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Analysis of Metallic Waveguides by Using Least Square-Based Finite Difference
Method

C. Shu 1,2, W. X. Wu 2 and C. M. Wang 3

Abstract: This paper demonstrates the application of
a meshfree least square-based finite difference (LSFD)
method for analysis of metallic waveguides. The waveg-
uide problem is an eigenvalue problem that is governed
by the Helmholtz equation. The second order derivatives
in the Helmholtz equation are explicitly approximated by
the LSFD formulations. TM modes and TE modes are
calculated for some metallic waveguides with different
cross-sectional shapes. Numerical examples show that
the LSFD method is a very efficient meshfree method for
waveguide analysis with complex domains.
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1 Introduction

The propagating characteristics of electromagnetic
waves in hollow metallic conducting waveguides with
general cross sections have been studied by many re-
searchers using different numerical methods. Among
them, Bulley and Davies (1969), Bulley (1970), Lin, Li,
Yeo and Leong (2000a, b, 2001) have used polynomials
as trial functions in the Rayleigh-Ritz method to approx-
imate the TE and TM modes of waveguides. Thomas
(1969) used trigonometric functions in polar coordinates
as the trial function in the Galerkin method for solv-
ing waveguide problems. Laura, Nagaya and Sarmiento
(1980) used the conformal mapping-variational approach
together with the Galerkin method for analysing a waveg-
uide with a cardioid shaped cross section.

In recent years, a generalized differential quadrature
(GDQ) method was used by Shu (2000), Shu and Chew
(1999), and Dong, Leong, Kooi, Lam and Shu (1997)
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for solving waveguide problems. It is known that the
GDQ method is a high order numerical method which
yields highly accurate solutions when differential equa-
tions are solved in regular domains. For waveguides with
complex cross sections, the GDQ method must be ap-
plied together with a coordinate transformation or a do-
main decomposition technique. This involves a tedious
process in the numerical computation. The application
of the traditional finite difference method (FDM) [Guan
and Su (1995)] for solving waveguide problems faces the
same difficulty as the GDQ method. This is because both
GDQ and FDM discretize the spatial derivatives along a
straight mesh line, so the domain must be regular.

To overcome the difficulties related to structured mesh
point distributions, some meshfree methods have been
developed in recent years. The meshfree methods make
use of unstructured mesh points which can be easily
placed in irregular domains and to match well with the
boundaries. Examples of meshfree methods are the
smooth particle hydrodynamics (SPH) method [Lucy
(1977)], moving least-square (MLS) approximation [Be-
lytschko, Gu and Lu (1994)], partition of unity methods
[Duarte and Oden (1995); Belytschko, Krongauz, Organ,
Fleming and Krysl (1996)], reproducing kernel particle
methods (RKPM) [Liu, Chen, Uras and Chang (1996);
Li and Liu (1996); Hulbert (1996); Chen, Pan, Wu and
Liu (1996)], element-free Galerkin (EFG) method [Be-
lytschko, Lu and Gu (1994)], the multiple scale finite el-
ement methods [Liu, Zhang and Ramirez (1991)], and
the diffuse element method [Nayroles, Touzot and Villon
(1992)].

The least square-based finite difference (LSFD) method
proposed by Ding, Shu, Yeo and Xu (2004) belongs to
the family of meshfree methods. Unlike most of mesh-
free methods, it directly solves the strong form of differ-
ential equations. The derivatives in a differential equa-
tion are directly appoximated by LSFD formulations.
Due to features of unstructured mesh points and the di-
rect approximation of derivatives, the LSFD method has
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the following advantages when solving the waveguide
problem. One advantage is that the boundary condi-
tions are accurately satisfied and easily implemented, and
the difficulties in seeking suitable trial functions in the
Rayleigh-Ritz method and the Galerkin method are com-
pletely avoided. Another advantage is that for any com-
plex problems, numerical computation can be performed
in the Cartesian coordinate system without any process
for numerical integration, complicated coordinate trans-
formation, and domain decomposition.

