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The method of fundamental solutions for eigenproblems with Laplace and
biharmonic operators

S.Yu. Reutskiy!

Abstract: In this paper a new meshless method for
eigenproblems with Laplace and biharmonic operators
in simply and multiply connected domains is presented.
The solution of an eigenvalue problem is reduced to a se-
quence of inhomogeneous problems with the differential
operator studied. These problems are solved using the
method of fundamental solutions. The method presented
shows a high precision in simply and multiply connected
domains. The results of the numerical experiments justi-
fying the method are presented.

keyword: Method of fundamental solutions, Mem-
branes and Plates, Free vibration problem
1 Introduction

The goal of this paper is to present a new numerical tech-
nique for solution of the following eigenvalue problems:

Vw+kw=0,xcQcR?,
B [w] =0, x € 0Q

ey

and

Viw—k*w=0,xcQcR?,
w=0, By[w] =0, x € 0Q.

2

Here Q is a simply or multiply connected domain of in-
terest with boundary dQ. The boundary operator in (1)
By [...] will be considered of the two types: the Dirichlet
B [w] = w and of the Neumann type B [w] = ow/dn; for
biharmonic operator in (2), B, [w] = dw/on or B, [w] =
0’w/dn®. As a mechanical application, this corresponds
to recovering the free vibration frequencies of mem-
branes and plates. Such problems often arise in engi-
neering applications.

The usual approach for eigenvalue problems with a self-
adjoint operator is to use the Rayleigh minimal principle.
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In particular, the stationary points of the functional

R(w) :/QHVszdQ//wde.

coincide with eigenfunctions of the Laplace operator.
See [Courant (1943); Courant and Hilbert (1953); Morse
and Feshbach (1953); Strang and Fix (1973)] for more
details and references. Then, using an approximation
for w with finite number of free parameters, one gets
the same problem in a finite-dimensional subspace which
can be solved by a standard procedure of linear alge-
bra, e.g., see [Golub and Loan (1996); Strang (1976)].
However, a standard finite differences method can pro-
duce good results when dealing with a particular type
of shapes defined on rectangular grids, while for other
type of shapes the finite element method or the bound-
ary element method are more appropriated. The method
of fundamental solutions (MFS) [Fairweather and Kara-
georghis (1998); Golberg and Chen (1998, 1997)] is the
convenient tool in this field. The similar technique is
used in the boundary knot method (BKM) [Chen (2005);
Chen and Tanaka (2002)]. Unlike the MFS, it employs
nonsingular general solutions as the basis functions to
avoid the fictitious boundary outside the physical do-
main.

In the framework of the boundary methods a general ap-
proach to solving these problems is as follows. First,
using an integral representation of w in the BEM, or an
approximation over fundamental solutions in MFS, one
gets a homogeneous linear system A (k) q = 0 with ma-
trix elements depending on the wave number k. The de-
terminant of this matrix must be zero to obtain the non-
trivial solution:
det[A (k)] =0 3)
This equation must be investigated analytically or numer-
ically to get the eigenvalues. This technique is described
in [Karageorghis (2001); Chen, Lin, Kuo, and Chyuan
(2001); Chen, Liu, and Hong (2003); Chen, Chen, Chen,
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Lee, and Yeh (2004); Chen, Chen, and Lee (2005)] with
more details. In the two latest papers there is a complete
bibliography on the subject considered. In [Alves and
Antunes (2005)] the MFS based procedure is applied to
eigenproblems in general simply connected shapes.

The method presented in this article uses the same MFS
boundary technique. This is a mathematical model of
physical measurements when the resonance frequencies
of a system are determined by the amplitude of response
to some external excitation. As a result, e.g., instead
of (1) we solve a sequence of inhomogeneous boundary
value problems (BVP):

Viw+kPw=f(x),x€cQCR?
B [w] =0, x€0Q,

“)

where f describes some source placed outside the solu-
tion domain. Let F (k) be some norm of the solution w.
As it will be shown below, this function of k has sharp
maximums at the eigenvalues and, under some condi-
tions can be used for their determining. Certainly such
behaviour of F (k) near the eigenvalues is a consequence
of (3). Techniques of numerical solution of linear BVPs
like (4) are well developed. It should be emphasized that
any Helmholtz (or biharmonic) equation solver can be
used in the framework of the method presented. How-
ever, the MFS technique seems to be a more suitable one
for this goal in the case of an arbitrary domain.

The outline of this paper is as follows: for the sake of
simplicity we begin by describing the 1D case in Section
2. In Section 3, we present the algorithm of MFS in ap-
plication to problem (1). Here we present numerical ex-
amples to illustrate the method presented for simply and
multiple connected domains. In Section 4, the same tech-
nique is described in application to problem (2). Some
generalization of the technique and the fields of its de-
velopment are discussed in Section 5.

