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Nonlinear Dynamical Analysis in Incompressible Transversely Isotropic
Nonlinearly Elastic Materials: Cavity Formation and Motion in Solid Spheres

X.G. Yuan1 and R.J. Zhang2

Abstract: In this paper, the problem of cavity for-
mation and motion in an incompressible transversely
isotropic nonlinearly elastic solid sphere, which is sub-
jected to a uniform radial tensile dead load on its surface,
is examined in the context of nonlinear elastodynamics.
The strain energy density associated with the nonlinearly
elastic material may be viewed as the generalized forms
of some known material models. It is proved that some
determinate conditions must be imposed on the form of
the strain energy density such that the surface tensile
dead load has a finite critical value. Correspondingly, as
the surface tensile dead load exceeds the critical value,
a cavity would form in the interior of the sphere and the
motion of the formed cavity with time would present a
class of singular nonlinear periodic oscillations. The ef-
fects of constitutive parameters on cavity formation and
motion are discussed in detail, and the corresponding nu-
merical examples are given simultaneously.

keyword: Nonlinear elastodynamics, Cavity formation
and motion, Incompressible transversely isotropic non-
linearly elastic material, Classical (or generalized) peri-
odic solution, Nonlinear periodic oscillation.

1 Introduction

In applications, many engineering materials form cavities
(or voids) in various deformation processes as precur-
sors to failure. Thus prediction of cavity formation and
growth in materials has long been of concern for many
investigators who engage in engineering and technology.

The phenomenon of sudden cavity formation (cavitation)
has been observed experimentally in vulcanized rubber
by Gent and Lindly (1958). Many similar phenom-
ena have been observed since then. See Willams and
Schapery (1965), Beahan et al. (1976), and so on. The
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impetus for nonlinear theories of solid mechanics frame-
work on cavity formation and growth was supplied by
the work of Ball (1982). Moreover, the notion bifur-
cation was emphasized by Ball (1982) who formulated
the problem of modeling cavity formation in the con-
text of nonlinear elastostatics. Thereafter, many signif-
icant works have been carried out. See the review arti-
cles, by Polignone and Horgan (1995) and by Yuan et al.
(2005a), for comprehensive reviews for both incompress-
ible and compressible materials. In particular, cavitation
for a class of transversely isotropic nonlinearly elastic
materials was studied by Polignone and Horgan (1993),
and the effect of material anisotropy on cavity formation
and growth in incompressible nonlinearly elastic solids
was also examined in their work. Further representative
references on this aspect are Murphy and Biwa (1997),
Shang and Cheng (2001), Ren and Cheng (2002), Yuan
and Zhang (2005). The above investigations show the
advance of cavitation in the context of nonlinear elas-
tostatics. However, the analogous dynamic problem is
relatively unexplored. The problems of the radial os-
cillation was studied by Knowles (1960) for a cylindri-
cal tube composed of an isotropic incompressible hyper-
elastic material, and an expression for the period of os-
cillation was given in terms of the strain energy function
associated with the hyper-elastic materials in his work.
The finite oscillation of nonlinear elastic spherical shells
was examined by Calderer (1983), and the dynamical
mechanisms of the motion of the shells were analyzed.
Cavitation in nonlinear elastodynamics for isotropic neo-
Hookean materials was investigated by Chou-Wang and
Horgan (1989), and that the motion of the formed cav-
ity is nonlinear oscillation was pointed out. Recently, the
radial symmetric motion problem has been examined by
Yuan et al. (2005b) for a spherical shell composed of
a class of imperfect incompressible hyper-elastic materi-
als, and the effects of the prescribed imperfection param-
eter of the material and the ratio of the inner and the outer
radii of the undeformed shell on the motion of the inner
surface of the shell have been discussed.
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The purpose of this paper is to study, in the context
of nonlinear elastodynamics, the problem of cavity for-
mation and motion in a solid sphere, composed of an
incompressible transversely isotropic nonlinearly elas-
tic material, which is subjected to a uniform radial ten-
sile dead load on its surface. The strain energy density
associated with the nonlinearly elastic material can be
viewed as the generalized forms of some known mate-
rial models, such as the neo-Hookean material model, the
Mooney-Rivlin material model, the Rivlin-Saunders ma-
terial model, the Gent-Thomas material model, and so
on. In Section 2, the basic governing equations with the
initial and the boundary conditions of the problem are
proposed. A second-order nonlinear ordinary differential
equation that describes cavity formation and motion with
time is obtained. In Section 3, the existence conditions
of the equilibrium points of the differential equation are
first presented, correspondingly, some determinate con-
ditions must be imposed on the form of the strain en-
ergy density. The classification of the equilibrium points
is then carried out. To better understanding the conclu-
sions obtained in this paper, we introduce an incompress-
ible transversely isotropic Gent-Thomas material model.
By using the phase diagrams of the differential equation,
the classification of the periodic solutions are carried out
for any initial conditions and for any given parameters.
Meanwhile, the effects of constitutive parameters on pe-
riodic solutions are examined and the corresponding nu-
merical examples are also carried out. In particular, for
solutions satisfying the zero initial condition, the differ-
ential equation has the generalized periodic solution of
the first kind only when the surface tensile dead load ex-
ceeds a certain critical value. In other words, as the sur-
face tensile dead load exceeds the critical value, a cavity
would form in the interior of the sphere and the motion
of the formed cavity with time would present a class of
singular nonlinear periodic oscillations.

