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Multi-Scale Modelling and Simulation of Textile Reinforced Materials

G. Haasemann1, M. Kästner1 and V. Ulbricht1

Abstract: Novel textile reinforced composites provide
an extremely high adaptability and allow for the devel-
opment of materials whose features can be adjusted pre-
cisely to certain applications. A successful structural and
material design process requires an integrated simulation
of the material behavior, the estimation of the effective
properties which need to be assigned to the macroscopic
model and the resulting features of the component.
In this context two efficient modelling strategies - the Bi-
nary Model (Carter, Cox, and Fleck (1994)) and the Ex-
tended Finite Element Method (X-FEM) (Moës, Cloirec,
Cartraud, and Remacle (2003)) - are used to model ma-
terials which exhibit a complex structure on the meso-
scale. For these investigations the focus is set on com-
posites made of glass fibers, thermoset or thermoplastic
matrices and on the application of commingled thermo-
plastic and glass fibers. Homogenization techniques are
applied to compute effective macroscopic stiffness pa-
rameters. Problems arising from a complex textile rein-
forcement architecture, e.g. bi- or multi-axial weft-knit,
woven and braided fabrics, in combination with a high
fiber volume fraction will be addressed and appropriate
solutions are proposed. The obtained results are verified
by experimental test data.
The macroscopic stress and strain fields in a compo-
nent are used for optimization of the construction and
the material layout. These distributions are computed
in a global structural finite element analysis. Based on
the global fiber orientation the required macroscopic ma-
terial properties obtained from homogenization on the
meso-scale are mapped to the model of the structural
part. The configuration of the fiber-orientation and tex-
tile shear deformation in complex structural components
caused by the manufacturing process is determined by a
three-dimensional optical measurement system.
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1 Introduction

Modelling structural parts made from composites re-
quires adequate knowledge on the macroscopic behavior
of the locally heterogenous material. Due to the differ-
ence in size between the macroscopic component on the
one hand and the structure of the material on the other
hand a direct modelling of the meso-structure in a struc-
tural analysis is not reasonable.
The computational homogenization method is an effi-
cient solution to this problem as effective macroscopic
material properties can be computed from a characteris-
tic section of a complex structured composite.
While the application of this technique to the linear elas-
tic case is rather simple a non-linear material behavior
on the micro-scale complicates the prediction of effec-
tive properties as an appropriate macroscopic constitu-
tive model is required. In section 2.1 the computational
multi-scale homogenization is presented as an alternative
approach.
The derivation of the macroscopic material properties
based on a representative volume element (RVE) model
is indispensable. Regarding simple structured reinforce-
ment an analytical approach such as proposed in Kwon
and Roach (2004) can be used to estimate these prop-
erties. However the complex meso-structure considered
here requires numerical procedures which result in an
extensive modelling effort. Moreover, sophisticated ge-
ometries involve highly distorted elements that might
cause numerically ill-conditioned systems of equation.
Therefore, efficient strategies are necessary in order to
reduce the modelling effort significantly. Recently de-
veloped local meshless methods proposed e.g. by Atluri
and Shen (2005) and Sladek, Sladek, and Tanaka (2005)
can be adapted for application to these materials. For
most of these procedures new computational data process
and solution routines need to be developed. To avoid this
requirement the Binary Model and the Extended Finite
Element Method (X-FEM) are considered in this work.
Both modelling strategies can be realized by extending
an existing FE-program.
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After a brief overview on the essential features of both
methods in section 3 they are applied to composite mod-
elling. To this end an automatic modelling procedure
for the X-FEM is presented. Furthermore, a multi-scale
analysis simulating a tensile test demonstrates the practi-
cability of the multi-scale homogenization. Finally, the
presented methods are utilized to design a composite
bucket.

2 Materials

The remarkable advantages of pure knitted fabrics are
formability and drapability, choice of net-shape fabrics
and coherency of fibers. However, the disadvantage
of composites with knitted fabric reinforcement is their
moderate stiffness and strength. To improve these prop-
erties, a laid-in non-knitted yarn system is integrated into
the knitted fabric such as illustrated in Fig. 1. Accord-
ing to Diestel, Haasemann, and Orawattanasrikul (2004)
this novel textile structure is called biaxial weft-knitted
fabric. The reinforcement used for these investigations is
made of glass fibers. In general, there are no restrictions
to use other materials, e.g. carbon-fibers.
To take advantage of the biaxial weft-knitted fabric and

