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Solution of Maxwell’s Equations Using the MQ Method

D.L. Young 1,3, C.S. Chen 2, T.K. Wong 3

Abstract: A meshless time domain numerical method
based on the radial basis functions using multiquadrics
(MQ) is employed to simulate electromagnetic field
problems by directly solving the time-varying Maxwell’s
equations without transforming to simplified versions of
the wave or Helmholtz equations. In contrast to the con-
ventional numerical schemes used in the computational
electromagnetism such as FDTD, FETD or BEM, the
MQ method is a truly meshless method such that no mesh
generation is required. It is also easy to deal with the
appropriate partial derivatives, divergences, curls, gradi-
ents, or integrals like semi-analytic solutions. For illus-
tration purposes, the MQ method is employed to calcu-
late the propagations of the electric and magnetic waves
in the homogeneous, isotropic, and non-lossy 2D rectan-
gular waveguide as well as 3D cavity resonator. Good
agreements are obtained as compared to analytical solu-
tions. By directly solving the Maxwell’s equations, the
MQ scheme provides a very simple and effective numer-
ical scheme for the computational electromagnetism.

keyword: Multiquadrics (MQ) method, Maxwell’s
equations, Meshless time-domain method, 2D waveg-
uide, 3D cavity resonator.

1 Introduction

Regarding direct solutions of the time-dependent
Maxwell’s equations, the finite difference time domain
(FDTD) and finite element time domain (FETD) methods
are most commonly used in the realm of computational
electromagnetism (CE). The FDTD scheme was first de-
veloped by Yee (1966) in the mid-1960s. This method
was well developed and widely applied in the compu-
tation of different fields of electric and magnetic wave
propagations [Taflove and Hagness (2000)]. With the ad-

1 Corresponding author, Fax and Tel: +886-2-23626114, E-mail:
dlyoung@ntu.edu.tw

2 Department of Mathematics, University of Southern Mississippi,
Hattiesburg, MS 39406, USA

3 Department of Civil Engineering & Hydrotech Research Institute,
National Taiwan University, Taipei, Taiwan

vents of finite element technique in 1970’s and 1980’s,
using the FETD method to solve the Maxwell’s equa-
tions also became very popular in the CE community, es-
pecially for complicate geometry [Volakis et al. (1984),
Silvester and Ferrari (1996)].

In many fields, such as microstrip, radio science,
and scattering problems, etc. [Mei et al. (1984),
Zhang and Mei (1988), Madsen and Siolkowski (1988),
Fusco (1988)] in electromagnetic engineering, the FDTD
method was applied to solve the Maxwell’s equations.
Similar to the FDTD method, the FETD scheme was
also employed to solve the Maxwell’s equations for the
wave propagations of microwave cavity, electromagnetic
wave scattering, and radiation [Thng and Booton (1994),
Lee (1994), Kolbehdari and Sadiku (1998), Dibben and
Metaxas (1996), Cangellaris (1991), Snaks and Lee
(1995), Morgan et al. (1996), Morgan et al. (1998)]
among others.

In the development of above conventional mesh ori-
ented numerical methods, the mesh generation is re-
quired. These mesh-dependent schemes are very te-
dious in the process of mesh generation, especially for
the three-dimensional problems with complicate geom-
etry. In recent years, various meshless methods have
been developed to alleviate the difficulty of mesh gen-
eration. Most of these meshless methods are evolved
from the finite element method (FEM) or boundary el-
ement method (BEM) such as the meshless local Petrov-
Galerkin (MLPG) method [Han and Atluri (2004)].
Meshless methods have also been applied to solve elec-
tromagnetic problems and radar scattering problems
[Young and Ruan (2004), Qian et al (2004), Hassan et al
(2004), Mittra and Prakash (2004)]. Meshless schemes
using radial basis functions (RBFs) have also attracted
great attention in science and engineering, due to their
special features of simplicity and effectiveness. RBFs are
very effective in modeling multivariate scattered prob-
lems with irregular domain, since they only depend upon
distances between pairs of points in the computational
field. In 1990, Kansa developed a domain-type mesh-
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less method using multiquadrics (MQ), which is widely
circulated in the science and engineering communities.
Similar to other meshless methods, the MQ method re-
quires neither domain nor surface meshes. In RBF liter-
ature, the MQ method has been ranked as the best per-
formance in multivariate interpolation. After introduced
by Kansa (1990), the MQ method was found equally ef-
fective to solve various types of partial differential equa-
tions.

