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Application of the Cell Method to the Simulation of Unsaturated Flow

S. Straface1, S. Troisi and V. Gagliardi

Abstract: The present work shows an alternative to
the classical methods to solve the Richards’ Equation
(RE), used to model flow in unsaturated porous media.
This alternative is named Cell Method (CM). The CM is
based on a preliminary reformulation of the mathemat-
ical model in a partially discrete form, which preserves
as much as possible the physical and geometrical con-
tent of the original problem, and is made possible by
the existence and properties of a common mathematical
structure of field theories. The goal is to maintain the
focus, both in the modelling and discretization steps, on
the physics of the problem. The present work derives
the discrete formulation of the RE. Because of the non-
linearities involved, RE is often solved using low-order
numerical approximation methods, such as Finite Differ-
ence (FDM) or Finite Element Methods (FEM). These
types of solution methods are used in many of the exist-
ing unsaturated flow codes. We show how the CM can
be applied in this problem. We have solved a number
of test cases, available in literature, to verify the ability
of our model to reproduce these results. We have used
the Newton-iterative methods which use iterative linear
solvers, such as the Bi-CGSTAB. Numerical results, as
it is possible to see in the verification exercise section,
show the CM to be effective compared with the classical
approaches (FDM and FEM) to solve the flow in unsat-
urated porous media. The procedure presented here is
not peculiar to groundwater hydraulics but also applica-
ble in fluid dynamics, solid mechanics, heat conduction
and electromagnetism.

1 Introduction

Every time that we construct a physical theory we state
the physical laws by means of the more meaningful quan-
tities. Many physical variables exhibit a natural associa-
tion with geometrical elements [Tonti (2001)]. So there
are quantities like temperature, pressure, potential, that
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are associated to points. Other quantities are naturally
associated to volumes: mass content, heat quantity, in-
ternal energy etc. With quantities associated to points it
is natural to form the spatial differences: i.e. head dif-
ference between two points of an aquifer, pressure differ-
ence between two atmosphere points, potential difference
between two electrical field point. From these quantities
we set the head, pressure and electric potential gradient.
With the quantities associated to volumes it is natural
to form balance equations: the amount produced in the
volume during a time interval is equal to the sum of the
outgoing flow of the same quantity across the boundary
of the volume during the time interval, and of the quan-
tity stored inside the volume in the same interval. Other
physical quantities are naturally associated to surface and
time intervals (i.e. flows).

The fundamental laws of physics require geometrical no-
tions for their formulation. So a balance law requires a
volume and its bounding surface, a circuital law requires
a surface and its bounding line and the notion of the gra-
dient requires two points and the straight line connect-
ing them. Moreover the constitutive equations require
the notion of plane and straight line perpendicular to it.
The differential formulation of physical laws implies the
elimination of geometry by the process of forming the
densities of global variables and of performing the limit
process to obtain field functions. Differential equations
are relations between field functions. The geometrical
content is later reconstructed, in order to solve the equa-
tions numerically by the integration process. The pur-
pose of this work is to show it is possible to obtain a di-
rect discrete formulation of Richards’ equation govern-
ing the flow in a unsaturated porous medium, avoiding
the passage to the differential formulation and resorting
to the use of absolute variables, which allow the physical
laws to be preserved in their finite formulation. Such a
direct discrete formulation conducts to an alternative nu-
merical method: The Cell Method. This is particularly
well suited to use all the hydrogeological information
available and to solve problems with complicated geome-