2 Formulation

2.1 Basic governing equations

Assume that a solid sphere with radius b is com-
posed of a homogeneous, incompressible, nonlinearly
elastic material. Consider the radial symmetric mo-
tion of the sphere, which is subjected to a uniform
radial tensile dead load on its surface. The result-
ing deformation takes the point with Cartesian coor-

dinates (RsinΘcosΦ,RsinΘ sinΦ,RcosΘ) to the point
(r sinθcosφ,r sinθ sinφ,r cosθ) at time t. Under the as-
sumption of radial symmetric deformation, we have

r = r(R, t) > 0,0 < R ≤ b; Θ = θ,Φ = φ (1)

where r(R, t) is the radial deformation function to be de-
termined. The principal stretches are given by

λr =
∂r(R, t)

∂R
,λθ = λφ =

r(R, t)
R

(2)

For nonlinearly elastic materials, it is known that the re-
sponse of the material can be described completely by the
form of the strain energy density. Moreover, the strain
energy density per unit undeformed volume for a non-
linearly elastic material which is transversely isotropic
about the radial direction is given by (see e.g. Polignone
and Horgan (1995))

W = W (I1, I2, I3, I5) (3)

where

I1 = trC = λ2
r +λ2

θ +λ2
φ (4)

I2 =
1
2
[(trC)2trC2] = λ2

r λ2
θ +λ2

θλ2
φ +λ2

r λ2
φ (5)

I3 = detC = λ2
r λ2

θλ2
φ (6)

I5 = C11 = λ2
r (7)

are the four strain invariants of the right Cauchy-Green
deformation tensor C.

For incompressible materials, the incompressibility con-
dition requires that I3 = J2 = λ2

r λ2
θλ2

φ = 1, with (2), so we
have

r = r(R, t) =
[
R3 +c3(t)

]1/3 (8)

where c(t) ≥ 0 is to be determined, which denotes the
value of cavity radius of the sphere at time t. c(t) = 0
implies that the sphere remains a solid sphere in the cur-
rent configuration. If it is found that c(t) > 0, then it im-
plies that there is a cavity with radius r(0+, t) = c(t) > 0
centered at the origin in the current configuration at time
t.

For studying conveniently, (8) is rewritten as

R =
[
r3 −c3(t)

]1/3 (9)
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and so (2) can be rewritten as

λr = (1− c(t)3

r3 )2/3,λθ = λφ = (1− c(t)3

r3 )−1/3 (10)

The nonzero components of the Cauchy stress tensor
for transversely isotropic incompressible materials about
radial direction are given by (Polignone and Horgan
(1995))

τrr(r, t) = −p(r, t)+2(λ2
r

∂W
∂I1

−λ−2
r

∂W
∂I2

+λ2
r

∂W
∂I5

) (11)

and

τθθ(r, t)= τφφ(r, t)=−p(r, t)+2(λ−1
r

∂W
∂I1

−λr
∂W
∂I2

) (12)

where p(r, t) is the hydrostatic pressure associated with
the incompressible constraint J = λrλθλφ = 1.

In the absence of body force, the equilibrium differential
equation that describes the radial symmetric motion of
the sphere is given by

ρr̈ =
∂τrr(r, t)

∂r
+

2
r

[τrr(r, t)−τθθ(r, t)] (13)

where ρ is a constant mass density of the material.

In this work, we shall assume that the strain energy den-
sity function W has the form

W = f (I1)+g(I2)+h(I5) (14)

where the nonlinear functions f ,g and h are assumed to
be twice continuously differentiable.

It is worth noting here, as f ,g and h take certain spe-
cial functions, the strain energy density corresponds to
some classical nonlinear elastic material models, such
as the well-known neo-Hookean material model, the
Mooney-Rivlin material model, the Rivlin-Saunders ma-
terial model, the isotropic Gent-Thomas material model,
and so on. (The detail discussions of the strain energy
density function can be found in Yuan and Zhang (2005))

Next we carry out the initial and the boundary conditions
of the problem.