In this study, the Dirichlet type boundary condition is
implemented by directly substituting the known function
values at boundary points into the discretized governing
equations. The Neumann type boundary condition is dis-
cretized and then coupled with the discretized governing
equations. After implementing the boundary conditions,
the Helmholtz equation can be reduced into an eigen-
value problem, in which the cutoff wavenumbers of TM
and TE modes are calculated from the eigenvalues of the
coefficient matrix.

2 Least Square-based Finite Difference (LSFD)
Method and Discretization of Laplacian Operator

2.1 Basic LSFD formulations

In this section, we will only give a brief summary of the
LSFD method. A detailed description of this method
is given by Ding, Shu, Yeo and Xu (2004). For a two-
dimensional (2D) function W (x,y), Taylor series expan-
sion in ∆ - form gives:
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where ∆Wi j = Wi j −Wi, ∆xi j = xi j − xi, ∆yi j = yi j −
yi. (xi,yi) are the coordinates of the point i, (xi j,yi j)
are the coordinates of the supporting point i j around i,
Wi is the function value at the point i, and Wi j is the func-
tion value at the point i j, ∆ in the truncation error is a
measurement of the mean distance from the supporting
points i j to the node i, for j = 1,2, · · · ,m and m ≥ 9.

If we approximate the function values Wi j at a number of
supporting points i j ( j = 1,2, · · · ,m;m > 9), and drop the

truncation errors O
(
∆4

)
, we obtain a system of equations

in a compact form:
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In the matrix Si, the entries are the coefficient factors of
the derivatives in Taylor series expansion (1).

Now, let us define a matrix

Di = diag
(
di,di,d2

i ,d2
i ,d2

i ,d3
i ,d3

i ,d3
i ,d3

i

)
(6)

where di is the radius of the supporting region around the
point i. We can then write

∆Wi = SidWi (7)

where

Si = SiD−1
i ,dWi = DidWi (8)

In equations (7), the number of equations is larger than
the number of unknowns, i.e. m > 9. This is pur-
posely done because the matrix Si is often singular or
ill-conditioned at some points i in the domain Ω when
m = 9. To remove the singularity and ill-conditioned
property of Si, we can use the least-squares technique to
solve for dWi from equations (7). This is equivalent to
pre-multiplying the matrix S

T
i to both sides of equations

(7). As a result, we have

S
T
i ∆Wi = S

T
i SidWi (9)
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The dimensions of matrices Si and S
T
i are m×9 and 9×

m respectively. Hence the dimension of matrix S
T
i Si is

9×9. m should be large enough to ensure that the matrix
S

T
i Si is not singular at all the points. Therefore, from

equation (9), we get

dWi =
(

S
T
i Si

)−1
S

T
i ∆Wi (10)

Moreover, in order to reflect the fact that the supporting
point closer to the node i has greater influence on the
function value at the node i, a weighting function V is
introduced in equation (10), which is then modified as
follows:

dWi =
(

S
T
i ViSi

)−1
S

T
i Vi∆Wi (11)

where

Vi = diag(Vi1,Vi2, · · · ,Vim) (12)

is the weighting function matrix. The following four
weighting functions have been well tested by Ding, Shu,
Yeo and Xu (2004):
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/
di. It has been shown that the

best accuracy of the numerical results can be obtained by
using the weighting function (13a) rather than (13b-d).
Therefore, in our study, (13a) is adopted for solving the
waveguide problems. The final LSFD formulations can
be derived from equations (8) and (11) as
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In order to simplify this formulation, we can define ma-
trix Ti as
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Then formulation (14) can be rewritten as

dWi = Ti∆Wi (16)

where ∆Wi and dWi are vectors given by expressions (3)
and (4), respectively, and Ti ∈ R9×m.

From the forgoing process, we can see that the LSFD
formulation (F-9) is derived by using the 2D Taylor se-
ries expansion with the first nine truncated terms. We can
also derive higher order LSFD schemes which approxi-
mate derivatives of a function with higher order of accu-
racy by using the 2D Taylor series expansions with more
truncated terms. For easy reference, we denote the LSFD
formulation derived by using 2D Taylor series expansion
with the first 14 truncated terms by (F-14).