156 Copyright c© 2006 Tech Science Press CMC, vol.3, no.3, pp.155-165, 2006

tries [Straface (1998)].The present work even though in-
troducing innovative aspects about the use of a direct dis-
crete formulation of Richards’ equation, it is one added
to other sectors of application that in the last years have
seen the CM affirmed for the solution of the fundamen-
tal laws of physics. The variety of such applications
(fluid dynamics, solid mechanics, heat conduction and
electromagnetism) is a confirmation of the generality of
the method: for the way with which is formulated it is
applicable to every physical theory. In elastodynamics,
for example, the CM is used solve a variety of elastic-
ity problems in which it leads to an explicit solution sys-
tem, combining the advantages of a diagonal mass matrix
and the possibility of using unstructured meshes [Cosmi
(2005), (Han and Atluri (2004)]. In this work Cosmi has
tested the convergence rate in reference to the problem of
free harmonic vibrations in a system with one degree of
freedom, showing that the CM has the same convergence
rate of II order Runge Kutta method, but its accuracy is
better. The CM results in 2D and 3D have been compared
with those obtained with the commercial codes ANSYS
and ABAQUS in the problem of the longitudinal vibra-
tion of a bar with free ends, for which the exact analytic
solution is found in literature. The CM results are com-
parable with or better than those obtained with FEM, and
they are particularly interesting from the point of view
of computation time and memory requirements for very
large meshes. Moreover, Han has developed a Meshless
Local Petrov-Galerkin (MLPG) method for solving 3D
elastodynamic problems. Numerical examples for solv-
ing the transient response of the elastic structures are in-
cluded. The results demonstrate the efficiency and accu-
racy of the present method for solving the elasto-dynamic
problems; and its superiority over the Galerkin Finite El-
ement Method. The CM is used for modelling the pull-
out test too [Ferretti (2004)]. Various numerical mod-
els are not decisive in describing failure mechanism in
pullout tests and none of the existing explanations offer
a complete description of the progressive failure of the
concrete medium. For this motivation, particular atten-
tion is given to the analysis in the Mohr-Coulomb plane.
A failure criterion that describe crack initiation in ten-
sion loading is necessary for the analysis of the failure
mechanism for the pullout test. In this work the failure
analysis has been performed for several ratios between
the counter pressure diameter and the stem length. The
results showing how the CM can easily handle domains
with several materials. Another very interesting applica-

tion field of he CM regards the steady-state convective-
diffusive solid-liquid phase change problem associated
with temperature fields in direct-chill, semi-continuously
cast billets and slabs from aluminium, based on formu-
lation, which incorporates the mixture continuum physi-
cal model, nine-nodes support, second order polynomial
trial functions, and Gaussian window weighting func-
tions [Arler et al. (2005)]. Two-dimensional test case
solution is shown, verified by comparison with the Fi-
nite Volume Method (FVM) results for coarse and fine
grid arrangement. Atluri has developed a local symmet-
ric weak form (LSWF) for linear potential problems and
a truly meshless method, based on the LSWF and the
moving least squares approximation, to solve potential
problems with high accuracy. The method does not need
a “Finite element mesh”, either for purposes of interpo-
lation of the solution variables, or for the integration of
the “energy”. All integrals can be easily evaluated over
regularly shaped domains (in general, spheres in three-
dimensional problems) and their boundaries. The good-
ness of the several numerical examples presented in the
work testify the simplicity and the great potentiality en-
gineering applications of the method. According to prin-
ciples inspiring the CM, has been developed a mathe-
matical model for the three-dimensional flow simulation
in a saturated-unsaturated porous medium. In particular,
we want to show the application of the CM to solve the
Richards’ equation for unsaturated flow.

2 A discrete formulation of the Richards’ Equation

The differential equation describing the flow in partially-
saturated porous medium, Richards’ equation, is ob-
tained combining the Darcy’s equation together with the
continuity equation [Bear (1979)]. For a vertical one-
dimensional flow in unsaturated medium, the Richards’
equation is written:

∂θ
∂t

=
∂
∂z

(
K (ψ)

(
∂ψ
∂z

+1

))

Assuming ψ as independent variable and introducing the
absolute storage coefficient S(ψ), to describe a variably-
saturated medium, we have:

S(ψ)
∂ψ
∂t

=
∂
∂z

(
KsKr (ψ)

∂
∂z

(ψ+ z)
)

where:
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ψ Capillary head
t Time
z Coordinate vertical
K(ψ) Hydraulic conductivity
Ks Saturated hydraulic conductivity
Kr(ψ) Relative hydraulic conductivity
S(ψ) Absolute storage coefficient:

S ((ψ) =(dθ /dψ)+((θ (ψ) / (φ))S
θ Soil moisture content
dθ/dψ Specific capacity
φ Porosity
Ss Specific storage coefficient

In the equation the hydraulic conductivity, K(ψ), is the
product between the saturated hydraulic, Ks, and rela-
tive permeability Kr(ψ). The specific storage coefficient
takes into account of the porous medium deformations
and is an important component in the modelling of the
flow in the unsaturated zone. The Richards’ equation re-
sults to be not linear because of the dependence, from
the variable ψ, of the specific capacity and of the relative
hydraulic conductivity.

