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Transient Non-linear Heat Conduction Solution by a Dual Reciprocity Boundary
Element Method with an Effective Posteriori Error Estimator

Eduardo Divo 1, Alain J. Kassab 2

Abstract: A Dual Reciprocity Boundary Element
Method is formulated to solve non-linear heat conduction
problems. The approach is based on using the Kirchhoff
transform along with lagging of the effective non-linear
thermal diffusivity. A posteriori error estimate is used
to provide effective estimates of the temporal and spatial
error. A numerical example is used to demonstrate the
approach.

1 Introduction

Several numerical techniques have been proposed to gen-
erate boundary integral representations for the diffusion
equation. The first such formulation, derived by Rizzo
and Shippy (Rizzo and Shippy, 1970), applied Laplace
transforms to produce a time-independent boundary in-
tegral equation in the transform domain. This equation
is then solved for a sequence of values of the trans-
form parameter and a numerical transform inversion is
employed to compute the physical variables in the real
space. Chang et al. (Chang, Kang and Chen, 1973) and
Shaw (Shaw, 1974) employed the time-dependent fun-
damental solution given by Morse and Feshbach (Morse
and Feshbach, 1953) and Carslaw and Jaeger (Carslaw
and Jaeger, 1959), among others, to derive BEM formu-
lations over space and time. The formulation was later
extended by Wrobel and Brebbia (Wrobel and Brebbia,
1979) to allow higher-order space and time interpolation
functions to be included, thus making the analysis of
practical engineering problems possible. Another tech-
nique is the dual reciprocity boundary element method
(DRBEM), initially applied to transient heat conduction
problems by Wrobel et al. (Wrobel, Brebbia and Nar-
dini, 1986), which interprets the time derivative in the
diffusion equation as a body force and employs the fun-
damental solution to Laplace’s equation to generate a
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boundary integral equation. Alternative boundary inte-
gral formulations include replacing the time derivative
in the diffusion equation by a finite difference approxi-
mation, as proposed by Curran et al. (Curran, Cross and
Lewis, 1980), and the multiple reciprocity formulation of
Nowak (Nowak, 1987). The boundary element method
and the dual reciprocity method are discussed in detail in
several monographs (Brebbia, 1978) and recent reviews
of advances in BEM can be found in Kassab and Wrobel
(Kassab and Wrobel, 2000) and Kassab et al. (Kassab,
Wrobel, Bialecki and Divo, 2004).

In this paper, we present the details of a formulation of
the dual reciprocity boundary element method for tran-
sient non-linear heat conduction. We formulate the prob-
lem using the classical Kirchhoff transform defining a
new dependent variable. The transient governing equa-
tion remains nonlinear. The non-linearity is removed
from the spatial operator and appears confined to a non-
linear effective thermal diffusivity. We follow standard
BEM procedure to convert this differential equation to
a boundary integral equation and to finally arrive at the
time-marching DRBEM equations. The non-linearity
of the problem is addressed by lagging or extrapolating
the coefficients of a diagonal matrix multiplying the ele-
ments of the capacitance matrix. As such, this approach
to non-linear heat transfer modeling by the DRBEM is
efficient in that it only requires a diagonal matrix mul-
tiplication to update the capacitance matrix at each iter-
ation updating the temperature and heat flux to the new
time level. We solve the problem in 3D using constant
elements and standard conic radial basis functions (Pow-
ell, 1992), both to be defined later in the paper. We also
develop an effective posteriori error estimator, and we
implement this estimator for the transient case and for
constant elements. In this approach, the values of the
temperatures at the corners of each constant 3D element
are computed by a distance weighted extrapolation of the
four closest constant element nodes. Subsequently, a bi-
linear interpolation of the corner values for each element
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provides a higher order estimate of the temperature at
the center of each constant element. This higher order
curve fit prediction of the constant element solution is
compared at each constant element node with the value
predicted by the constant DRBEM code, and a root mean
square error is estimated at each time level. A transient
non-linear example is solved for validation, and results
indicate that the proposed error estimator is very effec-
tive in bounding the error and following the trend of the
global error as a function of time. This error estimator is
readily extended to any higher order discontinuous BEM
discretization.