In this study, the MQ scheme is employed directly to
solve the Maxwell’s equations. Hardy (1971) first in-
troduced MQ to approximate topographic surfaces from
scattered data of surveying and mapping problems. The
MQ scheme is a truly scattered, grid free scheme for
approximating surfaces and bodies in any dimensions.
Later applications to the computational fluid mechan-
ics can be found in recent literature, which include the
Burger’s equation, shallow water wave equations, Stokes
equations, and Navier-Stokes equations, etc. [Hon and
Mao (1998), Hon et al. (1999), Young et al. (2004), Mai-
Duy and Tran-Cong (2001)]. In comparison to other nu-
merical methods of linear or quadratic convergence, both
Maydych and Nelson (1992) and Cheng et al. (2003)
have shown that if free shape parameter is chosen prop-
erly, the MQ scheme produces exponential convergence
for surface interpolation. Therefore, with relatively small
amount of collocation points, the MQ method can pro-
vide highly accurate numerical solutions. Furthermore,
MQ scheme is not only an excellent method for accu-
rate approximation of function values, but also for the
approximation of their partial derivatives. As a result,
the partial derivatives, divergences, curls, gradients, and
integrals can be easily handled. Using MQ method, nei-
ther the fundamental solution nor singular integration is
required, which are essential when using boundary ele-
ment method (BEM). Note that the BEM has been widely
applied in the CE community.

In this paper we demonstrate that the MQ method is a
powerful tool for solving the Maxwell’s equations. The
propagations of the electric and magnetic waves in the
homogeneous, isotropic and non-lossy 2D rectangular
waveguide and 3D cavity resonator are considered to
show the feasibility of the MQ method. We note that the
analytical solutions of these two examples are available.
Other numerical methods such as FETD scheme [Mor-
gan et al. (1996)] and spectral-domain method [Omar
and Schunemann (1991)] were also employed to study

these two problems. The successful applications of these
two benchmark problems have provided the opportunity
for solving more general and complicated CE problems
of the Maxwell’s equations in the future studies.

2 Maxwell’s Equations

2.1 Governing Equations

The electromagnetic fields are governed by the
Maxwell’s equations and are described as follows:

∇ ·B = 0 (1)

∇ ·D = ρv (2)

∇×E = −∂B
∂t

(3)

∇×H = J +
∂D
∂t

(4)

whereE is the electric field intensity,H is the magnetic
field intensity,D is the electric flux density,B is the mag-
netic flux density,J is the electric current density, ρv is
the electric charge density.

In order to simplify the programming problem of elec-
tromagnetic fields, we assume: (i) The waveguide or res-
onator is electrically and magnetically filled with linear,
homogenous, isotropic, and source free dielectric mate-
rial. (ii) The medium obeys the Ohm’s law. (iii) All ma-
terials in the vacuum are assumed to be non-lossy.

Under these assumptions, the general Maxwell’s equa-
tions (1) to (4) can be simplified as follows:

∇ ·E = 0 (5)

∇ ·H = 0 (6)

∇×E = −µ
∂H
∂t

(7)

∇×H = ε
∂E
∂t

(8)

These simplified equations are the governing equations
for the electromagnetic fields adopted in this study. As
a first attempt, we assume the permittivity ε and perme-
ability µ to be constants. As far as the MQ scheme is con-
cerned, extension for solving more general Maxwell’s
equations (1) to (4) will cause no further difficulty.
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2.2 Boundary Conditions

In this study, we assume the boundary material is a per-
fect electric conductor. The boundary conditions for the
perfect conductor are shown as following:

n ·�H = 0 (9)

n×E = 0 (10)

3 Numerical Analysis

In this paper, the MQ method is used to deal with the
Maxwell’s equations. For three-dimensional time depen-
dent Maxwell’s equations, the time derivative term can
be discretized by the finite difference method with the
time integrating coefficient θ from time steps n to n + 1
for Equations (7) and (8). Through the rest of this paper,
we will only discretize the x component of Equation (8).
The other remaining equations will not be further elabo-
rated, since they can be obtained in a similar way. From
Equation (8), it follows that