Generally, the numerical procedures for the problem so-
lution with initial values and to the boundary consist in
a combination of space-time discretizations. When, on
first step, a spatial discretization is employed (i. e. finite
elements), the continuous partial differential equation is
transformed in a semi-discrete system of ordinary differ-
ential equations to finite nodal points number. Succes-
sively the system of differential equations is transformed
in an algebraic system of equations using the time dis-
cretization schemes.

If the original partial differential equation is not linear,
unless a explicit time-discretization is used or otherwise
linear, also the algebraic system will not be linear and
some intermediary step required before the system can
be resolved. This intermediary step generally consists in
the employment of iterative-type algorithms.

The simplest approach to resolve the non linear equation
of Richards numerically is that to use two levels explicit
discretization. This approach produces a linear system of
equations that, on basis one per-time step, represents an
option to least computational cost. Nevertheless, due to
stability, employing the explicit methods, it is necessary
to use very small per-time steps, and therefore for long

simulations or for problems that require a very fine spa-
tial resolution (as the infiltration that involves a front of
discontinuous moisture), the cost becomes excessive.

If we consider a cell complex where they have smaller
dimensions there where the hypothesis of uniformity is
less respected, we can employed the same constitutive
equations used in the differential context as an approxi-
mation.

For that mentioned above, it follows that to obtain a dis-
crete formulation of the fundamental equation of a phys-
ical theory, it is not necessary to go down to the differ-
ential form for then to go up again to the discreet form:
it is sufficient to apply elementary physic laws in small
regions where field uniformity is obtained with a degree
sufficient of approximation bound, moreover, to degree
of approximation imposed by input data and required to
solution. Referring to concepts related to CM, the dis-
crete formulation of the equations, which regulate the
flow in porous medium, is given. For a much more com-
plete exposition, also this formulation will be given to
equations which regulate water flow in saturated zone of
porous medium. In tables 1 and 2 are listed principal
variables, and relative notations, used in discrete formu-
lation.

2.1 Mass balance equation

We find the hydraulic head at all nodes at which it is not
assigned: these can be internal as well as boundary ver-
texes. If we impose the mass balance on any dual cell,
the tributary region of every vertex, we obtain as many
equations as are the unknowns hydraulic heads [Paniconi
et al. (1991)].

We may write the mass fluid balance as [Straface (1998)]:

∑
c∈ℑ(h)

Jc
h +

Δtmh

τhρh
= Qh (1)

where Jc
h is the mass flow rate, Δtmh is the temporal vari-

ation of the mass content in the dual cell vh, ρh is the
density of the fluid, τn is an interval of time and Qh is
a sink or source of mass (see Table 1). This equation
simply states that in a fixed closed volume, the variation
per unit time of the fluid mass is equal to the algebraic
sum of the mass flow crossing the face of the dual cell.
Equation (1) is valid both for interior and boundary dual
cells: in this fashion, one avoids the unnatural separation
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Table 1 : Notation for space and time elements [14]

THE PRIMAL COMPLEX CELLS
P point ph Vertex
L line lα Edge
S surface sβ Face
V volume vh Cell
I instant tn Instant
T interval τn Interval
THE DUAL COMPLEX CELLS
V volume vh cell
L line lα edge
S surface sβ f ace
P point ph vertex
T interval τn interval
I instant tn instant

Table 2 : The global variables for the groundwater flow
CONFIGURATION VARIABLES
Global variable Symbol Time element Space element Symbol
Hydraulic head H interval point TP
Head potential impulse Λ instant point IP
Hydraulic gradient g interval line TL
Hydraulic conductivity K interval line TL
SOURCE VARIABLES
Global variable Symbol Time element Space element Symbol
Mass content m instant volume IV
Mass flow rate J interval surface TS
Mass source Q interval volume TV

of differential equations and boundary conditions, which
is typical of a differential formulation.