2 One-dimensional eigenproblem

To illustrate the method presented let us consider the
wave equation [Morse and Feshbach (1953)]

u  u

— == (5)
ot ox

with the Dirichlet conditions at the endpoints of the in-
terval [0, 1], i.e., u(0,7) = u(1,#) = 0. Considering the
free harmonic vibrations u (x,¢) = e~ w (x), we get the
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following 1D Sturm — Liouville problem on the interval
[0,1]:

d2
d—;+k2w:o, w(0) =w(1)=0. ©6)
The well known solution is: k, = nm, w, = sin(nmx),
n=1,2,... 0.

Following the boundary approach, let us consider the

fundamental solution

1

¥ (x,§,k) = S-exp (ik|x—¢&|),

2k M

which satisfies the homogeneous equation everywhere
except the singular point x = €. A general solution of
the homogeneous equation in the interval [0,1] can be
written in the form:

w= ql\P(xvélvk) +q2\P(x7é27k) .

Here &, &, are two source points placed outside the solu-
tion domain [0,1], e.g., & <0, &, > 1; q1,¢> are free pa-
rameters. Using the boundary conditions w (0) =w (1) =
0, one gets the linear system:

e(—kS1) 4 g, elikE2) — ()
Ak)q= { Z:e<—ik<1—&l>(>]+ greE1) — 0
The wave numbers k&, can be determined from the con-
dition: det[A (k)] = 0. After simple transforms we get:
exp (2ik) = 1, or k = nm. Thus, MFS gets the exact solu-
tion. Note that in multidimensional cases such computa-
tions are time consuming and not so simple.

As it is mentioned above, the method suggested is a
mathematical model of physical measurements, when a
mechanical or acoustic system is excited by an external
source and resonance frequencies can be determined us-
ing an increase of amplitude of oscillations near these
frequencies. So, instead of (6) we solve the inhomoge-
neous problem:

w5

W‘Fk w=f(x), w(0)=w(1)=0 (®)
The general solution can be written in the form:
W:ql\P(xvélvk)—l_qZ\P(xv&ka)+Wp' (9)

When the excitation is performed by the point source
with the same wave number k& which is placed at the point
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€ outside the solution domain, then f(x) = id(x—&p)
and the particular solution is:

1 :
= ﬂexp(zk\x—io\).

Using again the same homogeneous boundary conditions
w(0) =w(1) =0, now we get an inhomogeneous linear
system for each k. Let us introduce the norm of the solu-
tion as

N
PO =[5 )P, Falk) = F0O/Flky). (1)

where Fy(k) is the dimensionless value, k is a reference
wave number and the points x,, are randomly distributed
in [0,1]. In all the calculations presented in this section
we use N = 5. This function characterizes the value of
the response of the system to the outer excitation. Note
that the right hand side f corresponding to (10) equals
to zero identically inside [0, 1] and BVP (8) has a unique
solution w = O for all k except k = k,, - eigenvalues when
the solution is not unique.

Wp :lP(xvé()vk) (10)

In Fig. 1 the value F; as a function of the wave number
is shown.

The graph contains large sharp peaks at the positions of
eigenvalues. Generally speaking, this resonance curve
can be used to determine the eigenvalues in the same way
as det [A (k)] in the technique described above. However,
the graph F; (k) is a non smooth one, as it is shown in
the lower part of Fig. 1 with more details. This can be
explained by the following reasons. Problem (8), (9)
with w), given in (10) has the exact solution ¢ = 0,
g = —e™%~5) and so the total solution w(x) = 0, for x €
[0, 1]. So, here we have F (k) which is equal to zero with
machine precision accuracy when k is far from eigenval-
ues; F (k) grows considerably in a neighbourhood of the
eigenvalues when the linear system becomes almost de-
generated. And a smoothing procedure is needed to get
an appropriate curve which is convenient for applying an
optimization procedure. The following two smoothing
procedures are used in the paper.

2.1 smoothing by a dissipative term

The first procedure consists of introducing an additional
dissipative term in the governing equation. And instead
of (8) we consider the problem:

d*w

T (@ riekw=7f w(0)=w(1)=0. (12)
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Figure 1 : Resonance curve in 1D eigenproblem.
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Figure 2 : Resonance curve in 1D eigenproblem.
Smoothing by a friction term.
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Here € is a small parameter. This means that the ini-
tial wave equation (5) is changed by the equation 97 u =
02,u — £d,u which describes vibration of a homogeneous
string with a friction [Morse and Feshbach (1953)]. The
fundamental solution is:

\P(x,&,k,s»—;—Xexpux\x—&\),

X = V k*+iek.