2 Dual Reciprocity Boundary Element Method for
Linear Heat Conduction

We first develop the dual reciprocity boundary element
formulation for the solution of linear transient heat con-
duction in solids, then extend the approach to non-linear
heat conduction. The linear problem is governed by the
diffusion equation

∇ · [k∇T ] = ρcp
∂T
∂t

(1)

where t is time, T is temperature, k is the thermal con-
ductivity (here taken as a function of temperature), ρ is
the density, and cp is the specific heat. The problem def-
inition is completed with the specification of boundary
conditions

T (Γ, t) = T̂ (Γ, t)
q(Γ, t) = q̂(Γ, t)
q(Γ, t) = h[T(Γ, t)−T∞] (2)

and initial condition, T (x, t0) = T0(x). Here, q(x, t) is the
outward-facing normal heat flux, q(x, t)=−k ∂T /∂n, and
x denotes spatial coordinate(s) depending on the dimen-
sionality of the problem.

In the DRBEM formulation (Brebbia and Partridge,
1992), the right-hand-side of the diffusion equation, Eqn.
(1), is first expanded as,

ρcp
∂T (x, t)

∂t
=

N+L

∑
k=1

αk(t) fk(x) (3)

where N is the number of BEM boundary nodes at which
dual reciprocity points are collocated, L is the number

of additional internal dual reciprocity (DR) collocation
points. The expansion functions are chosen to satisfy

fk(x) = ∇ · [k∇uk(x)] (4)

Once the DR expansion function fk is chosen, then the
functions uk are readily derived by solving Eqn. (4) in
the appropriate dimension. This will be discussed later.

Boundary nodes
Total N - nodes

Internal nodes
Total L - nodes

Boundary nodes
Total N - nodes

Internal nodes
Total L - nodes

Figure 1 : Two-dimensional example of a constant el-
ement DRBEM discretization: N -boundary points cor-
responding to constant element nodes and L-internal
points.

Substitution of Eqn. (4) and Eqn. (3) into Eqn. (1) leads
to,

∇ · [k∇T (x, t)] =
N+L

∑
k=1

αk(t)∇ · [k∇uk(x)] (5)

We consider a three-dimensional problem. Conse-
quently, we multiply both sides of the above by the 3-D
fundamental solution to the Laplace equation,

T ∗ (x,ξ)=
1

4πk r (x,ξ)
(6)

where r (x,ξ) is the radial distance between the field point
x and the source point ξ. Integrating over the domain,
applying Green’s first identity twice to both sides of the
above equation leads to the following integral equation,
for any location of the source point ξ inside the domain
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Figure 2 : Illustration of the domain Ω bounded by the
boundary Γ, the field point x, the source point ξ, and the
r (x,ξ) is the radial distance between the field point and
the source point.

boundary Γ,

T (ξ, t)+
I

Γ

[
q(x, t) T ∗ (x,ξ)−F (x,ξ)T (x, t)

]
dΓ

=
N+L

∑
k=1

αk(t)
{

uk (ξ)

+
I

Γ

[
pk (x)T ∗ (x,ξ)−F (x,ξ)uk (x)

]
dΓ

}
(7)

where the following notation is used:

q(x, t) = −k∇T (x, t) · n̂
pk (x) = −k∇uk(x) · n̂
F (x,ξ) = −k∇T ∗(x,ξ) · n̂ (8)

where the outward-drawn normal to the boundary Γ is
denoted by n̂. In arriving at the above integral equations,
it is recognized that the free-space solution T * (x,ξ) to
the Laplace equation satisfies (precisely why it was cho-
sen as the test function in the first place),