Figure 1 : Biaxial weft-knitted fabric

to achieve a near-net-shaped preform, the textile is sub-
jected to drape deformation. Up to a certain limit, this
deformation is dominated by shearing and a change in
the thickness of the fabric. Since deformations are not
constant in a structural part, only a locally homogeneous
macrostructure can be assumed. Furthermore, the mate-
rial properties become highly anisotropic.
The textile fabric is consolidated with epoxy resin. Here,
this is achieved by two different technologies: (i) the
Resin Transfer Moulding (RTM) to produce compos-
ite plates used for experimental investigations and (ii)
the vacuum injection which is applied to more complex

shaped parts like the elevator bucket described in sec-
tion 4.3.
A second type of materials considered is a reinforc-
ing structure made from continuous commingled yarns.
Such a reinforcement consists of mechanically combined
reinforcing fibers and such spun from a thermoplastic
matrix. From the variety of different reinforcement and
matrix materials the combination glass and polypropy-
lene is chosen. The very flexible commingled yarns can
be processed to more complex reinforcing structures such
as woven fabrics. For manufacturing components the
fabric is laid in a heated mould. During a compression
moulding process the thermoplastic fiber is melted and
constitutes the matrix after consolidation.
The computation of macroscopic material properties re-
quires the geometric data describing the topology of the
composite. For this, parameters of the filament yarn and
the textile processing are used. Since a transparent matrix
material is used, the in-plane geometry can be quantified
with pictures obtained by optical scans. To investigate
the out-of-plane geometry, spatial data of the Computer
Tomography (CT) scanning provides sufficient informa-
tion. The CT picture in Fig. 2 shows a section of a com-
posite material reinforced with a glass-fiber fabric.

Figure 2 : CT-scan

2.1 Homogenization

The simulation of the stress and strain fields in structural
parts demands that the macroscopic material properties
are known. Due to the wide range of available compos-
ite materials, including different reinforcing structures
and processing technologies, the experimental estimation
of these parameters becomes very expensive and time-
consuming. Analytical methods can be applied to sim-
ple structured composites such as uni- or bi-directional
reinforced materials. However, the computational ho-
mogenization method based on a RVE or unit cell is an
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efficient strategy to obtain effective material properties
and information on the local stress and strain fields of
complex structured composites. There are different ap-
proaches and mathematical foundations of these meth-
ods, e.g. asymptotic homogenization (Holmbom, Pers-
son, and Svanstedt (1991)) and the energy averaging the-
orem (Hill (1972)). The work here is related to the latter
and some details are given in Section 2.2.
The concept of the RVE can be applied to random struc-
tures. If there is at least a locally periodic micro-structure
which is the case for the composite considered in this
work the RVE conforms to a unit cell of this structure.
One or a set of these periodic elements can be used to de-
fine the domain V of a unit cell. Regarding the definition
of boundary conditions the surface of the cell domain ∂V
is subdivided into ∂V + ∪∂V− in the way that two asso-
ciated locations x+ ∈ ∂V + and x− ∈ ∂V−, respectively,
have the unit outward normal relation n+ = −n−.
The micro-structural deformation field of this domain
will be described by εi j :=u(i, j)(x, t) where ui denotes the
displacement field which depends on the material point
x ∈ V and the time t. The brackets enclosing the indices
represent a symmetry operator. The unit cell is in a state
of equilibrium. This can be mathematically expressed in
terms of the symmetric stress tensor σσσ according to

σi j,i = 0 and σi j = σ ji in V . (1)

The elastic constitutive equations

σσσ = Fσ(εεε,x) (2)

specify the stress-strain relationship. Since the compos-
ite structure is divided into N subregions of different ma-
terials such as matrix and fibers, N sets of constitutive
relations are required.
Once the microscopic material behavior becomes non-
linear, the prediction of the macroscopic properties re-
quires a definition of an appropriate constitutive model.
In general it is extremely difficult to obtain a reasonable
macroscopic reflection of the microscopic properties. An
alternative approach which has been developed for in-
stance by Miehe and Koch (2002) is the computational
multi-scale homogenization. There is a number of differ-
ent variations on the details of this procedure. However,
the fundamental principle is the transition of the micro-
structural response to the macroscopic structure based
on the formulation of an adequate boundary value prob-
lem. The procedure outlined in this paper is illustrated

Macroscopic Model
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Next Load Step

Macroscopic Model
Solve the

Tangent Stiffness
Update Stress and
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E
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Figure 3 : Flowchart of the multi-scale procedure

in Fig. 3. At first there is a model representing a struc-
tural part and the boundary conditions. The macroscopic
tangent stiffness is initialized with the linear elastic prop-
erties quantified by the homogenization procedure. Next,
a load step is applied followed by the first solution. The
strain obtained on the macroscopic FE-model after each
iterative step is applied to the unit cell. The response in
terms of the macro-stress ΣΣΣ and the tangent stiffness CM

is determined. The next increment in the macroscopic
computation can be applied if the solution has converged.
The numerical implementation is based on the commer-
cial FE-program ANSYS. A Fortran95 FE-subroutine
has been developed to simulate the microscopic behav-
ior of the unit cell based on the Binary Model which
is outlined in section 3.1. Besides the physically and
geometrically non-linear FE-solution in the framework
of a small strain formulation, this routine computes the
macroscopic stress and tangent stiffness. The “User Pro-
grammable Features” (UPF) (Ansys (2004)) provided
by ANSYS enable the linking of this subroutine to the
macroscopic model.
Subsequently, details are given to the homogenization
procedure.