ε(E(n+1)
x −E(n)

x ) = ∆tθ(
∂H

(n+1)

z

∂y
− ∂H

(n+1)

y

∂z
)

+∆t(1−θ)(
∂H

(n)

z

∂y
− ∂H

(n)

y

∂z
) (11)

According to the MQ scheme [Kansa (1990)], the electric
and magnetic fields can be assumed as follows:

Exi =
m

∑
j=1

aEx j

√
r2

i j +c2 (12)

Hyi =
m

∑
j=1

aHy j

√
r2

i j +c2 (13)

Hzi =
m

∑
j=1

aHz j

√
r2

i j +c2 (14)

(
∂Hz

∂y

)
i
=

m

∑
j=1

aHz j
(

yi −y j√
r2

i j +c2
) (15)

etc, where r2
i j = (xi −x j)

2 +(yi −y j)
2 +(zi − z j)

2 for i, j
= 1,. . . , m, and m is the number of the total node points
contained in the domain and boundary, and c is called the

shape parameter and is pre-assigned in the simulation.
Therefore, the Equation (11) then becomes:

ε
m

∑
j=1

a(n+1)
Ex j

√
r2

i j +c2

−θ∆t

⎛
⎝ m

∑
j=1

a
(n+1)

Hz j

yi −y j√
r2

i j +c2
−

m

∑
j=1

a
(n+1)

Hy j

zi − z j√
r2

i j +c2

⎞
⎠

= ε
m

∑
j=1

a(n)
Ex j

√
r2

i j +c2

+∆t(1−θ)

⎛
⎝ m

∑
j=1

a(n)
Hz j

yi −y j√
r2

i j +c2
−

l

∑
j=1

a(n)
Hy j

zi − z j√
r2

i j +c2

⎞
⎠ ,

i = 1, ..., l (16)

where l is number of the total node points in the domain.
The boundary conditions from Equation (9) are satisfied
by collocation:

m

∑
j=1

a(n+1)
Hz j

√
r2

i j +c2 = BHzi boundary condition, i = l+1, ...,m.

(17)

Equations (7) and (8) as well as the imposition of bound-
ary conditions of Equations (9) and (10) can be under-
taken in a similar way. Once these equations are ob-
tained, a matrix system is formed and unknown coeffi-
cients can be obtained. The electric and magnetic fields
for the whole domain can then be calculated from the
known coefficients of equations. In the time evolution
process, we need only to invert the field distance matrix
in the Equations (16) and (17) once. In this way, high
efficiency in numerical computation can be achieved.

4 Numerical Results and Discussions

A two-dimensional rectangular waveguide and a three-
dimensional cavity resonator are chosen to demonstrate
the capability of using the meshless MQ method to solve
the simplified Maxwell’s equations.

4.1 Two-Dimensional Rectangular Waveguide

The profile of the 2D rectangular waveguide is shown
in Figure 1(a). We consider a = 1 and b = 1 to model
the waveguide. To further simplify the modeling, the pa-
rameters ε and µ are all set equal to 1. The time step is
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Figure 1 : (a) Geometry of the 2D rectangular waveguide
(b) Geometry of the 3D cavity resonator

chosen to satisfy the stability constraint of the Courant-
Friedrich-Levy (CFL) condition such that ∆t = 0.001.
The time integrating coefficient θ = 0.5 is selected. The
initial condition can be chosen freely. However, we take
the initial conditions by setting time equal to zero from
the analytic solutions, to make a direct comparison with
the analytic solutions in this study. The analytical solu-
tions of TMz mode as well as TEz mode can be found
from the standard textbooks [Cheng (1989), Bowman et
al. (1987), Balanis (1989)]. Only the TEz mode is se-
lected for illustration in the present numerical computa-
tions.