∇ · [k∇T * (x,ξ)] = −δ(x,ξ) (9)

where δ(x,ξ) is the Dirac delta function. The domain
integrals are eliminated using the sifting property of the
Dirac delta function to give:

Z
Ω

∇ · [k∇T * (x,ξ)]T (x, t)dΩ = −T (ξ, t)
Z

Ω
∇ · [k∇T * (x,ξ)]uk(x)dΩ = −uk (ξ) (10)

When the point ξ lies on the boundary, then a limiting
procedure can be used to arrive at the following boundary
integral equation

C(ξ)T (ξ, t)+
I

Γ

[
q(x, t)T ∗ (x,ξ)−F (x,ξ)T (x, t)

]
dΓ

=
N+L

∑
k=1

αk(t)
{

C(ξ)uk (ξ)

+
I

Γ

[
pk (x)T ∗ (x,ξ)−F (x,ξ)uk (x)

]
dΓ

}
(11)

where the surface integrals over the boundary Γ are taken
in their Cauchy Principal Value (CPV) and the free term
C(ξ) can be shown analytically to be

C(ξ) =
I

Γ
−k ∇T ∗(x,ξ) · n̂ dΓ (12)

and it is equal to 1/2 when the source point lies on a
smooth boundary. Thus, Eqn. (11) can be considered
a general equation that is valid both at the boundary and
at the interior with C(ξ) = 1/2 when ξ ∈ Γ and C(ξ) = 1
when ξ ∈ Ω. A pattern of j = 1,2...N boundary nodes is
introduced on the boundary, the boundary is discretized
piecewise as

Γ =
N

∑
j=1

∆Γ j (13)

Although higher order elements are used for better ac-
curacy in practice, we will use a constant element dis-
cretization exclusively in this work. In this element,
the geometry is modeled using bilinear shape functions,
while the temperature and flux are modeled as piecewise
constant over each boundary element. Figure 3 below
shows a typical constant boundary element along with its
transformed representation in the local η−ζ coordinate
system.
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Figure 3 : Constant boundary element.
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Notice that the geometric nodal locations of the element
are ordered counterclockwise such that the normal vec-
tor always points outwards from the domain of the prob-
lem. The global coordinate system (x,y, z) is transformed
into a local coordinate system (η,ζ) using bi-linear shape
functions. The temperature and heat flux are modeled as
constant with the node located at the geometric center of
the boundary element, thus

T (η,ζ, t) = Tj(t) and q(η,ζ, t) = q j(t)
on ∆Γ j (14)

Collocating Eqn. (11) by taking the source point ξ at the
i = 1,2...N +L boundary and interior DR nodes leads to

Ci Ti(t)−
N

∑
j=1

Ĥi jTj(t)+
N

∑
j=1

Gi jq j(t)

=
N+L

∑
k=1

αk(t)
{

Ci uk(xi)−
N

∑
j=1

Ĥi j uk(x j)+
N

∑
j=1

Gi j pk(x j)
}

(15)

for i = 1,2, ...N+L, leading to the matrix equation

G
=

q∼−H
=

T∼ =
{

G
=

P
=
−H

=
U
=

}
α∼ (16)

The influence coefficients Ĥi j and Gi j that are elements
of the matrices G

=
and H= are defined as integrals over the

boundary element ∆Γ j ,

Ĥi j =
ZZ

∆Γ j

F (x,ξi) dΓ

Gi j =
ZZ

∆Γ j

T ∗ (x,ξi) dΓ (17)

and these are evaluated using adaptive quadratures based
on Gauss-Legendre rules (Kassab, Wrobel, Bialecki and
Divo, 2004).