At the center of the sphere, one of the boundary condi-
tions is given by

r(0+, t)τrr(r(0+, t), t)= 0, t ≥ 0 (15)

(15) here means that, if no cavity forms in the sphere,
we have r(0+, t) = 0, if it is found that a cavity with
radius r(0+, t) = c(t) > 0 forms, then the condition for
the traction-free cavity surface, τrr(r(0+, t), t) = 0 must
hold.

The other boundary condition, for a prescribed load p0 >
0 that is suddenly applied and maintained at the surface
of the sphere, is given by

τrr(r(b, t), t)= p0

[
b

r(b, t)

]2

, t ≥ 0 (16)

Assume that the sphere is in an undeformed state and at
rest at time t ≤ 0, so we have the initial conditions

r(R,0) = R, ṙ(R,0) = 0 (17)

Thus, the initial-boundary value problem, which de-
scribes the radial symmetric motion of a homogeneous,
incompressible transversely isotropic nonlinearly elastic
solid sphere under a uniform surface radial tensile dead
load p0 > 0, is composed of Eqs.(8), (11), (12), (13),
(14), the initial-boundary conditions (15), (16) and (17).

2.2 Solutions of the Problem

By introducing the notation

η = η(r,c(t)) = (1− c(t)3

r3 )1/3 (18)

we have λr = η2, λθ = λφ = η−1. Moreover,

I1 = η4 +2η−2, I2 = η−4 +2η2, I5 = η4 (19)

and thus the strain energy density (14) can be written as

W = Ŵ(η) = f (η4 +2η−2)+g(η−4 +2η2)+h(η4) (20)

Further, (11), (12) and (13) can be respectively written as

τrr(r, t) = −p(r, t)+2(η4 f ′ −η−4g′+η4h′) (21)

τθθ(r, t) = τφφ(r, t) = −p(r, t)+2(η−2 f ′ −η2g′) (22)

and

ρr̈ =
∂τrr(r, t)

∂r
+

4
r

[
(η4 −η−2)( f ′+η−2g′)+η4h′

]
(23)

From (8) and (17), the initial conditions become

c(0) = 0, ċ(0) = 0 (24)
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Using (8), we also have

r̈ = 2c(t)r−5(r3 −c(t)3) (ċ(t))2 +c(t)2r−2c̈(t) (25)

on the other hand, it is not difficult to show that

r̈ =
∂
∂r

[(
c(t)4

2r4 − 2c(t)
r

+
3
2

)
(ċ(t))2

+c(t)
(

1− c(t)
r

)
c̈(t)

]
(26)

Substituting (21), (22) into (23), and integrating it with
respect to rfrom c(t) to r, we then obtain

ρ
[(

c(t)4

2r4 − 2c(t)
r

+
3
2

)
(ċ(t))2 +c(t)

(
1− c(t)

r

)
c̈(t)

]

= τrr(r, t)−τrr(c(t), t)

+4
Z r

c(t)

(η4 −η−2)( f ′+η−2g′)+η4h′

ξ
dξ (27)

where in the integral,

η = η(ξ,c(t)) = (1− c(t)3

ξ3 )1/3 (28)

Let R = b in Eq.(27) and notice r(0+, t) = c(t), from the
boundary conditions (15) and (16), we have

ρc(t)
[(

c(t)4

2S4 − 2c(t)
S

+
3
2

)
(ċ(t))2

+c(t)
(

1− c(t)
S

)
c̈(t)

]

−4c(t)
Z S

c(t)

(η4 −η−2)( f ′+η−2g′)+η4h′

ξ
dξ

−c(t)p0

(
b
S

)2

= 0 (29)

where S = r(b, t) = (b3 +c(t)3)1/3.

In what follows, it is convenient to introduce the dimen-
sionless quantities

x = x(t) =
c(t)
b

, ẋ = ẋ(t) =
ċ(t)
b

(30)

so the initial conditions in (24) become

x(0) = 0, ẋ(0) = 0 (31)

Moreover, the dimensionless form of Eq.(29) is written
as

F(x)ẍ+G(x)ẋ2 +H(x, p0) = 0 (32)

where

F(x) = ρb2x2
(

1− x

(1+x3)1/3

)
= xF̃(x) (33a)

G(x) = ρb2x

(
x4

2(1+x3)4/3
− 2x

(1+x3)1/3
+

3
2

)

= xG̃(x) (33b)

and

H(x, p0) = −p0x(1+x3)−2/3 +xq(x)
= xH̃(x, p0) (33c)

in (33c), q(x) is given by

q(x) = −4
Z b(1+x3)1/3

bx

(η4 −η−2)( f ′+η−2g′)+η4h′

ξ
dξ

(34)

By using the relation between η(ξ,c(t)) and ξ (see (28)),
(34) can be rewritten as

q(x)= 4
Z (1+x3)−1/3

0

(η6 −1)( f ′+η−2g′)+η6h′

η3 −1
dη (35)

Obviously, for arbitrary prescribed p0 > 0, x ≡ 0 is a so-
lution of Eq.(32) and it corresponds to the homogeneous
deformation solution r(R, t) = R of the solid sphere.
However, if there exists x ≥ 0 satisfying Eq.(32) and the
initial condition (31), then it implies that a cavity would
form in the sphere, and then set into motion with time.
Thus, it is necessary to investigate the motion rule of the
formed cavity.