2.2 Micro-to-macro transition and boundary condi-
tions

A basic principle of this homogenization method is the
micro-to-macro transition based on the unweighted vol-
ume averaging theorem. In the following this is applied
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to stress, strain and stress work of the heterogeneous
solid to obtain the corresponding overall quantities. The
volume average is denoted by

〈· · ·〉 :=
1
V

Z
Ω
· · ·dΩ (3)

Applying this to the variable stress field σ(x), the macro-
scopic stress can be expressed as

Σi j :=
〈
σi j

〉
=

1
V

Z
∂V

xit jdO . (4)

Eq. 4 shows that Σi j is completely defined by the mi-
croscopic stress field on the unit cell surface. Assuming
that the surface tractions ti are self-equilibrating, it can
be shown that the stress defined in Eq. 4 is symmetric.
The macroscopic strain E is defined by the correspond-
ing heterogeneous quantity. Applying the Gauss theorem
gives

Ei j :=
〈
εi j

〉
=

1
V

Z
∂V

uin jdO , (5)

where n j denotes the unit outward normal defined at
x ∈ ∂V . Here again, the macroscopic strain tensor E is
described by the microscopic displacement field on the
unit cell surface only.
Finally it is observed that the local stress work is

σi jεi j = (σi jui), j −σi j, jui (6)

In view of Eq. 1, the average stress work is given by

〈
σi jεi j

〉
=

1
V

Z
∂V

tiuidO . (7)

In general, there are three different boundary condition
under which the identity, also known as HILL-MANDEL-
Lemma,

〈
σi jεi j

〉
=

〈
σi j

〉〈
εi j

〉
(8)

holds: (i) linear displacements, (ii) constant tractions and
(iii) a periodic displacement field added to the linear dis-
placements and antiperiodic tractions. In the following,
the last case will be denoted by “periodic displacements”
or “periodic boundary conditions”, only.
In the first case the displacement boundary conditions are
given by

ui(x) = Ei jx j ∀ x j ∈ ∂V , (9)

which represent a linear deformation of the unit cell.
The constant tractions are prescribed by

ti = Σi jn j(x) ∀ x ∈ ∂V . (10)

At last the periodic boundary condition and antiperiodic
tractions are written as

ui(x+)−ui(x−) = Ei j(x+
j −x−j ) and

ti(x+)+ ti(x−) = 0 (11)

Assuming that the shape of the unit cell is defined prop-
erly which means that the assembled structure does not
have any gaps or overlay the dimension of the unit cell
regarding a particular direction α is constant according
to

Δxα
i := x+

i −x−i . (12)

Then the periodic boundary condition Eq. 11 can be writ-
ten in the form

Δuα
i := ui(x+)−ui(x−) = Ei jΔxα

j (13)

where Δuα
i represent displacement increments which de-

pend on the considered surface α, only. In view of an 3D
unit cell, the boundary value problem requires 9 values
of Δuα

i . Introducing the definition of an integral surface
force Fα

i such that

Fα
i :=

Z
∂V α

t+i dO (14)

the macroscopic stress can be recast into the form

Σi j =
1
V ∑

α
Δxα

i Fα
j . (15)

Many parts made of textile reinforced composites such as
the elevator bucket can be considered as shell structures
in the framework of a plain stress formulation. To ob-
tain the macroscopic quantities which are related to the
plain stress state, a combination of two boundary condi-
tions described before is used. Assuming that the orien-
tation of the coordinate x3 is normal to the surface, peri-
odic boundary conditions are applied to the in-plane di-
rections. A constant traction t(3)

i = 0 is specified for the
out-of-plane surfaces. Finally the non-zero macroscopic
stress quantities are computed by Eq. 15 and the strain
E33 is evaluated by Eq. 5.
In this paper, the homogenization procedure is focused
on two formulations of the microscopic boundary con-
ditions: (i) 3D homogenization with periodic displace-
ments and (ii) 2D homogenization with in-plane periodic
displacements and out-of-plane constant tractions.
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2.3 Finite element formulation

Regarding the computational multi-scale method there
are no restrictions on the modelling strategies such as
the X-FEM or the Binary Model which is used for the
unit cell. In the following some details on the implemen-
tation of the boundary conditions into the FE-procedure
are given. Here it is assumed that all degrees of freedom
of the FE-model are displacements. Then the variational
global displacement vector δu and the vector of external
forces δf can be structured such that

δu =

⎡
⎢⎢⎣

δua

δur

δul

δuα

⎤
⎥⎥⎦ and δf =

⎡
⎢⎢⎣

0
δfr

δfl

0

⎤
⎥⎥⎦ (16)

where the superscripts r and l denote the quantities of
surface nodes located at ∂V + and ∂V−, respectively, a
-all remaining nodes and α refers to additional degrees
of freedom where three are defined to each surface α
to which periodic displacements are assigned. Then the
variational displacements δuα correspond to the incre-
ments Δuα

i defined in Eq. 13 in the way that

δuα
i := δEi jΔxα

j , (17)

where Δ in δΔuα
i ≡ δuα

i is dropped for notational brevity.
Let the matrix K represent a linear transformation rela-
tive to δu and δf, it can be partitioned in the same manner
such that