Now the system w(0) = 0, w(1) = 0 with w, given in
(10) has a unique non zero solution for all real k. The
resonance curve corresponding to € = 107 is shown in
Fig. 2.

Now this is a smooth curve with separated maximums
at the positions of eigenvalues. To find the eigenvalues
we use the following algorithm through the paper. Let us
look for the eigenvalues on the interval [a,b] Then:

13)

(A)
step 0:  Choose h > 0;
if F(a)> F(a+h) goto step 5;
stepl: x;=a;F1=F (x);
step2: xp=x1+h F2=F (x2);
if xp > b stop;
step 3:  if F2> F1then [F1 =F2;x; = x,];
goto step 2;
step 4:  find the maximum point x,, of F (x)
on [xp —2h,xy];
step5: x;1=a;F1=F (x);
step6: xp=x1+h; F2=F (x2);
if xp > b stop;
step 7: if F2 <F1then [F1=F2;x; =x;

goto step 6],

else goto step 2.
Note that any univariate optimization procedure can be
used at step 4. In particular, we applied Brent’s method
based on a combination of parabolic interpolation and bi-
section of the function near to the extremum(see [Press,
Teukolsky, Vetterling, and Flannery (2002)], Ch. 10 and
[Brent (1973)], Ch. 5 ). The step is taken & = 0.01
through the paper. The data placed in Tab. 1 are ob-
tained by applying this technique with € = 0.1, 1073,
10-5. Other parameters are: & = —0.5,&, =1.5,&y = 5.
Here we place the relative errors

er = |k — k| /1 (14)

in the calculation of the first five eigenvalues.
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Table 1 : One dimensional eigenproblem. The relative
errors in calculations of the eigenvalues. Smoothing by
the friction term.

K9] e=01 [ e=102 | e=10"°
n | 1.3-100%| 1.3-107% | 1.7-10712
2n [ 3.2-107° | 3.1-1077 | 1.6-107 12
3m [ 1.4-107° | 1.4-1077 | 1.5-10°12
4t 1 79-10°[79.-1079[9.7-10°1
50 [5.1-107%(5.0-107'° [ 9.0-10° 13

2.2 smoothing by a shift of wave numbers

The second smoothing technique is as following. Let
us introduce the constant shift Ak between the exciting
source and the studied mode, i.e., instead of (10), we take
the particular solution in the form:

Wp = \P(xvé()vk—i_Ak)

exp (i (k-+ AK) b — &) (15)

1
- 2(k+Ak)

Now the linear system w (0) = w (1) = 0 has non zero so-
lutions for all k except the eigenvalues k, when the sys-
tem becomes degenerate. However, due to iterative pro-
cedure of solution and rounding errors we never solve the
system with the exact k,. And we observe degeneration
of the system as a considerable growth of the solutionin a
neighbourhood of the eigenvalues. The resonance curve
corresponding to Ak = 1 is shown in Fig. 3.

Some results of the calculations we got using the second
smoothing technique are presented in Tab. 2. The values
€1, &, & are the same as above.

Below we will name these procedures as ¢—procedure
and k—procedure.

Table 2 : One dimensional eigenproblem. The relative
errors in calculation of the eigenvalues. Smoothing by
shift of the wave numbers.

K9 k=01 | ak=1 | rk=10
n | 1.4-100"[9.1-1072 | 7.8-10°12
2r [ 58-1008 [ 35.10712 | 55.10712
3n | 6.4-1072 | 1.3.-10712 | 3.5-10°12
4 | 3.3-10013 [ 2.8-10712 [ 2.3-10712
5t [ 5310712 [35.10012|59.10°13
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Figure 3 : Resonance curve in 1D eigenproblem.
Smoothing by a shift between the wave numbers.

3 Helmholtz eigenproblem

Applying the MES to problem (4) we look for an approx-
imation solution in the form of a linear combination:

+Z%

where w), is the particular solution corresponding to f,
and the trial functions

@, (x) = Hy (k|x L)

satisfy the homogeneous PDE. This is the so-called
Kupradze basis [Kupradze (1967)]. The singular points
€, are located outside the solution domain. The free
parameters ¢, should be chosen to satisfy the boundary
condition By [w(x|q)] = 0, x € dQ. In particular the un-
knowns ¢, are taken as a solution of the minimization

problem:
N N 2
nhinz {B] [Wp (Xi)] + Z qnB1 [(Dn (Xz)]}

i=1 n=1

w(x|q) = (16)

a7

(18)

Here the points x;, i = 1,..., N, are distributed uniformly
on the boundary. We take N, approximately twice as
large as the number of free parameters N. The problem
is solved by the standard least squares procedure. Note
that we get (18) as a result of discretization of the integral
condition:

min | (B w(xlg)]}ds

More details of this technique can be found, e.g., in [Fair-
weather and Karageorghis (1998); Golberg and Chen
(1998)].

