, see. fig. 7

~/Matrix ETitanium):
En = 110GPa
Vm = 0.25
Ym = 300MPa
Hy = 11GPa
Fibre (Silicon Carbide):
E; = 410GPa
vi =0.17
Figure 4 : Deformation for direct solution method and

multiscale solution method.

Feyel F. (2003) for Cosserat continuum. Let us consider
the following plane strain problem: a long fibre square
composite structure in fig. 3. The size of the structure
is supposed to be 3mm whereas the unit cell is 0.5mm
and radius of fibre is 0.15mm. The mechanical response
of the structure is computed in three different ways, i.e.
direct solution, the mesh has 41735 degrees of freedom
(left mesh for the direct solution in fig. 3) and two mul-
tiscale approaches (right mesh for multiscale solution in
fig. 3). In the case of computational homogenisation ap-
proach at macro scale classical and gradient continuum
are considered. Classical displacement 9-node FE and
mixed Q18G16L4 Shu J.Y., King W.E., and Fleck N.A
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Figure S : Equilibrium paths for direct solution and clas-
sical, gradient continuum with displacement, periodic
and traction boundary conditions

(1999) FE for classical continuum and Mindlin’s contin-
uum is used correspondingly.

We use a simple material model for titanium matrix of the
microstructure - isotropic J2 plasticity with linear hard-
ening. For both matrix and silicon carbide fibre the elas-
tic response is described by Hooke’s law, see fig. 4.

The structure is subjected to bending load. Deforma-
tion of reference (direct) solution and multiscale solu-
tion is presented in fig. 4. In the case of direct and
first order computational homogenisation, the applica-
tion of boundary conditions at macro level of observa-
tion is straightforward. On the left edge the nodal dis-
placements in horizontal direction are blocked. On the
right edge the horizontal displacements are applied ac-
cording to given rotation angle ¢. For second order con-
tinuum at the macro scale of observation the higher order
boundary conditions on gradients of displacements have
to be applied. On left the edge nonsymmetric part dis-
placement of gradient is set to zero (micro rotation was
blocked). On right hand side nonsymmetrical part dis-
placement gradient was applied according to the to given
rotation angle @.

In fig. 5 the equilibrium paths for reference solution and
two multiscale approaches, for tree types of boundary
conditions each, are shown. A surprisingly good agree-
ment between the reference diagram and the multiscale
approach, even for first order homogenisation framework
is noticed. The homogeneous displacement and stress
boundary conditions provide the upper and lower bounds
on the response. The solution for the periodic deforma-
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Figure 6 : Distribution of microstress ¢, (left) and dis-
tribution of equivalent plastic strain (right).
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Figure 7 : Deformation of RVE and distribution of

equivalent plastic strain in RVE. Position of macroscopic
point A and point B in fig. 4

tion lies between them.

The distribution of stress component G, and of the equiv-
alent plastic strain for the reference solution are pre-
sented in fig. 6. Deformation of RVE and distribution
of microscopic equivalent plastic strain can be seen in
fig. 7. First order homogenisation solution not can take
into account the gradient of displacement so RVE does
not bend. Second order homogenisation solution takes
into account size effect since the RVE is bending. The
distribution of equivalent plastic strain for given RVE is
the same as for the reference solution in the case of dis-
placement and periodic boundary conditions. It can be
noted that the solution for traction boundary conditions
gives inadequate RVE deformation and the distribution
of equivalent plastic strain.
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Figure 8 : Distribution of microstrain on along section
AA for rotation angle tg(@) = 0.0005.

Fig. 8 and 9 show the distribution of strain €, and
stress O, along section AA (see fig. 3), correspondingly.
The comparison of reference solution and displacement
boundary conditions in the case of gradient continuum
and classical continuum shows very good agreement ex-
cept of boundary edges. In the case of first order ho-
mogenisation approach an inability to take in account the
gradient of displacements can be observed.

6 Conclusions

Computational homogenisation can be used to couple
two different continuum at macro scale, classical and gra-
dient. The advantage of second order homogenisation
framework is that is allows one to escape from the clas-
sical assumption of scale separation. Taking into account
size effects enables us to use multiscale models when the
size of RVE does not vanish. Moreover, when localisa-
tion takes place the results should be meaningful.

In the paper the method of enforcing boundary condition
for micro-to-macro transitions has been proposed. This
method enables us to enforce any type of boundary con-
ditions consistent with Hill-Mandel theorem. Moreover,
it cat be applied to any shape of RVE which enables us to
model effective material with different number of sym-
metries.
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