2.2 LSFD formulation for ∇2Wi

The Helmholtz equation for eigenvalue problems can be
written as

∇2W = −k2W (17)

where the Laplacian operator is defined by
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We can define a vector T
i
by giving its elements as

T
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Therefore the Helmholtz equation (17) can be discretized
as
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3 Eigenvalue problems of Helmholtz equation

3.1 Definition of the problem

In telecommunications, a waveguide is a material
medium that confines and guides a propagating electro-
magnetic wave. In the microwave regime, a waveguide
normally consists of a hollow metallic conductor, usu-
ally rectangular, elliptical, or circular in cross section.
The propagation characteristics of hollow metallic con-
ducting waveguides with homogeneous permittivity and
permeability distributions can be fully defined by the
Helmholtz equation

∇2φ = −k2
c φ in Ω (23)

where kc is the cutoff wavenumber, and φ the longitudinal
component of electric or magnetic field defined in the
two-dimensional domain Ω surrounded by the boundary
Γ. There are two types of guiding modes, namely TM
modes and TE modes, and their boundary conditions are

φ = 0 at Γ for TM modes, (24)

∂φ
∂n

= 0 at Γ for TE modes. (25)

3.2 Numerical discretization by LSFD

At first, we need to generate nT nodal points
(xi,yi) , i = 1,2, · · · ,nT in domain Ω. There are ni inte-
rior points and nb = nT −ni boundary points. For curved
boundaries, we also need to define θi, i = ni + 1,ni +
2, · · · ,nT , which is the angle between the positive x - axis
and the normal vector ni at the boundary point i.

Based on the node distribution in the domain Ω, we
generate a data file in which the global ordinal num-
bers of m nearest supporting points around the node i
(i = 1,2, · · · ,nT ) are given as i j ( j = 1,2, · · · ,m). The
radius di of the supporting region associated to the node
i is calculated by

di = max

{√
(xi j −xi)

2 +(yi j −yi)
2
}
×1.2 (26)

for j = 1,2, · · · ,m; and i = 1,2, · · · ,nT . The matrices Ti

(i = 1,2, · · · ,nT ) are calculated by using the formulation

(15), and the vectors T
i

(i = 1,2, · · · ,nT ) are calculated
by using the formulation (19).

With all the above data available, and by using the for-
mulation (21), we can discretize the Helmholtz equation
(22) at each interior point as
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In equation (26), there are ni equations in which
φi (i = 1,2, · · · ,ni) and φi j(1 ≤ i j ≤ nT ) are unknowns.
So there are nT unknowns. For the TM modes, the
boundary condition is

φi = 0 for i = ni +1,ni +2, · · · ,nT (28)

By substituting (27) into equation (26), the number of un-
knowns can be reduced to ni which is equal to the num-
ber of equations, and equation (26) can be reduced to a
matrix-vector form as

Aa = −k2
c a (29)

where the coefficient matrix A ∈ Rni×ni , the vector a =
[φ1,φ2, · · · ,φni]

T . The cutoff wavenumbers kc for TM
modes can be obtained by calculating the eigenvalues of
the matrix A.

For TE modes, the boundary condition is

∂φi
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= 0 for i = ni +1,ni +2, · · · ,nT (30)

which is equivalent to

∂φi
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(31)

Using the formulation (F-9), we can discretize equation
(31) as
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for i = ni + 1,ni + 2, · · · ,nT . By moving all the terms
which contain the function values at interior points, φi j
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(i j ≤ ni), from left-hand side to right-hand side, equa-
tions (32) can be compactly expressed as

Bab = Ca (33)

where the vectors ab = [φni+1,φni+2, · · · ,φnT ]
T , a =

[φ1,φ2, · · · ,φni]
T , the matrix B ∈ Rnb×nb , and the matrix

C ∈ Rnb×ni . Equation (33) can be further reduced to

ab = B−1Ca (34)