The second-order nonlinear ordinary differential equa-
tion (32) provides exactly a relationship between the ten-
sile dead load p0 and the cavity radius x. Thus we call
Eq.(32) the formation and motion equation of cavity.

3 Nonlinear dynamical analyses of Eq.(32)

Let y = ẋ, then Eq.(32) is equivalent to the first order
differential equations(

ẋ
ẏ

)
=

(
y

L(x,y)

)
(36)

where L(x,y) = −H̃(x,p0)−G̃(x)y2

F̃(x) .
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3.1 Existence conditions of equilibrium point of
Eq.(36)

Obviously, the equilibrium point of Eq.(36) is (x,y) =
(x,0), where x is a positive real solution of equation
H̃(x, p0) = 0. However, whether x exists or not depends
exactly on the given value of p0 > 0.

From (33c), we have

p0 = (1+x3)2/3q(x) (37)

Let x → 0+, this leads to

pcr = q(0) = 4
Z 1

0

(η6 −1)( f ′+η−2g′)+η6h′

η3 −1
dη (38)

Since the integral of Eq.(38) is improper, whether pcr is
finite or not depends strictly on the concrete form of the
strain energy density.

By using the method proposed by Yuan and Zhang
(2005), we obtain the following conditions that f ,g and
h must satisfy such that pcr is finite.

From the strong convex condition of the strain energy
density (see Ball (1982)), as η → 0, we obtain

f (η4 +2η−2) = O
(
(η4 +2η−2)α)

(39)

g(η−4 +2η2) = O
(
(η−4 +2η2)β

)
(40)

where 1
/

2 ≤ α < 3
/

2,0 < β < 3
/

4.

As η → 1, from the normalization conditions (Polignone
and Horgan (1995)), the following expressions must be
valid

h(η4) = O
(
(η4 −1)γ) (41)

dŴ(1)
dη

= 0,
d2Ŵ(1)

dη2 = 24 f ′(3)+24g′(3)+16h′′(1)

(42)

where γ ≥ 2. Moreover, it is required that f ′(3),g′(3) and
h′′(1) must be positive finite values as η → 1.

In summary, for the strain energy density (20), if f ,g and
h respectively satisfy the conditions (39)∼(42), one can
see that pcr is finite.

We now consider the local character of Eq.(37) at x = 0
by analyzing the curve of p0 = p0(x). A Taylor expan-
sion of the right hand of Eq.(37) shows that

p0 = q(0)+
2
3

Mx3 +o
(
x3) as x → 0 (43)

where

M = q(0)− 1
6

d2Ŵ(1)
dη2 (44)

From the above analyses, we have

Conclusion 1 (i) As M > 0, the curve of p0 = p0(x)
(Eq.(37)) increases monotonously with respect to x, this
means that Eq.(36) has a unique equilibrium point (x1,0)
only when p0 > pcr;

(ii) As M < 0, the curve of p0 = p0(x) decreases
monotonously with respect to x in the sufficient small
neighborhood of x = 0. However, it can be shown that
(1+x3)2/3q(x)→ ∞ as x→∞, that is to say, there exists a
minimal point, written as (xm, pm), on the curve, and thus
the curve decreases monotonously with respect to x as
0 < x < xm and increases monotonously as x > xm. This
implies that Eq.(36) has two equilibrium points (x2,0)
and (x3,0) (x2 < xm < x3) as pm < p0 < pcr and has a
unique equilibrium point (x4,0) as p0 > pcr.

To better understanding the conclusions obtained in this
paper, assume that the sphere is composed of a trans-
versely isotropic Gent-Thomas material model, in which
the corresponding strain energy density function is given
by

W (I1, I2, I5) =
µ1

2
[(I1−3)+δ ln(I2 −2)

+ε(I3
5 −3I5 +2)] (45)

whereδ = µ2/µ1, and µ1,µ2 > 0 are material constants
in the state of infinitesimal deformations. ε ≥ 0 is a di-
mensionless parameter which serves as a measure of the
anisotropic degree about radial direction of the material.
If ε = 0, the corresponding nonlinearly elastic material is
isotropic (Gent and Thomas (1958)). While if ε 	= 0, the
corresponding nonlinearly elastic material is called the
transversely isotropic Gent-Thomas material.

Obviously, the strain energy density (45) satisfies the
conditions (39)∼(42).