As a particular solution corresponding to the exciting
source we take the same fundamental solution

Wp(X) = Dex(x, Gy k) = HYY (k 1x— Cox])

with ., placed outside the solution domain.

19)

When dealing with problems in multiply connected do-
mains, the same trial functions can be used. And the
source points should be placed also inside each hole. As
an alternative approach one can use the special trial func-
tions associated with each hole:

@;, 1( ) ( )
Dy 0,41(x ) H (krb)cosneb,
D;5,(x) = (krb)smne (20)

Here ry; = |x — X/, 6y is the local polar coordinate sys-
tem with the origin at x;. This is so-called Vekua ba-
sis [Vekua (1957); Hafner (1990)], or multipole expan-
sion. It is proven that every regular solution of the 2D
Helmbholtz equation in a domain with holes can be ap-
proximated with any desired accuracy by linear combi-
nations of such functions if the origin x; of a multipole is
inside every hole. In this case instead of (16) we use:

+Z%
S
+ Z Z ps,m\Ps m

s=1m=1

(X‘q ps = Wp
(2D

where S is the number of holes and M is the number of
terms in each multipole expansion.

When the e—smoothing procedure is applied, then in-
stead of (4) we consider the problem:

Vi, + (k2 +iek) wy, =0, X € Q,

B [Wh(X)] =—B [WP(X)], X € 0Q. 22)
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with some small € > 0. Note that this problem has a
unique nonzero solution for all real k. Then the trial func-
tions (17) should be also modified:

@, (x) = Hy' (x[x — G,

x (k,&) = VK> + igk.

Applying the k—procedure we modify the particular so-
lution which should be taken in the form:

(23)

wp(X) = Oy (x8) = HV (K|x— L), k =k + Ak (24)

3.1 numerical examples

Here the results of the numerical experiments are given
to illustrate the method presented. In all the cases consid-
ered below the resonance curve F (k) is computed using

N; testing points X, ; € Q: F (k) = \/1 /N; 2?’;1 \w(x,,l)\z.
In all the calculations we use 15 testing points distributed
inside Q with the help of RNUF generator of pseudoran-
dom numbers from the Microsoft IMSL Library. To get
the eigenvalues we look for the maxima of F (k) using
the Brent’s procedure mentioned.

Example 1) A circular domain with the radius r = 1 sub-
jected to Dirichlet or Neumann boundary condition is
considered. The exciting source is placed at the posi-
tion {. = (5,5); the singular points {, of the fundamen-
tal solutions (17) are located on the circle with the ra-
dius R = 2. The results shown in Tab. 3 correspond to
€ = 1075, Here we place the relative errors (14) in the
calculation of the first 5 eigenvalues. The line — in a cell
indicates that the solution process failed with these pa-
rameters. The exact eigenvalues kfex) are the roots of the
equation J,, (k) = 0 (Dirichlet) or J}, (k) = 0 (Neumann).

Example 2) The role of the parameter € is shown in
Tab. 4. We solve the same problem as above with Dirich-
let condition. Here we fix the number of free parame-
ters N = 25 and vary the parameter €. The parameter €
coarsens the system. For a large € we can calculate all the
eigenvalues k;, i = 1, ..., 10 but the precision is not very
high. When ¢ decreases, the precision in determining of
k; increases but it fails for large i.

The figures Fig. 4, Fig. 5, Fig. 6 correspond to the data
placed in Tab. 4. For € = 1072 the resonance peaks are
spread because the friction. When € decreases the peaks
become more sharp and narrow. Besides for e = 1078 the
peaks corresponding to k;,i > 2 are placed on the rising
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Table 3 : Circular domain with the radius r = 1.
The relative errors in calculations of the eigenvalues.
e—procedure; € = 107°.