2.2 Darcy’s Law

The flow rate is given by the Darcy’s law. Hydraulic head
H [T,P]genealogically depends on primal vertex and dual
time interval, but as is obtained through a temporal vari-
ation from head impulse Λ

[
I,P

]
, also referred to primal

complexes, hydraulic head becomes function of primal
instant of the time H (tn). On the other hand, the mass
flow rate, that genealogically depends on a dual surface
and primal interval, as is obtained from the mass content
m

[
I,V

]
, it becomes function of dual instant of the time

J (tn)[Troisi et al., (2000)]. We write the mass current jc

in this form:

jc = −Kcgc (2)

where gcis the hydraulic gradient that is function of the
hydraulic head and its derivation depends upon the kind
of interpolation used. In this work we have used a
quadratic interpolation to have an high order of conver-
gence.

gc = BcHc (3)

So, the mass flow rate, like the hydraulic gradient, is
function of the interpolation used too and, in general, we
can write [Troisi et al., (2002)]:

Jc
h = −Ac

hKcgc (4)
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2.3 The temporal variation of mass content

Temporal variation of mass content is function of the
kind of flow, so we have to determine this quantity for
the unsaturated flow. If we assume that water is incom-
pressible and density independent we have:

Δtmh = vhρhΔtθh = vhρhΔhθhΔthh (5)

Here θ
[
I,L

]
is the soil moisture content. Now we pose

the soil moisture content variation with respect to the hy-
draulic head equal to σ

[
I,V

]
. The balance equation can

be written as:

∑
c∈ℑ(h)

Jc
h +

vhσhΔtHh

τh
= Qh (6)

The quantity σ
[
I,V

]
is genealogically referred to the

space dual complex and the primal instant, but, as the hy-
draulic head, it becomes function of dual instant of time
σ(tn). On the other hand, the hydraulic head Hh is re-
ferred to the primal complex in time, while the mass flow
rate Jc

h and the specific moisture capacity σh are referred
to the temporal dual complex. So, as we are looking
for the hydraulic head, we have to refer every quantities
to the primal complex, switching the temporal elements
from dual to primal:

tn+1/2 =
1
2

(
tn+1 + tn

)
(7)

we obtain the mass balance equation, with the same sig-
nificance of the above equation, in a discrete form:

∑
c∈ℑ(h)

(Jc
h)

n+1/2 +
vh

τh
σn+1/2

h

(
Hn+1

h −Hn
h

)
= Qh (8)

2.4 Solution of the nonlinearities

In this paper, for solving the nonlinear governing flow
in variably saturated porous media, the Newton scheme,
also known as Newton-Rapson iterations, is used. The
Newton scheme was found to be more robust and less
sensitive to nonlinearities and initial solution estimates
than the Picard method. A more detailed discussion of
the Newton and Picard schemes applied to the unsatu-
rated flow equation can be found in the work by Paniconi
et al. (1991).

Time step sizes during a transient simulation are dynam-
ically adjusted according to the convergence behaviour

of the nonlinear iteration scheme. A convergence toler-
ance, (tol), is specified, along with a maximum number
of iteration, (maxit), permitted during any time step. The
simulation begins with a time step of Δt0and proceeds un-
til time Δt0. The current time step size is increased by a
factor of Δt0 (to a maximum size of Δtmax) if convergence
is obtained in fewer than maxit1 iterations. It is left un-
changed if the convergence required between maxit1 and
maxit2 iterations, and it is decreased by a factor of Δt0
(to a minimum of Δt0) if convergence required more than
maxit2 iterations.

If convergence is not obtained (maxit exceeded), the so-
lution at the current time level is recomputed using a
reduced time step size (factor Δt0, to a minimum of
Δt0). For the first time of transient simulation, or for
a steady state problems, the initial conditions are used
as the first solution estimate for the iterative procedure.
For subsequent time step of a transient simulation the
pressure head solution from the previous step is used
as first estimate. The convergence is achivied when∥∥Ψk+1,m+1 − Ψk+1,m

∥∥ ≤ tolis satisfied.