From equation (34) we have

φni+k =
ni

∑
l=1

(
B−1C

)
k,l φl, for k = 1,2, · · · ,nb (35)

Equation (35) implies that the function value at each
boundary point can be expressed as a linear combination
of the function values at all the interior points. By sub-
stituting equation (35) into equations (26), we can reduce
the system of discretized governing equation (26) into the
matrix-vector form which is the same as equation (29),
and the cutoff wavenumbers kc for TE modes can be ob-
tained from the eigenvalues of the matrix A. In this study,
the eigenvalues of matrices are computed by using HBG
and HQR subroutines provided by Xu (1995).

3.2.1 Dealing with singular points on the boundary Γ

For the TE modes, the boundary condition is given by
either equation (30) or (31), i.e.

∂φi

∂n
= 0 or

∂φi

∂x
cosθi +

∂φi

∂y
sinθi = 0 (36)

for i = ni +1,ni +2, · · · ,nT . It is noted that some bound-
ary points may be located at the sharp corner where the
normal vector ni and the angle θi are not unique. Ob-
viously, these points are singular positions. The way in
dealing with singular points may affect the accuracy of
numerical results sensitively when the boundary condi-
tion (35) is implemented. Basically, there are two types
of singular points on the boundary Γ, namely the convex-
type singular points where the domain Ω is convex, and
the concave-type singular points where the domain Ω is
concave (Fig. 1). We found that the concave-type singu-
lar points need to be handled specially, so that the accu-
rate solutions of the TE modes can be obtained. In this
work, all concave-type singular points need to be elimi-
nated from the supporting points of any node i.

O
Oconcave-type singular point

convex-type singular point

Figure 1 : Singular points on the boundary Γ

3.3 Results and discussion

The LSFD method is validated by its application in solv-
ing a set of waveguide problems. At first, the LSFD re-
sults for TE modes of a rectangular waveguide are com-
puted and compared with the analytical solution. Then
it is applied to compute the cutoff wavenumbers of the
TM and TE modes for the double-ridged, L-shaped,
single-ridged, coaxial rectangular, and vaned rectangular
waveguides. The LSFD results are compared with avail-
able data in the literature. It is noted that for all the cases,
when the TE modes are considered, there is a null mode
with the cutoff wavenumber being zero in the LSFD re-
sults. However, this null mode does not exist physically
and is removed from the tables. The same results regard-
ing the null mode for the TE modes have also been re-
ported by Shu and Chew (1999).

3.3.1 Rectangular waveguide

Consider a rectangular waveguide as shown in Fig. 2.
The cutoff wavenumbers of the TE modes are computed
by the LSFD method and then compared with the analyt-
ical solution which can be expressed by

kc = π
√

(m/a)2 +
(
n
/

b
)2

, m,n = 0,1,2, · · · (37)

For the LSFD computation, we generated 2232 and 3341
unstructured nodal points in the rectangular domain re-
spectively. The numerical results are obtained for the
following three cases: Case 1, nT = 2232 and the formu-
lation (F-9) is applied; Case 2, nT = 2232 and the formu-
lation (F-14) which is one order higher in accuracy than
(F-9) is applied; Case 3, nT = 3341 and the formulation
(F-9) is applied. Tab. 1 shows the computed LSFD cutoff
wavenumbers of the first ten TE modes for the three cases
and the corresponding absolute errors from the analytical
solution.
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Figure 2 : Configuration of a rectangular waveguide
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Figure 3 : Configuration of a double-ridged waveg-
uide

Analytical LSFD Results Absolute Errors
Solution Case 1 Case 2 Case 3 Case 1 Case 2 Case 3
0.785398163 0.785183102 0.785397819 0.785253625 2.151×10−4 3.440×10−7 1.445×10−4