Dirichlet condition

i| N=15 | N=20 | N=25
1/8-10°"1[8.1072 | 7.10712
2121073 [ 5-107" [ 2.107 M
3131077 | 1-107° | 1-107°
4121072 [4-107" [ 1-107 M
5/6-107 | 2.103 | 1-107°
‘ Neumann condition ‘
1| 2-10°] 21077 | 2.107°
2041077 | 2-107° | 2-107°
3/9.-1002]1-107"1[6-10712
41 7-107% [9.10°19 | 8.10710
5(2-107% [ 6-10719]3.10°1°

Table 4 : Circular domain with the radius r = 1. Dirich-
let condition. The relative errors in calculations of the
eigenvalues. e—procedure with varying €, N = 25.

| i [e=107]e=10" ][ e=10° | e=10"8 |
1 164-107°]6.0-100'9]73-10712[4.9.10° !
2 124-10°119-10719]12.0-107"1 [ 43.-107 !
3 13210 1.4-107° | 1.0-107° —
4190-1077|1.6-10719] 1.3.-107 11 —
5 11.1-10°] 1.6-107° | 1.4-107° —
6 651077 |1.5-10°1° — —
7 149-1077 | 48-1071° — —
8 [2.7-10°°] 1.1-107° — —
9 {49-1077 | 59-107° — —
10| 5.2-10°° — — —

sharply part of the resonance curve. As a result the al-
gorithm (A) “jumps over’ the eigenvalues and one should
decrease the step parameter % to capture the maxima. As
it is shown in Tab. 4, for € = 10~ the algorithm finds k;
and k, with &~ = 0.01. When # is reduced to 0.001 then
the algorithm also gives the eigenvalues k3 and k4. To get
ki,i=1,...,10 one should take # = 0.0001. However, the
algorithm becomes highly expansive in the CPU time.

Example 3) Next, we consider the case when Q is the

unit square with the same Dirichlet or Neumann bound-
ary condition.This problem has an analytical solution:
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Figure 4 : Circular membrane with the radius 1. Dirich-
let conditions. € - procedure with e = 1072
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Figure 5 : Circular membrane with the radius 1. Dirich-
let conditions. € - procedure with € = 10~%.

A JBUL 1

3 6

Fa
500

400
300
200
100

k

Figure 6 : Circular membrane with the radius 1. Dirich-
let conditions. € - procedure with € = 1078,

k@) = m\/i2+ 2, i,j = 1,2,..(Dirichlet condition) and
i,j=0,1,2,..(Neumann condition). In Tab. 5, we show

the results of calculation of the first 5 eigenvalues with
€ = 1075, The placement of the singular points {, and
the exciting source are the same as above.

Example 4) For the next example, we consider an an-
nular case of the doubly connected domain between the
two circles: Q = {(x1,x,) | r} <x}+x3 <r3} The in-
ner and outer radii of an annular domain are r; = 0.5
and rp, = 2, respectively. We take Dirichlet condition
on the outer boundary and Neumann on the inner one.
The singular points are distributed at the circles with
the radii a = 5(outside the domain) and b = 0.3 (inside
the hole). The number of the singular points on each
auxiliary contour is equal to N. The exciting source is
placed at {,; = (10,10). In Tab. 6 we present the rela-
tive errors (14) in calculation of the first 5 eigenvalues of
the problem described with € = 10~5. The values £ *”
are obtained numerically as the roots of the equation:
J,,l (r1 k) Yn (rzk) — Jn (rzk) Y,; (r1 k) =0.

Table 5 : Square with the side a = 1. The relative er-
rors in calculations of the eigenvalues. €—procedure;

e=10"°.

‘ Dirichlet condition ‘
i | N=15|N=20| N=25
1[1-10°[3-108| 1-107°
211-102]9-10°%] 1-10°8
3(18-10°(3-107%| 8-107°
413-100%|1-100°] 3-107°
5/3-10%|4-107°] 6-1077

‘ Neumann condition ‘
1[4-1077[5-10% [ 8-10°1
211-10°[3-108 ] 3-107°
3/4-10°]1-1077]3-10°10
411-10*16-10%| 5.-107°
5/5-10%|2-107°] 6-1077

Table 6 : Annular domain. The relative errors in calcu-
lations of the eigenvalues. e—procedure; € = 1072,

i K N=15 | N=20 | N=25
1] 1.3339427880 | 5-10~"" | 2.107"1 [ 2.10~ 1"
2| 1.7388632616 | 6-107% | 7-10712 | 5.1012
3 | 2.4753931967 — 7-1071 | 8-107 12
4 | 3.1645013237 — 7-1078 | 5-10° 1
5 | 3.2899912986 — — 7-10~11
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Example 5) In this example, doubly connected region
with the inner region of vanishing maximal dimension is
considered. The geometry of the problem is the same
as in Example 3. However, here we consider the case
of very small inner holes. In particular, we take r; =
10~',1072,103 with the same fixed , = 2. Now, the
Kupradze type basis functions (17) are unfit to approxi-
mate the solution in a neighbourhood of the hole. Here
we use a combined basis which includes the trial func-
tions (17) with the singular points placed on an auxiliary
circular contour outside the solution domain and a mul-
tipole expansion with the origin at the center of the hole.
Thus, we look for an approximate solution in the form:

M
+quz )"i'zpm\ym X
m=1

The data presented in Tab. 7, Tab. 8, Tab. 9 correspond
to the number of sources on the outer auxiliary circu-
lar contour N = 50. The number of terms in multi-
pole expansion M varies from M = 11(r; = 107!) to
M = 5(r; = 1073). The exciting source is placed at
the position {,, = (10,10). We use the k—procedure
with the shift Ak = 1. We would like to draw the read-
ers’ attention to the fact that the method presented can

(X‘q p = Wp

separate very close eigenvalues: kffx) = 3.1900833197

and kgex) =3.2126996563(see data corresponding to r| =
10~1Y). Here the step in the algorithm (A) is taken
h = 0.001. The detailed discussion of Vecua basis for
Helmholtz equation can be found in [Hafner (1990)].

4 Eigenproblems with biharmonic operator

According to the technique proposed, instead of (2) let’s
consider BVP

Viw—k*w=f,xeQcR?,
w=0, By[w] =0, x € 0Q.

(25)

In application to this problem, the MFS technique is sim-
ilar to the one considered in the previous section. The
trial functions now are of the two types: the fundamental
solutions of the Helmholtz operator V2 + k?:

— H" (k[x— )

considered above and the fundamental solutions of the
modified Helmholtz operator V2 — k?:

o (x) (26)

2
= H{(ikix = Go]) = =Ko (kIx =Gl @7)
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Table 7 : Circle with a small hole. Dirichlet boundary
condition. The outer radius: r, = 2. The relative errors
in calculation of the first ten eigenvalues. k—procedure

with Ak = 1.

r=0.1,N=50M=11
i kfex) e,
1 | 1.5322036536 | 1.9-10°8
2 | 1.9301625755 | 5.8-107°
3 | 2.5680354360 | 1.6-107°
4 |3.1900833197 | 1.3-10~ !
5 | 3.2126996563 | 7.4-107°
6 | 3.5522743165 | 3.7-10710
7 | 3.7941712382 | 1.2-10~ 1
8 | 42101115868 | 9.0- 1012
9 | 4.3857419081 | 4.4-10~ 12
10 | 4.8805392651 | 1.0-10~1!

Table 8 : Circle with a small hole. Dirichlet boundary
condition. The outer radius: r, = 2. The relative errors

in calculation of the first ten eigenvalues. k—procedure
with Ak = 1.

ri=00l,N=50,M=7
i kfex) e,

1 | 1.3709447159 | 2.5-10°8
2 | 1.9160005377 | 5.4-107°
3 | 25678112121 | 1.6-107°
4 |2.9632630840 | 5.3-107°
5 | 3.1900809955 | 2.9-10~ 12
6 | 3.5082790790 | 2.3-10~ 12
7 |3.7941712738 | 1.0-107°
8 | 4.2086222910 | 7.6- 1012
9 | 4.3857419733 | 1.1-10~ 1
10 | 4.5543927267 | 1.3-107°

where Hél) is the Hankel function and Kj is the modi-

fied Bessel function of the second kind and of order zero.
So, an approximate solution is sought in the form of the
linear combination:

u @)
X) + @i (x).

(28)

+qun

(X‘qlqu - Wp

where w),(x) is a particular solution corresponding to the
external source. We take it in the same form as in the
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Table 9 : Circle with a small ole. Dirichlet boundary
condition. The outer radius: rp, = 2. The relative errors
in calculation of the first ten eigenvalues. k—procedure
with Ak = 1.

r1=0.00l, N=50,M =5
i kfex) e,
1 | 1.3148533741 | 2.0-10°8
2 | 1.9158544900 | 5.4-107°
3 25678111892 | 1.5-107°
4 | 2.8883437835 | 2.8-107°
5 | 3.1900809955 | 1.1-10~19
6 | 3.5077982552 | 3.0-10~'!
7 | 3.7941712738 | 1.2-10~ !
8 | 4.2086221329 | 5.9-10712
9 | 4.3857419733 | 1.2-10°12
10 | 4.4650868082 | 3.6-10~1°

Table 10 : A circular plate with the radius: r = I;the
relative errors in calculation of the first eight eigenvalues.
k—procedure, Ak =0.1.

w=oadw/dn=0
i| N=20 | N=25 | N=30
1| 3-1077 [ 31077 | 3-107°
21 7-1077 | 3-107° | 2-107°
3] 110 | 8-10°% | 6-10°1°
41610719 [ 6-10710 | 6.10710
5/ 710 [ 91077 | 1-10°8
612107 ] 1-1077 | 2-107°
7194-100%] 8-107% | 8-10°8
8113-100%] 2-10° | 21078

w=0’w/dn’> =0
1] 2107 | 3-1077 | 3-107°
21 5-107 | 3-10° | 1-1077
3] 3.100% | 2-107 | 8-107"
41 4-1077 | 51077 | 4-107°
5/ 2-107% [ 9-107° | 4.10°°
6| 3-100% | 1-10° | 6-1077
71 9-103 [ 3-107% | 2-107°
8] 9102 | 6-10 | 3-10°°

previous section, i.e. (19). The free parameters are deter-
mined from the boundary conditions.