3 Verification exercise

Figure 1 : Geometrical setting of variably saturated Test
Case 1

Test Case 1. We have simulated the problem of infil-
tration and redistribution into a soil column initially at
hydrostatic equilibrium. The boundary condition at the
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Figure 2 : Pressure Head for Test Case 1. CM (solid line) and FEM (dashed line)

Table 3 : Values of parameters of the variably saturated Test Case 1
Quantity value Dimension
Ks 5.0 [m/s]
θs 0.45 [−]
θr 0.08 [−]
ψs -3.0 [m]
ψ0 -0.19105548 [m]
n 3.0 [−]
m 0.667 [−]
Ss 0.001 [m−1]
BDC Top q = t/64 [m/hr]
BDC Bottom ψ = 0 [m]
Δz 0.1 [m]
Δt 0.005 ≤ Δt ≤ 1.0 [hr]
Tmax 32 [hr]
ψ(z,0) -z [m]
Number of Nodes 1383 [−]
Number of Elements 588 [−]
Tolerance 1x10−6 [m]

surface node is a time-varying specified Darcy velocity
q which increases linearly with time (q = t/64), while

the base node is maintained at a fixed capillary pressure
value of ψ = 0, allowing drainage of moisture through
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Table 4 : Values of parameters of the variably saturated Test Case 2
Quantity Value Dimension
Ks 0.00922 [cm/s]
θs 0.368 [−]
θr 0.102 [−]
n 2.0 [−]
m 0. 5 [−]
α 0.0335 [−]
BDC Top ψ = −75 [cm]
BDC Bottom ψ = −1000 [cm]
Δz 0.25 [cm]
Δt 0.1 ≤ Δt ≤ 3600 [s]
Tmax 6 [hr]
ψ(z,0) -1000 [cm]
Number of Nodes 928 [−]
Number of Elements 1605 [−]
Tolerance 1x10−5 [cm]

the water table. The material properties are:

θ (ψ) =θr +(θs −θr) [1+β]−m ψ < ψ0

θ (ψ) =θr +(θs −θr) [1+β0]
−m +Ss (ψ−ψ0) ψ ≥ ψ0

Kr (ψ) =(1+β)−5m/2 [(1+β)m −βm]2 ψ < 0

Kr (ψ) =1ψ ≥ 0

with β =
(
ψ

/
ψs

)n
and Ss is the specific storativity coeffi-

cient. The unsaturated hydraulic conductivity versus cap-
illary head relations were derived by van Genuchten and
Nielsen (1985). The moisture content versus pressure
head relations are modified versions of van Genuchten
and Nielsen’s expressions. The column is discretized in
588 cells (triangle) and 1383 vertexes. Mesh information
and other simulation parameters are summarized in Table
3. Simulated pressure head profiles are plotted, for CM
and FEM, in Fig. 2.

Test Case 2. In this case we have simulated the infiltra-
tion of water in a column. It is 30 cm high and its water
content is close to that of the residual. The boundary
conditions at the bottom and at the top are head fixed
type. The domain of the column was subdivided with a
uniform mesh (edge = 0.25 cm), so the column was dis-
cretized in 1605 cells (triangle) and 928 nodes. Mesh

Figure 3 : Geometrical setting of variably saturated Test
Case 2

information and other simulation parameters are summa-
rized in Table 4. The pressure head tolerance of Newton
iterations was specified as 1x10−5 cm. The constitutive
relations for the water content and permeability are:

θ (ψ) =
θs −θr

[1+(α |ψ|)n]m
+θr

Kr (ψ) =Ks

{
1− (α |ψ|)n−1 [1+(α |ψ|)n]−m

}2

[1+(α |ψ|)n]m/2
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Figure 4 : Pressure Head for Test Case 2. CM (solid line) and Analytical Solution (dashed line)

Table 5 : Values of parameters of the variably saturated Test Case 3
Quantity Value Dimension

Ks 10 [cm/day]
φ 0.45 [−]
Swr 0.333 [−]
ψa 0 [−]
I/E 5.0 [cm/day]
BDC Top [m]
BDC Bottom ψ = 0 [cm]
Δz = Δx = Δy 5 [m]
Δt 0.1 [day]
Tmax 20 [day]
ψ(x,y, z = 0,0) 0 [cm]
ψ(x,y, z = 200,0) -90 [cm]
ψ(x,y, z,0) -97 [cm]
Number of Nodes 3138 [−]
Number of Elements 14293 [−]
Tolerance 0.1 [cm]

For this test case, in literature is available the analytical
solution [Philips (1969)]. Simulated pressure head pro-
files are plotted, for CM and Analytical solution, in Fig.