1.047197551 1.046672419 1.047195430 1.046858483 5.251×10−4 2.121×10−6 3.391×10−4

1.308996939 1.308074232 1.308992910 1.308375527 9.227×10−4 4.029×10−6 6.214×10−4

1.570796327 1.569061476 1.570789926 1.569641063 1.735×10−3 6.401×10−6 1.155×10−3

1.887862233 1.885101160 1.887842833 1.886036557 2.761×10−3 1.940×10−5 1.826×10−3

2.094395102 2.090224697 2.094351927 2.091655246 4.170×10−3 4.318×10−5 2.740×10−3

2.236814950 2.232042601 2.236769472 2.233605533 4.772×10−3 4.548×10−5 3.209×10−3

2.356194490 2.350346339 2.356133055 2.352304817 5.848×10−3 6.144×10−5 3.890×10−3

2.578424943 2.571248493 2.578340608 2.573652265 7.176×10−3 8.434×10−5 4.773×10−3

2.617993878 2.610793045 2.617920988 2.613106773 7.201×10−3 7.289×10−5 4.887×10−3

Table 1 : Analytical and LSFD results of TE modes of the rectangular waveguide: Case 1:nT = 2232, (F - 9); Case
2: nT = 2232, (F - 14); Case 3:nT = 3341, (F - 9)

Approaches Meshes T E1 T E3 T E5 T E7 T E9

LSFD
3252, (F-9) 1.4307 3.1608 6.1827 6.7045 6.9601
3252, (F-14) 1.4426 3.1654 6.1906 6.7178 6.9727

M-D GDQ 19×19 1.4423 3.1684 6.1917 6.7127 6.9757

FD-SIC
50×40 1.428 3.169 6.192 6.695 6.976
100×80 1.434 3.168 6.192 6.705 6.975

Montgomery 1.437 3.166 6.190 6.712 6.973
Utsumi 1.438 3.155 6.215 6.707 6.971
Scalar-FEM 1.440 - 6.192 6.713 -

Table 2 : Cutoff wavenumbers for the double-ridged waveguide

It was found that the computing time of present calcu-
lation takes about 1% for forming the coefficient matrix
A and 99% for calculating the eigenvalues of matrix A.
The time taken for calculating the eigenvalues of a ma-
trix depends on the dimension of the matrix. As shown

in Tab. 1, Case 1 provides the LSFD results with rea-
sonable accuracy. The absolute errors of Case 3 are re-
duced by about one-third as compared to Case 1. Clearly,
its improvement in accuracy of solution is moderate, but
its computing time is increased from 1 hour required by
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LSFD M-D GDQ
FD-SIC FD-CGM SIE

Mesh 3570, (F-9) 3570, (F-14) 21×21
T M1 4.8839 4.8927 4.8902 4.8949 4.80 4.8677
T M2 6.1326 6.1391 6.1392 6.1350 6.07 6.1361
T M3 6.9872 6.9966 6.9967 6.9921 6.92 6.9908
T M4 8.5391 8.5564 8.5565 8.5458 8.61 8.5525
T M5 8.8734 8.8994 8.8972 8.8940 9.72 -
T M6 10.1108 10.1439 10.1425 10.1262 11.39 -
T M7 10.5253 10.5577 10.5580 10.5318 - -
T M8 11.0252 11.0625 11.0627 11.0380 - -
T M9 11.0254 11.0625 11.0627 11.0380 - -
T M10 11.8114 11.8608 11.8598 11.8407 - -
T E1 1.9141 1.9165 1.9123 1.9111 - 1.8917
T E2 2.9602 2.9605 2.9605 2.9600 - 2.9159
T E3 4.9439 4.9474 4.9474 4.9452 - 4.8755
T E4 4.9440 4.9474 4.9474 4.9452 - -
T E5 5.3110 5.3147 5.3147 5.3128 - 5.2463
T E6 5.5807 5.5877 5.5831 5.5799 - -
T E7 6.9880 6.9966 6.9967 6.9937 - -
T E8 7.2813 7.2963 7.2879 7.2784 - -
T E9 7.5982 7.6088 7.6088 7.6002 - -
T E10 8.3931 8.4124 8.4045 - - -