We apply the same € and k smoothing procedure.

should be replaced by the following one:

Viw(x) — (K* +iek*) w(x) = f (29)

and so the arguments of the trial functions (I)Sll)(X),
CI)S,Q)(X) should be modified. Applying the k—procedure
we modify the external source and take it in the form
(24).

4.1 numerical examples

Example 6) A circular plate with the radius r = 1 sub-
jected to the boundary conditions: a) w = dw/dn = 0
(clamped boundary) and b) w = 9*w/dn> = 0 is con-
sidered. The exciting source is placed at the position
Cex = (5,5); the singular points {,, of the fundamental so-
lutions (26), (27) are located on the circle with the radius
R = 2. Remark that now the number of free parameters
is 2N. The data presented in Tab. 10 are obtained using
k—procedure with Ak = 0.1. Here we place the relative
errors (14). The exact eigenvalues kfex) are the roots of
the equation J), (k) I,, (k) — J,, (k) I, (k) = O (conditions a))
orJ)! (k) 1, (k) —J, (k) I (k) = 0 (conditions b)).
Example 7) Next, we consider a square plate with the
side @ = 1 subjected to the boundary conditions w =
0’w/on? = 0. This problem has an analytical solution:
k) = m\/i24j2, i,j = 1,2,.. The results placed in
Tab. 11 are obtained using k—procedure with Ak = 0.1.
Example 8) A rectangular 1.2 x 0.9 plate subjected to the
boundary conditions w = dw/dn = 0 (clamped bound-
ary) is considered. The results placed in Tab. 12 are ob-
tained using k—procedure with Ak = 0.1. In this case, the
analytic solution is not available. The results obtained
in [Chen, Chen, Chen, Lee, and Yeh (2004)] and [Kang
and Lee (2001)] are used for comparison. These data are
placed in the last two columns of the table. Note that us-
ing e—procedure with € = 0.01 and N = 56, we get the
following eigenvalues: k; = 5.95263, k, =7.70983, k3 =
9.12854, kg = 10.27133, ks = 11.96763, kg = 12.49617

5 Concluding remarks

In this paper, a new meshfree method for eigenproblems
with Laplace and biharmonic operators is proposed. This
is a mathematical model of physical measurements, when
a mechanical or acoustic system is excited by an exter-
nal source and resonance frequencies can be determined

When the e—procedure is applied the governing equation using the growth of amplitude of oscillations near these
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Table 11 : A square plate. The relative errors in calcula-
tion of the first six eigenvalues. k—procedure, Ak = 0.1.

i| N=20 | N=25 | N=30 | N=40

1133-10°20-107]1.8-10%|1.7-10°8
2169-10%]1.5-107°[32-108]1.7-1078
3 — 7.9.10° [ 3.7-10° | 1.7-1078
4 — 92102 [55-107 | 1.7-1078
5 — 45.-1072[15-107° | 2.2-10°8
6 — — 14-103]1.2-1077

Table 12 : A rectangular plate 1.2 x 0.9 with clamped
boundary.

i | N=35 | N=42 | N=49 I II

1| 59515 | 59529 | 5.9527 | 5.952 | 5.952
2| 7.7125 | 7.7116 | 7.7104 | 7.703 | 7.703
3 9.1333 | 9.1319 | 9.1316 | 9.129 | 9.131
41 9.9466 | 9.9510 | 9.9493 | 9.947 | 9.955
51 10.2692 | 10.2717 | 10.2742 | 10.266 | 10.27
6 | 11.9501 | 11.9552 | 11.9565 | 11.95 | 11.95
7 | 12.3849 | 12.3719 | 12.3710 — —

Table 13 : The BKM solution. Circular domain with
Dirichlet conditions. The relative errors in calculations
of the eigenvalues. k—procedure; Ak = 0.1.

i|N=10| N=14 | N=20 | N=30
112-10%|2-10°] 4-10° | 7-107°
213-100%[4-107 | 1-10°19] 1-10°8
3 — 9.-10° ] 2-108% | 1-10°8
4 — — 4.-1077 | 4-107°
5 — — 1-107% | 8-107°

frequencies. The method shows a high precision in sim-
ply and multiply connected domains. The idea can be
extended quite simply to the 3D case.