It is worth pointing out here, for other transversely
isotropic hyper-elastic material models satisfying the
conditions (39)∼(42), the conclusions are similar to
those obtained in this paper.

Using the notation (18), we have

Ŵ (η) =
µ1

2
[(η4 +2η−2 −3)+δ ln(η−4 +2η2 −2)

+ε(η12 −3η4 +2)] (46)
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Figure 1 : Regions partitioned by k(δ,ε) = 0.

Substitution from (46) into (38) yields

pcr/µ1=̇2.5+1.2551δ+1.7763ε (47)

Moreover, (43) becomes

p0/µ1 = (2.5+1.2551δ+1.7763ε +
2
3

k(δ,ε)x3

+o(x4)) as x → 0+ (48)

where

k(δ,ε) = 0.5−0.7449δ−6.2237ε (49)

In this case, M >(or < 0) in (43) is equivalent to
k(δ,ε) >(or < 0) in (49) for the strain energy density
(45).

We divide the parameter plane (δ,ε) into two regions by
the line k(δ,ε) = 0, as shown in Fig.1. The regions are
denoted by

Ω1 = {(δ,ε) | 0 ≤ δ ≤ 0.6712,0≤ ε ≤ 0.0803,

k(δ,ε) > 0} (50)

Ω2 = {(δ,ε) | δ ≥ 0,ε ≥ 0,k(δ,ε) < 0} (51)

Corresponding to Conclusion 1, the curves of p0 = p0(x)
are shown in Fig.2 for the strain energy density (45) as
the parameters, δ,ε, satisfy k(δ,ε) >(or < 0).

3.2 Classification of equilibrium points

Corresponding to the equilibrium point (xi,0), we con-
sider the eigenvalues of the linearization equation of
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Figure 2 : Example curves for p0(x)∼ x.

Eq.(36), i.e.,

λ1,2 = ±
[−H̃x(xi, p0)

F̃(xi)

] 1
2

(52)

where xi is a positive real solution of H̃(x, p0) = 0.

The following conclusions are valid:

Conclusion 2 For M > 0 and for the prescribed p0 > pcr,
the unique equilibrium point (x1,0) of Eq.(36) is a center.

Proof. For p0 > pcr, Eq.(36) has a unique equilib-
rium point (x1,0). From Conclusion 1, we know that
H̃x(x1, p0) > 0, that is to say, λ1 and λ2 are two pure
imaginary eigenvalues with opposite sign, and thus the
equilibrium point (x1,0) is a center of the linearized
equation. Since L(x,−y) = L(x,y) and (x1,0) is the
unique equilibrium point in its sufficient small neighbor-
hood, from the Symmetry Principle, (x1,0) is also a cen-
ter of Eq.(36).

Conclusion 3 For M < 0 and for pm < p0 < pcr, the
equilibrium point (x2,0) is a saddle point and the equi-
librium point (x3,0) is a center of Eq.(36); For p0 > pcr,
the unique equilibrium point (x4,0) is a center.

Proof. For pm < p0 < pcr, Eq.(36) has two equilibrium
points, (x2,0) and (x3,0) (x2 < xm < x3). From Conclu-
sion 1, we know that H̃x(x2, p0) < 0 and H̃x(x3, p0) > 0.
For (x2,0), λ1 and λ2 are two real eigenvalues with op-
posite sign, and thus (x2,0) is a saddle point of the lin-
earized equation and is also a saddle point of Eq.(36).
For (x3,0), similar to the proof of Conclusion 2, λ1 and
λ2 are pure imaginary eigenvalues with opposite sign, in
this case, (x3,0) is a center of Eq.(36).
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Similarly, for p0 > pcr, (x4,0) is a center of Eq.(36).

3.3 Qualitative properties of solutions

In this subsection, we first define three classes of periodic
solutions, as follows,

Definition 1 If x = x(t) is a periodic solution of period
T , and is smoothing enough at any time t, we then call it
the classical periodic solution.

Definition 2 If x = x(t) is a periodic solution of period T ,
and if the left- and right-limit of ẋ = dx

/
dt exist but do

not equal each other at certain times, we then call it the
generalized periodic solution of the first kind.

Definition 3 If x = x(t) is a periodic solution of period
T , and if at least a value of ẋ = dx

/
dt does not exist at

certain times, we then call it the generalized periodic
solution of the second kind.

To further study the qualitative properties of the solutions
of Eq.(32), we now present some necessary information.

It is not difficult to shown that d(x2F̃(x))
dx = 2x2G̃(x). Mul-

tiplying both sides of (32) by xẋ, and then integrating it
with respect to t, we obtain the first integral

E =
1
2

x2F̃(x)ẋ2 +V (x, p0) (53)

where E is a energy constant which is related to the initial
conditions, and

V(x, p0) =
Z x

0
ξ2H̃(ξ, p0)dξ (54)

From (53), we know that, if there exists x > 0 such that
E −V (x, p0) > 0, the implicit solution of Eq.(32) is then
given by

±
Z x

x0

(
z2F̃(z)

2(E−V (z, p0))

)1/2

dz = t − t0 (55)

where x(t0) = x0 is the initial condition.