K =

⎡
⎢⎢⎣

Kaa Kar Kal 0
Kra Krr Krl 0
Kla Klr Kll 0
0 0 0 0

⎤
⎥⎥⎦ (18)

Based on the periodic boundary conditions Eq. 13, the
displacements δur can be expressed depending on δul

and δuα. The incorporation of this relation leads to the
transformation δu = Tδũ with:

δũ =

⎡
⎣ δua

δul

δuα

⎤
⎦ and T =

⎡
⎢⎢⎣

I 0 0
0 � �

0 I 0
0 0 I

⎤
⎥⎥⎦ , (19)

where I is the identity matrix. The matrices � and �
represent the discretized coupling constraints according
to Eq. 13 and are filled with one and zero, only. The

standard elimination procedure of the dependent quanti-
ties leads to the system

[
TT KT

]
δũ =

⎡
⎣ 0
�

T δfr +δfl

�T δfr

⎤
⎦ =:

⎡
⎣ 0

δf̃r

δfα

⎤
⎦ . (20)

Considering the structure of the matrices � and � re-
garding the nodes which are not located at edges or cor-
ners of the unit cell, the external forces can be evaluated
by the expressions δf̃r = δfl + δfr and δfα = ∑δfr . The
degrees of freedom originated by nodes located at edges
and corners requires further examinations which are not
outlined here. However, this does not affect the follow-
ing conclusions. To meet the condition of anti-periodic
tractions given in Eq. 11b : δf̃r = 0. The interpretation
of the external forces δfα results in the correlation to the
integral surface forces Fα

i defined in Eq. 14. Then, the
evaluation of Eq. 15 gives the variational macroscopic
stress based on the forces acting on the additional degree
of freedom and the dimension of the unit cell. Note that
there are no restrictions on the general shape of the unit
cell except for these mentioned in section 2.2.

2.4 Tangent stiffness

An essential procedure of the multi-scale method is the
computation of the macroscopic tangent stiffness. There
is a number of different solutions proposed to this prob-
lem (Miehe and Koch (2002); Kouznetsova (2002)). In
the following, two approaches will be outlined and com-
pared.
The first, for instance used by Kouznetsova (2002), is
based on a condensation of the microscopic to the macro-
scopic stiffness. For this procedure, Eq. 20 is partitioned
according to

[
K̃dd K̃dα

K̃αd K̃αα

][
δud

δuα

]
=

[
0

δfα

]
. (21)

Except for the additional degrees of freedom, the index
d refers to all remaining degrees of freedom covered by
Eq. 20. A reduced stiffness matrix can be defined by

KMδuα = δfα with

KM = K̃αα − K̃αd(K̃dd)−1K̃dα . (22)

Let the matrix� denote a transformation such that δuα
i =

�i jδE j, where δE j is a matrix representation of δEi j ,
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then the macroscopic tangent stiffness is obtained by

CM =
1
V
�

T KM
� . (23)

A second approach will be introduced here. Since the
transformation between δuα and δfα is completely given
in Eq. 21, a number of n(i, j) unit strains

Δuα
i := EnΔx(α)

j with En := Ei j = 1

Δuα
k := 0 ∀ k 	= i (24)

are assigned to the FE-system, successively. The relation
between n and i, j is given in Tab. 1. Then, the linear

Table 1 : n(i, j)
n 1 2 3 4 5 6

i 1 2 1 3 1 2
j 1 2 2 3 3 3

system of equations needs to be solved for n = {1,2,3}
or n = {1, . . .,6} in the case of a 2D or 3D homoge-
nization, respectively. The resulting forces Δfα at the
additional nodes are used to compute the macroscopic
stresses by Eq. 15. These quantities correspond to the
tangent stiffness elements in CM which relate the as-
signed unit strains to the stresses in the macroscopic con-
stitutive equations.
Although the second procedure requires a number of so-
lutions of the entire system, there are the following ad-
vantages: (i) the FE stiffness matrix does not need to be
restructured according to Eq. 21 and (ii) there is no need
on the computation of an inverse matrix which is a crucial
part of the first procedure. It is observed that the second
procedure can be faster up to 40% since especially for
large models representing the unit cell the computation
of the inverse matrix is very time-consuming.

3 MODELLING STRATEGIES

Modelling composite materials with a complex rein-
forcing structure on the meso-scale causes an extensive
meshing effort if the ordinary finite element method is
used. Subsequently, in order to ease this process two ef-
ficient modelling strategies will be presented.