The method presented is based on the MFS solution of
the problem. However, it can be combined with other
boundary techniques. The BKM mentioned in Section 1
seems to be perspective in this connection. For example,
if the BKM is applied to Helmholtz equation, the approx-
imation solution is looked for in the form:

N
w (xq) = wp (X) + X gado (k[x—Cu)

n=1

cf. (16). Here the source points {, can be placed inside

CMC, vol.2, no.3, pp.177-188, 2005

the solution domain.

To test BKM in the framework of the method presented
we solve the same problem as the one described in Ex-
ample I with Dirichlet condition. The half of the source
points {,, n =1,...,1/2N are placed uniformly on the
boundary dQ2. The rest source points {,, n = 1/2N +
1,...,N are distributed inside € with the help of the gen-
erator of pseudorandom numbers. The data presented in
Tab. 13 are obtained using k—procedure with Ak = 0.1.
The parameters of the exciting source are the same as
above in Example 1.

It should be noted that the BKM and the MFS, as well as
the all methods of the Trefftz type in general, have a nar-
row field of application. It is restricted by the cases when
there exists a representative set of known exact solutions
of PDEs under consideration, i.e. by the problems posed
by linear PDEs with constant coefficients. See, however,
[Reutskiy (2002)], where a Trefftz type technique is de-
veloped for PDEs with varying coefficients.

Besides the Trefftz type techniques produce the systems
of equations with unsymmetric fully populated matri-
ces. As a result, the MFS is highly ill conditioned. In
some cases one can overcomes this drawback by the use
of matrices of the special block circulant structure and
an efficient matrix decomposition technique [Tsangaris,
Smyrlis, and Karageorghis (2004)].

However, taking in mind further applications of the
method presented in the paper to eigenproblems with
PDEs of general type in irregular domains, one should
combine it with meshless methods based on the local
approximation of the solution like the Meshless Local
Petrov-Galerkin Method [Atluri (2004), Han and Atluri
(2003), Han and Atluri (2004)]. The comparison be-
tween global and local approximation, e.g. BEM and
FEM, and they combination see in [Grannell and Atluri
(1978)].

Comparing the method with the technique based on com-
putations of the determinant of the system, the following
circumstances should be taken into account. Since the
MES is highly ill conditioned, the determinant is very
small. Indeed, let us consider again the same eigenvalue
problem which is described in Example I ,1i.e. Helmholtz
equation in the circle with the radius 1 and Dirichlet
boundary condition. We take the number of the sources
N equal to the number of the collocation points on the
boundary. Thus, we get a square matrix of the problem
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Table 14 : Circular domain with Dirichlet conditions. The number of the source points N = 30; e—procedure.

e=10" e=10""* e=10""°
i (S F(kl) (S F(kl) (S F(kl)
1]4x107%1]0.701 | 4x10719 ] 0.701 | 5x10~'2 | 0.701
21 2x107% 1 0.652 | 1x10710 | 0.654 | 610~ | 0.654
319x107° | 0.509 | 9x10~19 [ 0.516 | 1x10~7 | 0.516

A(k,N) and can calculate the determinant |detA (k,N)|.
Placing the sources on the circle with radius 2 and taking
k=1 we get: |detA (1,20)] =3 x 107%, |detA (1,30)| =
4 x 1077 |detA (1,40)| = 3 x 1072!7. The wave num-
ber k = 1 is not the eigenvalue of the problem. This is the
“background” value between extremums and one looks
for the minima of |detA (k,N)| on such background. So,
using this technique one operates with values of the order
~ 10739— 10799 see [Alves and Antunes (2005); Chen,
Chen, and Lee (2005)] for more detailed information.

At the same time let us calculate the norm function
F (k,N) which is used to obtain the eigenvalues in the
method presented. We get for € = 0.0001: F(1,20) =
2.13x 1072, F(1,30) =2.13 x 1075, F(1,40) = 2.13 x
1073, We present the values of the norm function F (k)
when £ is close to eigenvalue in Tab. 14.

Here the number of the sources is fixed N = 30 and the
smoothing parameter € is varied. e, is the relative error in
determining of the approximated eigenvalue k; and F (k;)
denotes the value of the norm function at this approxi-
mated eigenvalue. So, in the framework of the method
presented we always deal with the values which can be
handled on PC with a single precision.

The method is easy to program and not expensive in the
CPU time. The all calculations presented in the paper
were performed using 366 MHz PC.
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