If the solutions of Eq.(32) satisfy the initial condition
x(0) = 0, we get E = 0 form (53), i.e.,

1
2

x2F̃(x)ẋ2 +V (x, p0) = 0 (56)

It is worth noting here, from (32) and (56), the following
expressions are valid as t → 0+

ẋ(0+) = ±
(

2(p0−q(0))
3ρb2

)1/2

, ẍ(0+) =
2(p0−q(0))

6ρb2

(57)

namely, ẋ(0+) and ẍ(0+) are determined uniformly.
That is to say, the first derivative of x(t) is discontinuous
at the initial moment t = 0 (see (31)). In this case, we call
Eq.(32) the singular second-order nonlinear ordinary dif-
ferential equation with the initial condition x(0) = 0. On
the other hand, if the solutions satisfy the initial condi-
tion x(0) = x0 	= 0, to determine the solutions of Eq.(32)
completely, another initial condition ẋ(0) = ẋ0 must also
be given. In this case, for the prescribed p0 and for the
initial conditions x0 and ẋ0, we have

E0 =
1
2

x2
0F̃(x0)ẋ2

0 +V (x0, p0) (58)

and x is then determined implicitly by Eq.(55).

It is necessary to study the relationship between V(x, p0)
and p0. For this, we examine the equation Vx(x, p0) =
x2H̃(x, p0) = 0 for p0 > 0. On the other hand, from (54),
we know that Vxx(x, p0) and H̃x(x, p0) have the same sign
for p0 > 0and x satisfying H̃(x, p0) = 0.

Obviously, V(0, p0) = 0 and lim
x→+∞

V(x, p0) = +∞ are

valid for any prescribed p0 > 0.

From Conclusion 1, we know that:

(i) As M > 0, from the dashed shown in Fig. 2, we have
(a) For the prescribed p0 < pcr, H̃(x, p0) = 0 has no pos-
itive nonzero real solution, and thus V (x, p0) has no criti-
cal point and increases monotonously relating to x, more-
over, V (x, p0) > 0 for any x > 0; (b) For p0 > pcr, since
H̃(x, p0) = 0 has a unique positive real solution x1, and
H̃x(x1, p0) > 0, V(x, p0)takes the minimum at x1, more-
over, from V(0, p0) = 0, we have V (x1, p0) < 0.

Further, from lim
x→+∞

V (x, p0) = +∞, we can conclude that

there must exist a nonzero value of x ∈ (x1,+∞), written
as xu, such that V(xu, p0) = 0. That is to say, for p0 > pcr,
we have V(x, p0) < 0 as 0 < x < xu.

Fig.3 shows the curves of V(x, p0) ∼ x associated with
the strain energy density (45) for different values of
p0/µ1 as (δ,ε) = (0.5,0.01)∈ Ω1.

For the prescribed value of p0 < pcr, the phase diagrams
of Eq.(32) are shown in Fig.4. For any prescribed initial
conditions x0 > 0 and ẋ0, it is easy to show that E0 > 0
and lim

x→0+
ẋ = +∞ from (53) and (58). In this case, the

phase diagrams of Eq.(32) are not closed.

For the prescribed p0 > pcr, the phase diagrams of
Eq.(32) are shown in Fig.5. The trajectories correspond-
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Figure 3 : Example curves of V (x, p0) ∼ x in Ω1 as
(δ,ε) = (0.5,0.01).
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Figure 4 : Example phase diagrams of Eq.(36) in Ω1 as
p0 < pcr.

ing to E = 0 are composed of Γ1 : x ≡ 0 and the nonzero
phase trajectory Γ2 of Eq.(32). The interior region en-
closed by Γ1 and Γ2 is denoted by Π1, and the outer re-
gion (x > 0) is denoted by Π2. If the phase diagrams
given by Eq.(32) are all belong to the region Π1, we have
E < 0, and the phase diagrams are all simple, smooth,
closed and convex curves; while if the phase diagrams
are all belong to the region Π2, we have E > 0 and
lim

x→0+
ẋ = +∞, and thus the phase diagrams are not closed.

Thus, as the parameter (δ,ε) ∈ Ω1, we have

Conclusion 4 (a) For the initial condition x(0) = 0,
Eq.(32) has only zero solution as p0 < pcr. (b) For the
initial conditions x(0) = x0 > 0, ẋ(0) = ẋ0, it can be
shown that the integral of (55) is finite, and thus the solu-
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Figure 5 : Example phase diagrams of Eq.(32) in Ω1 as
p0 > pcr.

tions of Eq.(32) are the generalized periodic solutions of
the second kind.