The MQ’s shape parameter c = 0.246, and the node
points 14*14 are taken. Figures 2 and 3 show the cor-
responding plane and solid contours of Ex, Ey and Hz for
TEz mode at time t = 8 respectively. Figure 4 shows the
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Figure 2 : Plane contours (a) Ex (b) Ey (c) Hz(node
points 14*14, c=0.246, θ=0.5) for TEz mode at t=8 of
2D waveguide
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(a) 

(b) 

(c) 

Figure 3 : Solid contours (a) Ex (b) Ey (c) Hz(node
points 14*14, c=0.246, θ=0.5) for TEz mode at t=8 of
2D waveguide

time history of Ex, Ey and Hz for TEz mode at the fixed
point (x,y) = (0.1428, 0.1428). The profiles of the overall
error distribution in the above cases are shown in Figure
5. These results show good agreement between the ana-
lytical solutions and the MQ method.
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Figure 4 : The time history (a) Ex (b) Ey (c) Hz( at point
(x,y)=(0.1428,0.1428), node points 14*14, c=0.246,
θ=0.5) for TEz mode of 2D waveguide

4.2 Three-Dimensional Cavity Resonator

The profile of the 3D cavity resonator is shown in Figure
1(b). The dimensions of the resonator are a = b = h =
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(c) 

Figure 5 : The error distributions of (a) Ex (b) Ey (c) Hz(
node points 14*14, c=0.246, θ=0.5) for TEz mode at t=8
of 2D waveguide

1. To further simplify the calculation, the parameters of
µ, ε are all set to 1. Only the TM mode is selected for
comparison. The node points 8*8*8, ∆t = 0.005, and
θ = 0.5 are considered. We take shape parameter c = 0.5
in this case. The analytical solutions of TM mode and
TE mode are also found from references [Cheng (1989),
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Figure 6 : Plane contours (a) Ey (b) Ez (c) Hy at plane
z=0.75(node points 8*8*8, c=0.5) for TM mode at t=4.5
of 3D resonator



Solution of Maxwell’s Equations 273

(a) 

(b) 

(c) 

Figure 7 : Solid contours (a) Ey (b) Ez (c) Hy at plane
z=0.75(node points 8*8*8, c=0.5) for TM mode at t=4.5
of 3D resonator

Bowman et al. (1987), Balanis (1989)].

Figures 6 and 7 illustrate the plane and solid contours of
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Figure 8 : The time history (a) Ez (b) Hy ( at point
(x,y,z)=(0.75,0.25,0.25), TM mode of 3D resonator

Ey,Ez,Hy respectively for the TM mode along (x,y, z) =
(x,y, 0.75) plane at t = 4.5 (900-th time step). Figure 8
shows the harmonic evolutions of time histories of Ez,
and Hy for the TM mode at fixed point (x,y, z) = (0.75,
0.25, 0.25). The profiles of corresponding error distribu-
tion are shown in Figure 9. The results also show very
good agreement between the analytical solution and the
MQ method.

5 Conclusions

Without transforming the Maxwell’s equations into wave
or Helmholtz equations, the time-varying Maxwell’s
equations are simulated directly in the time-space do-
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(c) 

Figure 9 : The error distributions of (a) Ey (b) Ez (c) Hy

at plane z=0.75(node points 8*8*8, c=0.5) for TM mode
at t=4.5 of 3D resonator

main using MQ method. In this paper, the MQ method
is employed to model the propagation of the electromag-
netic waves in the simple 2D rectangular waveguide and
3D cavity resonator. In both cases, good agreements are
obtained comparing to the analytical solutions. Since

the MQ time domain method does not require a mesh
generation, the method is considered free from bound-
ary and domain integrations, the integral of singularity,
and frequency searching. The MQ scheme is an excel-
lent method not only for very accurate interpolation of
the field variables, but also for the approximation of ap-
propriate partial derivatives, divergences, curls, gradients
or integrals. Numerical results show that the MQ method
approximates the electric and magnetic wave propaga-
tions very well by even using very coarse node points.
The good performance of the MQ scheme has demon-
strated that it is a powerful and potential tool for the
numerical solutions of electromagnetic field problems.
Even though we only consider standard cases in this
study, we believe that the MQ method is capable to sim-
ulate the multimode, high frequency, and very complex
electronic and electric devices. We will continue to in-
vestigate these cases in our future studies.
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