Table 3 : Cutoff wavenumbers of the L-shaped waveguide

Case 1 to 2.5 hours on a Fujitsu Pentium 4 notebook
computer. In contrast, the absolute errors of Case 2 are
only about 0.73% of those of Case 1, but its computing
time required is almost the same as Case 1. This is be-
cause Cases 1 and 2 use the same total number of points,
nT = 2232. So, the dimension of coefficient matrix for
these two cases is the same, and thus the computing time
required for calculating the eigenvalues is also the same.
On the other hand, the formulation (F-14) used by Case
2 has one order higher in accuracy than the formulation
(F-9) used by Case 1. Therefore, the results of Case 2 are
much more accurate than those of Case 1. Both Case 3
and Case 1 have the same order of accuracy since they
use the same formulation (F-9). The improvement of nu-
merical results in Case 3 is actually due to the reduc-
tion of distance between points when the total number of
points is increased from nT = 2232 to nT = 3341. On the
other hand, since the dimension of the coefficient matrix
in Case 3 is larger than that in Case 1, Case 3 would defi-
nitely need more computing time. The above results also
imply that the accuracy of numerical results can be more
efficiently improved by increasing the order of accuracy

for derivative approximation.

3.3.2 Double-Ridged waveguide

The geometry of the cross section of a double-ridged
waveguide is shown in Fig. 3. For this problem, the do-
main Ω is non-convex. As discussed in the sub-section
3.2.1, the four singular concave points on Γ cannot be
appointed as the supporting points of other nodes. Some
typical supporting regions are shown in Fig. 3. The prin-
ciple for the selection of supporting region is that the line
segment between a node and its supporting point should
not be outside the domain Ω.

The cutoff wavenumbers for T E1, T E3, T E5, T E7

and T E9 modes are computed by the LSFD method,
and then compared with the available results from other
methods [Guan and Su (1995); Shu and Chew (1999);
Montgomery (1971); Utsumi (1985); Israel and Min-
iowitz (1987)] in Tab. 2. Clearly the present results agree
very well with those obtained from other methods. The
results based on (F-14) formulation are much more accu-
rate than those based on (F-9) formulation.
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3.3.3 L-Shaped waveguide

The geometry of the L-shaped waveguide is shown in
Fig. 4. Tab. 3 shows the computed cutoff wavenumbers
of the first ten TM and TE modes by LSFD method for
this waveguide. Also included in Tab. 3 are the results of
the multi-domain GDQ method [Shu and Chew (1999)],
the surface integral equation (SIE) method [Swami-
nathan, Arvas, Sarkar and Djordjevic (1990)], the finite
difference with conjugate gradient method (FD-CGM)
[Sarkar, Athar, Arvas, Manela and Lade (1989)], and the
FD-SIC method [Guan and Su (1995)]. As shown by
Guan and Su (1995), analytical solutions for T M3, T M8,
T M9, T E3, T E4, T E7 modes are available, and their re-
spective values are 6.9967, 11.0627, 11.0627, 4.9474,
4.9474, and 6.9967. From Tab. 3, we can see that
the multi-domain GDQ results are very accurate, and
the LSFD results based on formulation (F-14) are much
closer to the multi-domain GDQ results than those based
on formulation (F-9). This indicates that the LSFD re-
sults can be improved more effectively by increasing the
order of accuracy of the formulation used.

3.3.4 Single-Ridged waveguide

The configuration of a single-ridged waveguide is shown
in Fig. 5. Tab. 4 shows the computed cutoff wavenum-
bers of the first ten TM and TE modes by LSFD method
for this waveguide. Also included in this table are the re-
sults obtained from the multi-domain GDQ method [Shu
and Chew (1999)], the SIE method [Swaminathan, Ar-
vas, Sarkar and Djordjevic (1990)], the FD-CGM method
[Sarkar, Athar, Arvas, Manela and Lade (1989)], and
the FD-SIC method [Guan and Su (1995)]. The results
of LSFD method are reasonably accurate as compared
with those of the multi-domain GDQ method. Again,
the accuracy of LSFD results can be improved consid-
erably when the formulation (F-14) rather than the for-
mulation (F-9) is used to approximate the derivatives in
the Helmholtz equation (22) and the boundary condition
equation (31).