3.1 The Binary Model

As proposed in literature (Carter, Cox, and Fleck (1994);
Carter, Cox, McGlockton, and Xu (1995)), the Binary
Model was used to predict the mechanical properties of
composites with interlock weaves. Considering the com-
plex geometry of the reinforcing weft-knitted fabric, less
modelling and computational effort is needed compared
to a FE-Model of volume elements, only. The Binary
Model is subdivided into tows which represent the axial
stiffness of yarns and the effective medium which repre-
sents the transverse and shear stiffness and the Poisson’s
effect of the composite. In the FE-model, tows and effec-
tive medium are replaced by two-noded line and 8-node
volume elements, respectively.
Based on the geometric data obtained in section 2, a FE-
mesh representing a unit cell is generated. An example
is shown in Fig. 4.

As described in section 2, the textile reinforcement is

Figure 4 : FE-mesh of a unit cell

subjected to in-plane shear deformation if e.g. the shape
of the structural part features double-curved surfaces. To
determine the architecture of the unit cells, it is supposed
that there is a kinematic shear deformation, only. Con-
sequently the deformation due to a shear angle γ can be
expressed by[

x1

x2

]
=

[
1 sinγ
0 cosγ

][
X1

X2

]
, (25)

where Xi and xi are the coordinates of the original and the
deformed unit cell, respectively. In general, this transfor-
mation can be applied to all geometric parameters rep-
resenting the cell geometry. This requires the genera-
tion of a new mesh to each new shear angle. In view
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of a procedure which computes the macroscopic mate-
rial properties automatically, this is not an adequate ap-
proach. However, a transformation based on Eq. 25 of
nodal coordinates in an existing mesh gives a solution to
this problem.
The elastic parameters of the tow and effective medium
elements are estimated by analytical models of unidirec-
tional and biaxial composites as proposed in Carter, Cox,
McGlockton, and Xu (1995). Furthermore, the failure
strain of the matrix material is incorporated to determine
nonlinear elastic properties.

3.2 The Extended Finite Element Method

Based on the partition of unity technique (Melenk and
Babuška (1996)) the X-FEM offers the possibility to
model arbitrary discontinuities using regular finite ele-
ment meshes that do not need to match boundary layers.

3.2.1 Fundamentals

Modelling the mechanical behavior at interfaces which
are now allowed to intersect elements is realized by local
enrichment of the displacement approximation

uX-FEM = ∑
i

Ni (ui +aiF) . (26)

For that purpose additional degrees of freedom ai are in-
troduced at nodes whose support is cut by an interface
(Fig. 5 (a)). These degrees of freedom are weighted by
an enrichment function F that accounts for the charac-
ter of the interface. Ni are ordinary finite element shape
functions and ui degrees of freedom representing the dis-
placement at element node i. Discontinuities in the ap-
proximated field variable as well as its partial derivatives
are accounted for by suitable enrichment functions Be-
lytschko, Moës, Usui, and Parimi (2001).
In recent years this method was applied to a variety
of problems including crack modelling (Belytschko and
Black (1999)), crack growth (Moës, Dolbow, and Be-
lytschko (1999)) as well as material interfaces (Moës,
Cloirec, Cartraud, and Remacle (2003)).
In addition to appropriate enrichment functions for mod-
elling the mechanical behavior at an interface a suc-
cessful implementation of the X-FEM requires a reason-
able feature to localize interfaces in a regular and non-
conforming finite element mesh. The so called level-set-
method can be used to track the location of a given inter-
face in the mesh. In this context the term level-set labels

(a) Nodes with additional degrees of freedom

: =0

x

xmin

nmin

>0G :
+

<0
-

G :

(b) Illustration to the level-set-method

Figure 5 : Enriched nodes and level-set-method

a parameter curve or surface

ϕ(x, t) = c . (27)

The variables x and t indicate that the function ϕ can
depend on space and time which allows for tracking of
moving interfaces.
If c = 0 and the level-set-function ϕ is chosen as a signed
distance function

ϕ(x) = (x−xmin) ·nmin (28)

the location of the fixed interface Γ is given by ϕ = 0
where xmin is the position vector of the point on the inter-
face with the minimum distance to the considered point
at x and nmin is the associate normal unit vector. Accord-
ing to Fig. 5 (b) values larger than zero are assigned to
points in a region G+, while points in G− yield values
less than zero

ϕ

⎧⎨
⎩

= 0 on Γ ;
< 0 in G− ;
> 0 in G+ .

(29)
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In a finite element mesh values of the level-set-function
are only computed at nodes. Its distribution in the do-
main is then interpolated using the standard shape func-
tions

ϕ(x) = ∑
i

Niϕi . (30)

Due to this interpolation which limits the accuracy of the
interface approximation the mesh has to be sufficiently
refined in order to locate an interface precisely.