Conclusion 5 For p0 > pcr, (a) if (x0, ẋ0) ∈ Π1, the solu-
tions of Eq.(32) are the classical periodic solutions; (b) If
the initial condition is taken as x(0) = 0, the solutions are
the generalized periodic solutions of the first kind; (c) If
(x0, ẋ0) ∈ Π2, the solutions are the generalized periodic
solutions of the second kind.

Proof. (a) Since the phase diagrams of Eq.(32) are sim-
ple, smooth, closed and convex curves, thus we know that
the solutions of Eq.(32) are classical periodic solutions,
moreover, the period of the solutions can be obtained by
the implicit solution (55).

(b) If the solution of Eq.(32) satisfies the initial condi-
tion x(0) = 0, in this case, the corresponding energy con-
stant E = 0, and the phase diagram of Eq.(32) is com-
posed of Γ1 and Γ2. Since the first-derivative of x(t) is

discontinuous at t = 0, i.e., ẋ(0+) =
(

2(p0−q(0))
3ρb2

)1/2
and

ẋ(0) = 0, we can conclude that the solution of Eq.(32)
bifurcates from the trivial solution x(t) ≡ 0 for p0 >

pcr. Let T0 =
R xu

0

(
z2F̃(z)

2(−V(z,p0))

)1/2
dz, then x(T0) = xu

and ẋ(T0) = 0, namely, x(t) increases monotonously on
[0,T0]. From the symmetry of T0, we have x(2T−

0 ) = 0

and ẋ(2T−
0 ) = −

(
2(p0−q(0))

3ρb2

)1/2
. Since x(t) ≥ 0, we get

x(2T+
0 ) = 0, and ẋ(2T+

0 ) =
(

2(p0−q(0))
3ρb2

)1/2
. Although we

can conclude that the solution x(t) is still a periodic solu-
tion with period 2T0, the left- and right-limit of ẋ = dx

/
dt
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exist but do not equal each other at 2kT0. In this case, the
solution is called the generalized periodic solution of first
kind.
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Figure 6 : Example curves of V (x, p0) ∼ x in Ω2 as
(δ,ε) = (0.5,0.5)

(ii) As M < 0, from the solid line shown in Fig.1, we
have (a) For the prescribed p0 < pm, V (x, p0) has no
critical point and increases monotonously relating to x,
moreover, V(x, p0) > 0 for any x > 0; (b) For p0 = pm,
xm is an inflexion point of V(x, p0) and V(xm, p0) > 0,
because H̃x(x, p0) < 0 as x < xm and H̃x(x, p0) > 0 as
x > xm; (c) However, for pm < p0 < pcr, V(x, p0) has
two local positive critical points, written as x2 and x3

(0 < x2 < x3), that is to say, as p0 increases from pm,
the inflexion point of V(x, p0) splits into a local maxi-
mum x2 and a local minimum x3, moreover, x2 and x3

also vary with the increasing p0. In this case, we can
conclude that V(x2, p0) > 0 and V(x3, p0) > 0. The local
maximum and the local minimum both decrease grad-
ually as p0 increases. However, as p0 attains a certain
value, written as ps (< pcr), we have V(x3, ps)= 0. As p0

increases more, the local minimum is negative and turns
into the global minimum, moreover, the local maximum
is still positive, and x2 closes to the origin gradually; (d)
As p0 = pcr, x2 degenerates into the origin, but V(x, p0)
has two local critical points, one is x2 = 0, the other is
x3 = xc; (e) As p0 > pcr, V (x, p0) has a unique critical
point, written as x4, i.e., V(x, p0) takes the minimum at
x4 and V(x4, p0) < 0.

Fig.6 shows the curves of V(x, p0) ∼ x associated with
the strain energy density (45) for different values of
p0/µ1 as (δ,ε) = (0.5,0.5)∈ Ω2.
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Figure 7 : Example phase diagrams of Eq.(32) in Ω2 as
pm < p0 < pcr
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Figure 8 : Example phase diagrams of Eq.(32) in Ω2 as
p0 = pcr

For p0 < pm, the phase diagrams of Eq.(32) are similar to
those in Fig.4. For pm < p0 < pcr, p0 = pcr and p0 > pcr,
the phase diagrams of Eq.(32) are respectively shown in
Fig.7, Fig.8, and Fig.9.

Similar to Conclusion 4 and Conclusion 5, as the param-
eter (δ,ε) ∈ Ω2, we have

Conclusion 6 For pm < p0 < pcr, (a) if (x0, ẋ0) ∈ Π1, the
solutions of Eq.(32) are the classical periodic solutions;
(b) If the initial condition is taken as x(0) = 0, Eq.(32)
has only zero solution; (c) If (x0, ẋ0) ∈ Π2, the solutions
are the generalized periodic solutions of the second kind.