At this point it is instructive to describe the DR expan-
sion functions fk(x) and the derived functions uk(x) and
pk(x) in order to explain how the matrices P= and U

=
are

evaluated. We use exclusively the radially symmetric
conic RBF (Powell, 1992),

fk(x) = 1+ rk(x) (18)

where rk(x) is the radial distance from the DR collocation
point k, in 3-D,

rk(x) =
√

(x−xk)2 +(y−yk)2+(z− zk)2 (19)
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Figure 4 : Illustration of radial distance rk used in
conicRBFs.

From this definition, the uk(x) function is derived from
the relation

1+ rk =
1

r2
k

∂
∂rk

(
k r2

k
∂uk

∂rk

)
(20)

which is readily integrated to give

uk(x) =
1
k

[r3
k(x)
12

+
r2

k(x)
6

]
(21)

The function pk(x) is derived from its definition, Eqn.
(8), as

pk(x) =−(
rk(x)

4
+

1
3
)[(x−xk)nx+(y−yk)ny+(z−zk)nz]

(22)

where, nx, ny, and nz are the x-, y-, and z- components
of the outward-drawn normal of each boundary element.
The result that

∂rk

∂x
=

(x−xk)
rk

,
∂rk

∂y
=

(y−yk)
rk

, and
∂rk

∂z
=

(z− zk)
rk

(23)

has also been used in deriving pk(x). The matrices U
=

and

P= are obtained by evaluating the expansion functions uk

and its normal derivatives pk at every dual reciprocity
point respectively. The k-th column of the interpolating
matrices U

=
and P

=
is then seen to be comprised of the

vectors u∼k of values of Uj,k = uk(xj) and p∼ k of values of

Pj,k = pk(xj) with j= 1,2...N +L.
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Collocating Eqn. (3) and Eqn. (4) at the N + L dual
reciprocity expansion points leads to the linear system of
equations,

ρcp

·
T∼ = F=α∼ (24)

The notation
·

T∼ has been used to represent the vector of

values of the partial derivative of the temperature at the
j= 1,2...N+L boundary and dual reciprocity points. The
interpolating matrix F= has a structure with each k-th col-

umn of the matrix comprised of the vector f∼k
of values

of Fj,k = fk(xj) with j= 1,2, ...N + L. Inverting the in-
terpolating matrix F= to solve explicitly for the vector of

expansion coefficients α∼, allows Eqn. (16) to be recast
as

H
=

T∼−G
=

q∼ = C
=

·
T∼ (25)

where,
·

T∼ is the vector of time derivatives of the nodal

temperatures and the capacitance matrix C
=

is given by

C
=

= −ρcp

{
G
=

P=−H=U
=

}
F=
−1 (26)

The final step in DRBEM for the diffusion equation in-
volves the finite differencing of the temporal derivative
in Eqn. (25), and the approximation of the nodal temper-
atures and fluxes. Applying a first order finite difference
in time, and using parameters θT and θq to position the
temperature vector, T∼, and the flux vector, q∼, between

the time steps p and p+1,

T (t) = (1−θT )T p +θT T p+1

q(t) = (1−θq)qp +θqqp+1

Ṫ (t) =
T p+1 −T p

∆t
(27)

yields the final form of the DRBEM equations,
(

∆t θT H=− C
=

)
T∼

p+1−
(

∆t θq G
=

)
q∼

p+1

=
[
∆t (θT −1) H=−C

=

]
T∼

p +∆t (1−θq)G
=

q∼
p (28)

where the right-hand-side of Eqn. (28) is known from
the previous time step p and ∆t is the time step taken.

Upon introduction of the boundary conditions, Eqn. (28)
is solved for the temperature evolution. The choice of the
parameters θT and θq dictate the order of the method in
time. We use the fully-implicit option, setting θT and θq

equal to one. The resulting system of linear equations is
solved using LU decomposition. Hence, if the time step
is held constant, the LU factors are computed only once,
and, thereafter, only a forward and backward substitution
is needed to solve the linear system at every time step.

This completes the description of the linear conduction
solution. Attention is now given to the non-linear formu-
lation. The Kirchhoff transform is introduced, and the
DRBEM development of the linear case is naturally ex-
tended to the nonlinear case.