3.2.2 Enrichment function for material interfaces

The level-set-function is of particular importance for the
formulation of enrichment functions. If the governing
equations of the linear elastic field problem are written
as

σkl,k + fl = 0,σkl = σlk (31)

εkl =
1
2

(uk,l +ul,k) (32)

σkl = Cklmnεmn (33)

a sudden change of the coefficients Cklmn in Eq. 33 occurs
at material interfaces. This implicates a discontinuity of
stress and strain distributions perpendicular to the inter-
face.
Looking at the interpolated values of the level-set-
function in an element (Fig. 6) it can be seen that the
function itself and its first partial derivatives are continu-
ous over the interface.
Using the absolute value of the level-set-interpolation as
shown in Fig. 7 (a) is a smart way to introduce the desired
discontinuity (Sukumar, Chopp, Moës, and Belytschko
(2001))

F̃ (ϕ(x)) =

∣∣∣∣∣∑i
Niϕi

∣∣∣∣∣ . (34)

On the other hand it can be seen that the influence of the
enrichment function F̃ is not limited to the region of a
single element which is unfavorable for the definition of a
special extended finite element that is to be used together
with standard elements in the same mesh. In that case an
enrichment function that is zero at element boundaries
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Figure 6 : Interpolation of the level-set-function in an
element domain

connected to standard elements is desired. This can be
ensured by choosing the enrichment function

F (ϕ(x)) = ∑
i

Ni |ϕi|−
∣∣∣∣∣∑i

Niϕi

∣∣∣∣∣ (35)

as suggested in Moës, Cloirec, Cartraud, and Remacle
(2003) (Fig. 7 (b)).

3.2.3 Implementation

Since extending an existing program system has the clear
advantage that powerful pre-, post-processing and solu-
tion procedures can be used the practical realization is
performed in MARC/MENTAT using the user-subroutine
feature. Nevertheless, this also poses some limitations to
the flexibility of the code.
Here a special extended finite element (x-element) is
defined and integrated into the course of computations
in MARC which is illustrated in Fig. 8 (a). The user-
subroutine is called during the assembly of the global
stiffness matrix and computes element stiffness matri-
ces for all x-elements in the mesh which are then trans-
fered to MARC. In addition, the routine accomplishes the
gradient recovery for the new element type. This user-
defined element replaces original finite elements in a do-
main that is intersected by an interface as it is shown in
Fig. 8 (b).
Essential data such as material properties, location of
the interface in each element defined by the level-set-
function values ϕi at nodes, etc. is obtained during pre-
processing.
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Figure 7 : Enrichment function in an element domain
intersected by a material interface

Based on this information the integration of the element
stiffness matrix

Ke =
Z

Ωe

BT D(Cklmn)BdΩe (36)

is performed where D denotes a matrix notation of Ci jkl

acting between the stress and strain vector typical for fi-
nite element formulations. Due to the enrichment the in-
tegrand and more precisely the matrix B, that contains
partial derivatives of shape and enrichment functions, is
discontinuous over the interface Γ. Therefore, the ele-
ment is divided into integration sub-domains Ωs applying
DELAUNAY triangulation in the two-dimensional case or

Definition of new
x-element

Assembly of stiffness matrix

MARC

Solution
(displacement)

Gradient recovery

(a) Implementation of user-defined elements in MARC

(b) X-elements in a regular X-FEM mesh

Figure 8 : Implementation of the X-FEM

hex-tet subdivision in three dimensions respectively

Z
dΩe ⇒ ∑

s

Z
dΩs . (37)

4 APPLICATION TO COMPOSITES

4.1 X-FEM

As it was mentioned in 3.2 the major benefits of X-FEM
like regular meshes and reduced meshing effort while re-
taining all advantages of the finite element approach have
been demonstrated recently. However, changing from
academic examples to practical tasks raises new ques-
tions and problems. During the application to composite
materials with a considerably complex reinforcing struc-
ture on the meso-scale two key aspects can be identified.
Due to the complex geometry an analytical description
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of the material interface is virtually impossible. Hence,
computation of level-set-values is more difficult as dis-
crete representations of the interface might lead to am-
biguous results. In addition, the model of a RVE gen-
erally includes multiple fibers which necessitates several
sets of level-set-functions and extensive computations.
Furthermore, even on a meso-scale level yarns exhibit
in general an anisotropic material behavior. Given that
the yarn consists of isotropic fibers a transverse isotropic
material behavior is common. Regarding woven fabrics
a variable orientation has to be considered.
These topics are to be handled by an automated model
generation algorithm.