4.

Test Case 3. The problem concerns the vertical flow in
the unsaturated zone above the water table. The flow re-
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Figure 5 : Geometrical setting of variably saturated Test
Case 3

Figure 6 : Solution for Test Case 3 (Infiltration). CM
(solid line) and FEM (dashed line)

gion is represented by a rectangular soil column of di-
mension (50 x 50 x 200 cm) with the bottom and top
faces corresponding to the water table and the soil sur-
face, respectively (see fig. 5). The initial pressure head
was assumed to be zero at the water table, -90 cm at the
soil surface, and –97 cm elsewhere. The soil column was
first subjected to infiltration for 10 days and then sub-
jected to evaporation for another 10 days. The potential

Figure 7 : Solution for Test Case 3 (Evaporation). CM
(solid line) and FEM (dashed line)

rates of infiltration and evaporation were assumed to be
5 cm/day [Huyakorn et al. (1986)].

We represented the flow region using a three-dimensional
mesh comprising 14293 tetrahedra elements and 3138
nodes. The nodal spacing in the x, y and z directions
was Δx = Δy = Δz = 5cm. The transient simulation was
performed in two parts. In the first part, infiltration oc-
curred for a period of 10 days and, in the second part the
evaporation was imposed for the remaining period of 10
days. The pressure head tolerance of Newton iterations
was specified as 0.1 cm.

The values of physical and geometric parameters are
given in Table 5. The constitutive relations used are:

Kr (ψ) = (Sw−Swr)/(1−Swr)

(ψ−ψa)/(−100−ψa) = (1−Sw)/(1−Swr)

Simulated pressure head profiles during infiltration and
subsequent evaporation are plotted, for CM and FEM, in
Fig. 6 and 7 respectively.

4 Conclusions

In this work we present an alternative to the classical
differential type approach to the solution of Richards’
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Equations. This alternative is based on a preliminary
reformulation of the mathematical model in a partially
discrete form which preserves as much as possible the
physical and geometrical content of the original problem.
It is made possible by the existence and properties of a
common mathematical structure of physical field theories
[Tonti (1975)]. The goal is to maintain the focus, both
in the modelling and in the discretization step, on the
physics of the problem, thinking in terms of numerical
methods for physical field problems, and not of a partic-
ular mathematical form into which the original problems
happens to be translated [Mattiussi (1997)]. It is custom-
ary to derive a finite formulation of the groundwater flow
equation passing through differential formulation. The
paper has shown that is possible to obtain a finite for-
mulation starting directly from experimental laws. This
is accomplished using global variables and realizing their
natural association with space and time elements. In such
an association important role is played by the notions of
inner and outer orientations of a space and time element.
This leads us to use a cell complex and its dual instead
of a coordinate system. Once the variable of groundwa-
ter hydraulics are classified in one of the three classes,
configuration, source and energy variables, it is seen that
configuration variables are naturally referred to the cells
of a primal complex while source variables are referred
to those of the dual complex. Constitutive equations, that
link configuration with source variables, require the in-
troduction of mean densities and mean rates. The ap-
proximation of considering the field inside every cell of
the primal complex as uniform permits us to avoid the
limit process. The procedure presented here is not pe-
culiar to groundwater hydraulics but also in fluid dynam-
ics, in solid mechanics, in heat conduction and in electro-
magnetism, as shown in references [Tonti (2001)]. The
scheme here presented gives a second order accuracy on
a structure mesh. It has been proved that using parabolic
interpolation functions inside every triangle one can ob-
tain a fourth order accuracy on structured meshes.
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