Conclusion 7 For p0 = pcr, (a) if (x0, ẋ0) ∈ Π1, the so-
lutions of Eq.(32) are the classical periodic solutions;
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Figure 9 : Example phase diagrams of Eq.(32) in Ω2 as
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(b) If the initial condition is taken as x(0) = 0, we have
ẋ(0) = 0 from (57), and thus the solutions are the classi-
cal periodic solutions; (c) If (x0, ẋ0) ∈ Π2, the solutions
are the generalized periodic solutions of the second kind.

Conclusion 8 For p0 > pcr, (a) if (x0, ẋ0) ∈ Π1, the solu-
tions of Eq.(32) are the classical periodic solutions; (b) If
the initial condition is taken as x(0) = 0, the solutions are
the generalized periodic solutions of the first kind; (c) If
(x0, ẋ0) ∈ Π2, the solutions are the generalized periodic
solutions of the second kind.

In summary, as the initial condition is taken as x(0) = 0,
the solution of Eq.(32) then describes the cavity forma-
tion and motion with time in the solid sphere, composed
of the incompressible transversely isotropic nonlinearly
elastic material, which is subjected to a prescribed sur-
face tensile load. From Conclusion 4, Conclusion 6,
and the corresponding phase diagrams shown in Fig.4
and Fig.7, we know that, as the prescribed tensile load
p0 < pcr, Eq.(32) has only zero solution, that is to say, the
sphere remains solid. However, as the prescribed tensile
load p0 > pcr, from Conclusion 5, Conclusion 8, and the
corresponding phase diagrams shown in Fig.5 and Fig.9,
Eq.(32) has the generalized periodic solutions of the first
kind, in other words, a cavity forms in the sphere and
will expand until its radius reaches the maximum value
xu at time T0. However, the expanding velocity ẋ(t) of

the cavity radius reaches directly to
(

2(p0−q(0))
3ρb2

)1/2
from

0 as a cavity forms suddenly, and will reduce to zero as
the cavity radius reaches the maximum value. Thereafter,

the cavity will contract and the contracting velocity will

reach −
(

2(p0−q(0))
3ρb2

)1/2
as the cavity reduces to zero at

time t = 2T−
0 . Along with the time increases, the expand-

ing velocity will leap directly from −
(

2(p0−q(0))
3ρb2

)1/2
to(

2(p0−q(0))
3ρb2

)1/2
, and then the cyclic will repeat. Thus we

can say that a cavity forms at the center of the sphere as
the surface tensile dead load p0 > pcr, and the motion
rule of the formed cavity with respect to time presents a
class of singular periodic oscillations.

It is worth pointing out that, as the parameter (δ,ε) ∈ Ω1,
for the prescribed p0 = pcr, the value of x, correspond-
ing to pcr given by (47), is zero, in other words, no cavity
forms in the interior of the sphere, and the sphere is in the
critical state of cavity formation. However, as the param-
eter (δ,ε) ∈ Ω2, there are two values of x, i.e., 0+and xc,
corresponding to pcr, since p0 increases continuously, we
can conclude that a cavity has formed in the sphere and
then presented a classical nonlinear periodic oscillation,
xc is the oscillation center, see the phase diagrams shown
in Fig.8.

4 Conclusions

In this work, we first present a second-order nonlinear
ordinary differential equation that describes cavity for-
mation and motion with time. Via anaylzing the dynam-
ical properties of the differential equation, we then carry
out the existence conditions of the equilibrium points of
the differential equation, see Conclusion 1, correspond-
ingly, some determinate conditions must be imposed on
the form of the strain energy density. To better under-
standing the conclusions obtained in this paper, we in-
troduce an incompressible transversely isotropic Gent-
Thomas material model. We divide the constitutive pa-
rameters into two regions, and discuss the effects of con-
stitutive parameters on the qualitative properties of the
solutions in detail. Further, we classify the equilibrium
points, see Conclusion 2, 3. By using the phase diagrams
of the differential equation, we also classify the periodic
solutions for any initial conditions in different regions
partitioned by the constitutive parameters, see Conclu-
sion 4∼9. In particular, as the parameter (δ,ε) ∈ Ω1,
it is proved that a cavity would form in the interior of
the sphere and the motion of the formed cavity with time
would present a class of singular nonlinear periodic os-
cillations only when the surface tensile dead load exceeds



Nonlinear Dynamical Analysis in Incompressible Transversely Isotropic Nonlinearly Elastic Materials 129

the critical value; However, as the parameter (δ,ε) ∈ Ω2,
a cavity has formed in the sphere, and then presented a
classical nonlinear periodic oscillation as the surface ten-
sile dead load attains the critical value i.e., p0 = pcr.
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