4.1.1 Automated Model Generation

It was stated above that due to the complexity of the
reinforcement structure a closed analytic description of
the interface is hardly possibly. Hence, a discrete rep-
resentation of the material interfaces in the considered
domain is needed. Since the layout of the reinforcement
is often imported from CAD systems a connection
between level-set-method and CAD geometries has to be
established. For this reason the following general outline
of an automated model or mesh generation procedure is
proposed.
The starting point is a solid volume model of the rein-
forcing structure such as in Fig. 9 (a). MARC/MENTAT

offers a variety of interfaces to import geometry models
for that purpose.
In a second step a regular X-FEM mesh which is fine
enough to approximate the internal material boundaries
in a sufficient way is defined and superposed to the
reinforcement geometry.
Now, for each element it is checked if the element
intersects any of the defined fiber volumes using boolean
operations and appropriate case differentiation. The
result for a demonstrative example taken from Moës,
Cloirec, Cartraud, and Remacle (2003) with straight
fibers is shown in Fig. 9 (b) and (c).
Elements that are cut by the boundary of a reinforcement
volume are set to be x-elements. Those elements
completely inside a reinforcement volume remain
ordinary finite elements and are assigned with material
properties of the fiber. Those outside the reinforcement
volumes are ordinary elements as well but belong to the
matrix material. In this vein element type and material
allocation are determined for each element during the

(a) CAD model of the re-
inforcing structure

(b) Overlay of regular X-
FEM mesh

x-elements

ordinary finite
elements

(c) Resulting regular X-FEM mesh

Figure 9 : Automated generation of a X-FEM mesh

automated mesh generation process.
For defining the orientation of the material principal axis
in the elements each of the reinforcement volumes is
provided with an initial orientation. Variations from this
configuration that occur in the course of crimped fibers
are acquired from a moving trihedron whose direction is
computed from the tangent vector of the fiber centerline
and the initial state.
If the considered element turns out to be an x-element

its domain is divided into material subspaces (Fig. 10
(a)). The common vertices of these material volumes
form a discrete representation of the material interface
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(a) Materials in the element domain

(b) Resulting DELAUNAY subdivision

Figure 10 : Element subdivision according to material
sub-domains

whose intersection with the element faces are straight
lines.
In addition, these interface vertices and the nodes of
the element are the input for the DELAUNAY hex-
tet-subdivision creating tetrahedral integration spaces
as it is illustrated in Fig. 10 (b). They are assigned
with appropriate material properties for the integration
process.
Now the values of the level-set-function ϕi at the element
nodes - essential for the formulation of the enrichment
function - are computed with respect to the interface
resulting from the element subdivision. In this way
it is possible to determine the level-set-values only
at enriched nodes which saves numerical costs and
facilitates the necessary distance computations.
Nevertheless, there is one hitch with level-set-
representation of the interface computed on the

(a) Geometry model of reinforcement

x-elements

ordinary finite
elements

(b) X-FEM mesh

Figure 11 : Modelling of biaxial weft knit fabric

element level. If a curved interface is approximated
two adjacent elements provide different values of the
level-set-function at joined nodes. Although the result-
ing approximation of the level-set-function ϕ(x) is still
continuous over the element boundary the displacement
field will be discontinuous which might affect the
convergence behavior of the problem.
On the other hand, averaging the level-set-function val-
ues at respective nodes which could ensure the desired
continuity of the displacement field leads to a mismatch
between the interpolation of ϕ and the boundaries
of the integration tetrahedra. As a consequence the
continuity of the integrand in each sub-domain cannot be
guaranteed which might yield wrong integration results.

A biaxial glass epoxy fabric will be considered as ex-
ample for the application of X-FEM to composite mod-
elling. The geometry of the reinforcing structure in the
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RVE is shown in Fig. 11 (a).

4.1.2 Example - biaxial fabric

Table 2 : Material parameters for yarn.

Parameter E1 E2 E3

Value 45.9 GPa 11.6 GPa 11.6 GPa
G12 G23 G13

4.0 GPa 3.5 GPa 4.0 GPa
ν12 ν23 ν13

0.3001 0.6677 0.3001

Table 3 : Comparison of effective macroscopic material
parameters.

Parameter X-FEM FEM
C1111 [GPa] 19.8 19.5
C2222 [GPa] 20.2 20.3
C3333 [GPa] 11.7 11.7
C1122 [GPa] 6.4 6.4
C1133 [GPa] 6.9 6.9
C2233 [GPa] 6.9 6.9
C2323 [GPa] 1.9 1.9
C1313 [GPa] 2.0 2.0
C1212 [GPa] 2.0 2.0

Material parameters for warp and weft yarns are obtained
from fiber and matrix properties using a rule of mixture.
They are given in Tab. 2 with respect to the global co-
ordinate system and characterize a transverse isotropic
material behavior.

The matrix is isotropic with a Young’s-Modulus of
E = 3.0 GPa and a Poisson’s ratio ν = 0.4. Effective
macroscopic stiffness parameters are sought after.
To this end the automated model generation procedure
is used to create a X-FEM mesh for the RVE. From
Fig. 11 (b) it can be observed that the resulting mesh in
not completely regular. This is due to branching material
interfaces in the model which cannot be treated with
the defined x-element. A solution to this problem is in
process and will remove this restriction.

(a) Normal mode 〈ε11〉 = 1, plot shows σ11

(b) Shear mode 〈ε13〉 = 1, plot shows σ13

Figure 12 : Typical deformation modes

Eventually, periodic boundary conditions according to
Eq. 13 are applied to the model including additional de-
grees of freedom at boundary nodes. Then each of the
considered deformation modes is solved in MARC and
mesoscopic stress fields are obtained. Fig. 12 shows the
results for two typical deformation modes.