3 DRBEM for Non-Linear Heat Conduction

The governing equation under consideration is the
transient heat conduction equation with temperature-
dependent thermal conductivity and specific heat as,

∇ · [k(T )∇T ] = ρcp(T )
∂T
∂t

(29)

Here, the thermophysical properties are taken as tem-
perature dependent. The classical Kirchhoff transform
(özisik, 1986) can be used to transform the govern-
ing equation prior to solving the resulting transformed
equation by standard BEM. This is described by sev-
eral authors for steady state problems, see Bialecki and
Nowak (Bialecki and Nowak, 1981), Azevedo and Wro-
bel (Azevedo and Wrobel, 1988), and Bialecki and
Nahlik (Bialecki and Nhalik, 1989). A new dependent
variable is defined as,

J(T ) =
1
ko

Z T

To

k(T)dT (30)

where To is a reference temperature at which the refer-
ence thermal conductivity ko is evaluated. The Kirchhoff
transform is the area under the k(T ) curve and as such is
a monotonic single-valued function of temperature. The
integral can be evaluated analytically or numerically via
a quadrature and the curve of J vs. T can readily be con-
structed. This curve can be made a subroutine or state-
ment function that can be called at any time a temper-
ature is required when operating in the Kirchhoff trans-
form domain. The Kirchhoff transformation defines the
dependent variable J(T ) (with units of temperature) such
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that, k(T )dT = kodJ, and consequently

k(T )∇T = ko∇J

k(T)∂T = ko ∂J (31)

Introducing these results into the governing heat con-
duction equation leads to the following equation in the
Kirchhoff temperature

∇ · [ko∇J] =
koρcp(T )

k(T )
∂J
∂t

(32)

Imposed temperature and heat flux boundary conditions
transform linearly to give:

T
∣∣
rs

= T̂s � J
∣∣
rs

= J(T̂s)

−k
∂T
∂n

∣∣
rs

= q̂s � −ko
∂J
∂n

∣∣
rs

= q̂s (33)

where rs denotes a point on the surface. Consequently,
the developments above apply directly to non-linear heat
conduction with the Kirchhoff temperature as dependent
variable. In the case of convective boundary conditions,
the transformation is non-linear and an additional itera-
tion must be used.

Defining the function

β(T ) =
koρcp(T )

k(T )
(34)

the non-linear heat conduction equation becomes

∇ · [ko∇J] = β(T )
∂J
∂t

(35)

Comparing with the linear heat conduction equation, see
Eqn. (1), it is clear that the DRBEM development for
the linear case can be readily adopted by replacing all
references to T by J, and by:

1. modifying the fundamental solution, see Eqn. (6), by
replacing T ∗ by J∗ and k by ko as,

J∗ (x,ξ)=
1

4πko r (x,ξ)
(36)

2. modifying the definitions in Eqn. (8) to

q(x, t) = −ko∇J(x, t) · n̂
pk (x) = −ko∇uk(x) · n̂
F (x,ξ) = −ko∇J∗(x,ξ) · n̂ (37)

3. re-writing the DRBEM equations as

H= J∼−G
=

q∼ = C
=

·
J∼ (38)

where
·

J∼ is the vector of time derivatives of the Kirch-

hoff temperatures at each node and with the capacitance
matrix interpreted as,

C
=

= −
{

G
=

P
=
−H

=
U
=

}
F
=

−1 β
=

(39)

with β
=

as a diagonal matrix given by

β
=

=

⎡
⎢⎢⎢⎣

β(T1) 0 0 0
0 β(T2) 0 0

0 0
. . . 0

0 0 0 β(TN+L)

⎤
⎥⎥⎥⎦ (40)

where β(Tj) is the function β(T )evaluated at each of the
DR nodes, j = 1,2...N +L.