3.3.5 Coaxial Rectangular waveguide

The configuration of a coaxial rectangular waveguide is
shown in Fig. 6. Tab. 5 shows the computed cutoff
wavenumbers of the first ten TM and TE modes by LSFD
method for this problem. Also included in Tab. 5 are the
results of the multi-domain GDQ method [Shu and Chew
(1999)] and the FD-CGM method [Sarkar, Athar, Arvas,
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Figure 7 : Configuration of a vaned rectangular waveg-
uide

Manela and Lade (1989)]. Clearly, the results of TM and
TE modes of LSFD method are compared well with those
of the multi-domain GDQ method.

3.3.6 Vaned Rectangular waveguide

The configuration of a vaned rectangular waveguide is
shown in Fig. 7 and the computed cutoff wavenumbers
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LSFD M-D GDQ
FD-SIC FD- CGM SIE

Mesh 2021, (F-9) 2021, (F-14) 21×21
T M1 12.0946 12.1432 12.1362 12.1447 12.05 12.0381
T M2 12.3748 12.4296 12.4210 12.4331 12.32 12.2938
T M3 13.9633 14.0101 14.0090 14.0037 13.86 13.9964
T M4 15.5327 15.5917 15.5935 15.5829 15.34 15.5871
T M5 16.5778 16.6495 16.6507 16.6403 16.28 -
T M6 17.6841 17.7709 17.7715 17.7598 - -
T M7 19.5250 19.6434 19.6447 19.6296 19.32 -
T M8 21.5738 21.7318 21.7335 21.0763 - -
T M9 22.0983 22.2873 22.2838 - - -
T M10 22.3966 22.6061 22.5990 - - -
T E1 2.2583 2.2580 2.2489 2.2422 2.23 2.2496
T E2 4.8683 4.8731 4.8573 4.8543 4.78 4.9436
T E3 6.4573 6.4664 6.4548 6.4476 6.40 6.5189
T E4 7.5200 7.5187 7.5196 7.5185 7.48 7.5642
T E5 9.8151 9.8217 9.8254 9.8314 9.71 -
T E6 12.5345 12.5659 12.5664 12.5607 12.39 -
T E7 12.5353 12.5660 12.5664 12.5607 - -
T E8 12.7500 12.7832 12.7785 12.7667 - -
T E9 13.3505 13.3817 13.3818 13.3825 - -
T E10 13.4687 13.4981 13.4993 - - -

Table 4 : Cutoff wavenumbers of the single-ridged waveguide

of the first ten TM and TE modes by LSFD method are
displayed in Tab. 6 for this waveguide. Tab. 6 also in-
cludes the results of the multi-domain GDQ method [Shu
and Chew (1999)], the FD-CGM method [Sarkar, Athar,
Arvas, Manela and Lade (1989)] and the SIE method
[Swaminathan, Arvas, Sarkar and Djordjevic (1990)].
Like other cases, the LSFD results of TM and TE modes
for this case also agree well with available results in the
literature.

4 Conclusions

In this paper, we have presented the recently developed
LSFD meshfree method for solving eigenvalue problems
governed by the Helmholtz equation. Through this study,
we can see that the LSFD method can be efficiently used
to solve waveguide problems within complex domains.
For any geometry, the strong form of differential equa-
tions is directly discretized by the LSFD formulations
and solved in the Cartesian coordinate system without
the need for any coordinate transformation or domain de-
composition. The boundary conditions of TM modes and

TE modes are implemented easily. For all the waveguide
problems dealt in the paper, the LSFD results show good
accuracy. It is also established that the accuracy of the
numerical results can be improved by using higher or-
der LSFD formulations rather than by increasing the total
number of points in the problem domain.
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