The desired effective stiffness properties are then com-
puted by averaging these distributions. The resulting
macroscopic material parameters are given in Tab. 3. A
good agreement of the results received from the X-FEM
model and a finite element reference solution is recog-
nized. Furthermore, the ease of meshing of sharply ta-
pered matrix domains between the fibers being a funda-
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mental advantage of X-FEM over classical FEM mod-
elling is noticed in this example.

4.2 The simulation of the tensile test
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Figure 13 : Load-strain results

The macroscopic material behavior of textile reinforced
composites and the results obtained by simulation pro-
cedures are verified by tensile tests. The dimensions of
the specimen are as follows: length l = 250 mm; width
b = 50 mm and thickness d = 2.4 mm. The demand
for an uni-axial stress state requires a cross-sectional di-
mension of the specimen which is much smaller than the
length. Due to the characteristic length scale of the re-
inforcement, the composite specimen cannot be defined
according to such a criteria. Consequently, the stress and
strain state over this rectangular specimen is neither ho-
mogeneous nor uni-axial. For this reason, a multi-scale
simulation of the tensile test is verified by the test results.
During the test procedure, a non-contacting laser exten-
someter is used to measure the change of the distance of
two markers which are placed on the specimen surface in
a distance of 50 mm. A strain value is computed based on
the initial distance of these markers. Five specimens with
one particular orientation of the textile reinforcement are
tested. Variations can be found between the sets of mea-
suring data. These are caused by e.g. a fluctuating orien-
tation of the textile reinforcement. Hence the grey filled
area in Fig. 13 represents the range of the load-strain re-
lations obtained by the experimental tests.
The results of an test-equivalent simulation is depicted

in the same diagram. A good agreement can be found
comparing test and simulation results.

4.3 The elevator bucket

Buckets as shown in Fig. 14 are the essential components
of a conveyor which is used to elevate certain materials.
Conventionally, the buckets are made of steel. However,

Figure 14 : Elevator bucket

a non-metallic bucket has several advantages such as: (i)
the lightweight mode of the construction, (ii) the chemi-
cal resistance and (iii) the food-compatibility.
In Fig. 15 a picture of the textile preform is presented.
The grid of black lines emphasizes the orientation and
shear deformation due to the draping process. The devel-
opment of a FE-model can be subdivided into following
steps:

1. To generate the geometry of the structural part in the
FE-preprocessor an standard interface to a CAD-
program is used.

Figure 15 : Textile preform
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2. The surface data and the location of the grid points
shown in Fig. 15 are evaluated by the 3D optical
measuring system ARAMIS.

3. The data measured by ARAMIS are integrated into
the FE-preprocessor. The related surfaces are sub-
divided according to the grid points.

4. After the generation of the FE-mesh each finite ele-
ment can be associated to a certain area. This in turn
defines the global orientation and the shear defor-
mation of the textile reinforcement. With the help of
the user-subroutine usermat provided by the UPF’s,
the material properties are computed based on the
procedure outlined in section 3.1 and the principle
directions are adjusted.

To verify the results of this modelling and simulation
strategy, experimental investigations are performed. For
this, a bucket is filled with steel balls whose total weight
amounts 60 kg. The deformation caused by this load
is measured by ARAMIS. The boundary conditions of
the FE-model are defined according to the experimen-
tal set-up. Due to the symmetry in the construction and
the load, it is sufficient to consider a half of the bucket,
only. In Fig. 16, the FE-model is shown. The color scale

Figure 16 : FE-model of the elevator bucket

is adjusted according to the total displacement. The di-
agram shown in Fig. 17 compares a displacement mea-
sured by ARAMIS and computed by the FE-simulation.
The two curves in this graph represent the total displace-
ment along the cutting edge of the bucket. The very good
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Figure 17 : Verification of the total displacement

agreement of these results demonstrate the usability of
this procedure.

5 CONCLUSION

A multi-scale homogenization procedure as well as a new
x-element formulation are implemented into commercial
FE-programs. The successful application of two differ-
ent modelling strategies - Binary Model and X-FEM -
to complex structured composite materials demonstrates
their usability and advantages.
However, there is still a lot of work to be done in order
to advance the flexibility, performance and reliability of
these methods. Related current research is addressed to
following problems:

• The computational multi-scale procedure demands
for extremely high numerical power to reduce the
computational time. This can be achieved e.g. by
the enhanced performance of multi-processor tech-
nology.

• Already under small load or deformation most com-
posite materials exhibit a non-linear material behav-
ior. Further research is required to analyze and im-
plement these processes into the modelling and sim-
ulation strategies.

• The generation of a model representing a compos-
ite with any reinforcing architecture in the frame
work of the X-FEM without adaptation of the regu-
lar mesh requires a x-element formulation including
two material boundary surfaces.
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