Finally, the DRBEM equations read for the Kirchhoff
temperature:

(
∆t θt H

=
− C

=

)
J∼

p+1 −
(

∆t θq G
=

)
q∼

p+1

=
[
∆t (θt −1) H=−C

=

]
J∼

p +∆t (1−θq)G
=

q∼
p (41)

Here again ∆t is the time step taken. The question re-
mains how to evaluate the elements of the diagonal ma-
trix β

=
. Two alternatives can be followed:

1. lag the matrix in time, where each element is evaluated
when solving Eqn. (41) at the time level p+1 as:

β(T p+1
j )∼=β(T p

j ) (42)

where temperature T p
j (is known from the unique J vs.T

curve) evaluated at the at the point j at the previous time
level p.

2. extrapolated from previous time levels, where each
element is evaluated when solving Eqn. (41) at the time
level p+1 as:

β(T p+1
j )∼=β(T p

j )+
dβ(T )

dT

∣∣∣∣
T p

j

(
T p

j −T p−1
j

)
(43)
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where dβ(T)
dT

∣∣∣∣
T p

j

is the derivative of β(T )with respect to

temperature (a known expression) evaluated at the tem-
perature at the point j at the previous time level p.

The lagging approach may be used throughout the so-
lution process, or may be used once at the first time
step and subsequently, the extrapolation method may be
used for all remaining time steps. This should provide
a more accurate but computationally more burdensome
approach. Results reported in this paper are obtained by
lagging the coefficient β(T).

4 Posteriori Error Estimator

An error estimation of the solution provided by the BEM
is of crucial importance when dealing with numerically
sensitive problems such as optimization, inverse, and
control problems, where the BEM can be used as the
field solver and where a statistical analysis of the error
is necessary for regularization and control of the solu-
tion. There has been much work carried out to address
this subject in particular with regards to mesh adaptation
and refinement (Rencis and Kirk, 2003-Ingber and Mitra,
1992). In order to arrive at an efficient global posteriori
error estimator that does not require multiple solutions,
a strategy can be adopted consisting in generating a sim-
ulated a higher-order solution from a computed lower-
order solution and comparing the simulated and the com-
puted at the same locations. This idea is an extension of
finite element error estimation procedures, adopted by
Rencis et al. (Rencis and Kirk, 2003), to BEM applica-
tions.

In a typical three-dimensional transient BEM solution of
the temperature field using bilinear sub parametric (con-
stant) elements where the temperatures are retrieved as
constant values along the element surface, Tc, j (labeled
by circles in Fig. 5), the values of the temperatures at
the corner k of boundary element j, Tcorner,k,j, can be ob-
tained by a distance-weighted interpolation of the nodal
temperatures, Tc,i, of all elements i (i = 1...NS) sharing
the corner k,

Tcorner,k,j =
∑NS

i=1
1
ri

Tc,i|i∈k

∑NS
i=1

1
ri
|i∈k

(44)

where ri are the distances from the corner to the neigh-
boring element centers. The temperature field described
by Tcorner,k,j is a simulated higher-order (bilinear) field.

Furthermore, this high-order temperature distribution at
corner nodes can be collapsed back to the constant
boundary element node locations (centers) by a simple
average:

Tl, j =
1
4

4

∑
k=1

Tcorner,k, j (45)

An error estimate for the temperature at any boundary el-
ement node j is thus approximated, simply as the differ-
ence between the computed and interpolated solutions,

e j = |Tl, j −Tc, j| (46)

normalized over the maximum temperature difference.
This is a very efficient posteriori error estimation as it
only requires one computed solution, Tc, j, to approxi-
mate an error distribution that would otherwise require
a higher-order (bilinear) BEM solution of the same prob-
lem.

5 Numerical Examples

A nonlinear verification example has been formulated in
such a manner as to permit comparison with an analytical
solution. Consider the nonlinear heat transfer problem in
a rectangular parallelepiped, see Fig. 6. The thermo-
physical property variations with temperature are taken
as

k(T) = koek1(T−To)

cp(T) = cpo +cp1tanh[cp2(T −To)] (47)

The initial condition is taken as uniform, T (x,y, z,0) =
T̂0. The boundary conditions are imposed as

T (x,y,0, t)= T̂o

−k(T )∇T · n̂ |
(x,y,Lz,t)

= q̂u (48)

and elsewhere on the barrel surface as insulated,

−k(T )∇T · n̂ = 0 (49)

The properties are taken as those of stainless steel with

cp0 = 477J/kgK

cp1 = 1235J/kgK

cp2 = 3.94×10−3 K−1

ρ = 7900kg/m3

ko = 14.9W/mK

k1 = 1.08x10−3K−1 (50)
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Figure 5 : Illustration of the nomenclature for the global
a posteriori error estimator.

with these choices, we find that β(T ) =
k0

k(T)ρcp(T ) ∼constant over the range of tempera-
tures 300 − 400K. Thus, the problem can be solved
analytically in the Kirchhoff transform space as

J(T ) =
∞

∑
n=0

[ 2qu(−1)n

koλ2
nLz

]
sin(λnz)e−

koλ2
n

β t (51)

where the eigenvalues are given by

λn =
π

2Lz
(2n+1) (52)

The temperature is obtained by inverting the Kirchhoff
transform as described in the above section. The ini-
tial condition, dimensions of the problem and heat flux

x

Lx

y

Ly

Lz

z

To

qu

x

Lx

y

Ly

Lz

z

To

qu

Figure 6 : Rectangular parallelepiped subjected to a con-
stant temperature, To, at z = 0, a constant heat flux,qu , at
z = Lz, and insulated on all other surfaces.

are chosen to provide a solution with temperatures in the
range 300−400K and are taken as:

Lx = Ly = Lz = 0.1m

T̂ (x,y, z,0) = 300K

q̂u = −3000W/m2 (53)

Temperature
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Figure 7 : Variation of the thermophysical properties for
the example problem.
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T: 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325

Figure 8 : Surface temperature distribution after 1 sec-
ond predicted by the DRBEM using four different dis-
cretization levels.
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Figure 9 : Comparison of BEM and exact solutions and
comparison of exact and predicted error for the 3 x 3 x 3
mesh configuration.
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Figure 10 : Comparison of BEM and exact solutions and
comparison of exact and predicted error for the 4 x 4 x 4
mesh configuration.
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Figure 11 : Comparison of BEM and exact solutions and
comparison of exact and predicted error for the 5 x 5 x 5
mesh configuration.
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Figure 12 : Comparison of BEM and exact solutions and
comparison of exact and predicted error for the 6 x 6 x 6
mesh configuration.

The transient conduction problem is solved in 3D using
4 levels of constant boundary element discretization cor-
responding to 3, 4, 5 and 6 boundary elements per edge
of the block to demonstrate convergence of the numerical
solution. The BEM discretizations for the four mesh lev-
els along with the surface temperature distribution after
1 second are shown in figure 8.Figures 9 to 12 show the
temperature evolution comparison from 0 to 1 second and
the error estimation compared to the exact error for the
four different BEM discretization levels. All error levels
are reported in terms of absolute deviations between the
BEM-computed and exact temperatures. The results are
plotted for the upper wall at z = Lz at the midpoint of that
face. The results illustrate the efficacy of the error esti-
mator. Convergence is demonstrated and the trend of the
error estimator provides a conservative approximation to
the exact error in temperature.

6 Conclusions

In this paper, we have reviewed the dual reciprocity
boundary element method for linear diffusion and pro-
posed an approach to solve non-linear diffusion prob-
lems. We have also provided an error estimator that is
computationally inexpensive to evaluate. Numerical re-
sults provide confidence in the approach and indicate that
the error estimator is able to predict the temporal trend of
the exact error at different discretization levels.
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