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A Three-Dimensional Asymptotic Theory of Laminated Piezoelectric Shells

Chih-Ping Wu, Jyh-Yeuan Lo and Jyh-Ka Chao'

Abstract: An asymptotic theory of doubly curved lam-
inated piezoelectric shells is developed on the basis
of three-dimensional (3D) linear piezoelectricity. The
twenty-two basic equations of 3D piezoelectricity are
firstly reduced to eight differential equations in terms
of eight primary variables of elastic and electric fields.
By means of nondimensionalization, asymptotic expan-
sion and successive integration, we can obtain recurrent
sets of governing equations for various order problems.
The two-dimensional equations in the classical laminated
piezoelectric shell theory (CST) are derived as a first-
order approximation to the 3D piezoelectricity. Higher-
order corrections as well as the first-order solution can
be determined by treating the CST equations at multi-
ple levels in a systematic and consistent way. Several
benchmark solutions for various piezoelectric laminates
are given to demonstrate the performance of the theory.

keyword: Piezoelectric shells, 3D solutions; piezo-
electricity, asymptotic expansion, perturbation, electroe-
lastic analysis

1 Introduction

In recent years, the laminated plates and shells composed
of piezoelectric materials were widely used in the engi-
neering applications for sensing and actuation purposes.
Exact solutions for the static and dynamic analyses of
piezoelectric laminates are important for assessing a va-
riety of the relevant approximate theories and numerical
methodologies. Determination of those exact solutions
therefore becomes an attractive research subject.

Exact solutions for the static analysis of laminated piezo-
electric plates and shells with simple supports were
presented by Heyliger (1994, 1997a and 1997b). In
Heyliger’s analysis, the primary field variables are ex-
panded as Fourier series in the in-surface directions. By
means of these doubly Fourier series functions, Heyliger
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reduced the three-dimensional (3D) basic equations as
a set of ordinary differential equations. Exact solutions
of the present problems were obtained using the Frobe-
nious method. The coupling effect of electric and elas-
tic fields on the static behavior of piezoelectric laminates
was examined. Based on the linear theory of piezoelec-
tricity, Lee and Jiang (1996) presented an exact analysis
of coupled electroelastic behavior of piezoelectric plates
using the state space approach. Within the framework
of 3D piezoelectricity, Cheng et al. (2000) developed
an asymptotic theory for anisotropic inhomogeneous and
laminated piezoelectric plates. A benchmark problem
for the cylindrical bending analysis of a hybrid lami-
nate under specified thermal and electric-potential sur-
face loading was proposed by Tauchert (1997). Compari-
son of the piezothermoelasticity results obtained from the
higher-order shear deformation theory (HSDT) and clas-
sical plate theory (CPT) was made. The assessment of
classical shell theory (CST) and first-order shear defor-
mation theory (FSDT) for laminated piezoelectric cylin-
drical shells was also made in the literature [Kapuria et al.
(1998)]. Comprehensive reviews of theoretical analysis
and numerical modeling for piezoelectric laminates were
presented [Gopinathan et al. (2000), Chee et al. (1998)].

Recently, several 3D solutions for the bending and
stretching problems of laminated doubly curved shells
were presented based on the 3D elasticity [Huang and
Tauchert (1992), Fan and Zhang (1992), Bhimaraddi
(1993)]. After a close literature survey, however, we
found that 3D solutions for doubly curved laminated
piezoelectric shells are scarce.

In several papers [Wu et al. (1996a, b), Wu and Chiu
(2001, 2002), Wu and Liu (2001), Wu and Chi (2004)], a
three-dimensional asymptotic theory was developed for
the static, dynamic, buckling and nonlinear analyses of
laminated composite shells by means of the method of
perturbation. The purpose of this paper is to extend the
asymptotic theory to doubly curved laminated piezoelec-
tric shells. Due to the fact that the coupling effect of elas-
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tic and electric fields was involved in the basic equations
of 3D piezoelectricity, the formulation is inherently more
complicated than that in early papers. Nevertheless, we
shall see that the derivation is consistent and the 3D so-
lutions for the problem can be determined by treating the
CST equations in a systematic and hierarchic way. The
benchmark problems are demonstrated using the present
asymptotic formulation.

2 Basic three-dimensional equations

Consider a doubly curved laminated piezoelectric shell
as shown in Fig.1. The thickness of the shell is 2Ah. A set
of the orthogonal curvilinear coordinates o, 3, € is lo-
cated on the middle surface. Ry and Rg denote the curva-
ture radii to the middle surface, ao and ag are the curvi-
linear dimensions in o0 and [ directions, respectively.

The linear constitutive equations of the piezoelectric ma-
terial are given by
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Figure 1 : Dimension and coordinate system for a doubly
curved shell.

where G, 6B, O¢, Tags TR, Tap and €, €8, €0, Yals YBE» Yob
denote the stress and strain components, respectively.
Dq, Dg, D¢ and Ey, Eg, E¢denote the components of
electric displacement and electric field, respectively.
cij, ¢;j and m;; are the elastic coefficients, piezoelectric
coefficients and dielectric coefficients, respectively,
relative to the geometrical axes of the shell. The material
is regarded to be heterogeneous through the thickness
(i.e., ¢ij(€), €;(C) and m;;({)) and to be the layerwise
step functions through the thickness direction.

The kinematic equations in terms of the curvilinear coor-
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dinates o, B and C are

e — a_”cc (30)
Yop = yiaaa% + ylﬁaa% (3f)

in which Yo, = 1+ 2=
displacement components.

Y =1 -|-R—CB; Ug, ug and ug are the

The stress equilibrium equations without body forces are
given by

8(5(1 a‘CaB a‘Cac
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The charge equation of the piezoelectric material in
curvilinear coordinates o,  and C is

dDg Dy (W Yo
£ 4+ %) D, =0.
3B +Yo¥p Pl +<Ra+RB> ¢=0. (7

The relations between the electric field and electric po-
tential in curvilinear coordinates o, B and { are
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where @ denotes the electric potential.

The boundary conditions of the problem are specified as
follows:

On the lateral surface the transverse load qéﬁ (o, B) and

electric potential 5? (o, B) are prescribed,

[Tat Tc) =[0 O] on {==%h, (%)
oy =7q; (. B) on {=h, (9b)
® =P, (o, ) on {=—h. (10)

The edge boundary conditions require one member of
each pair of the following quantities be satisfied:

n10g +NM2Teg = P1, OF Uy = Ug; (11a)
nl‘CaB—I—YlQGB =Pp2, Or up :ﬁﬁ; (11b)
Ty —I—nz‘CBC =p3, Or ug= ﬁc; (11c)

where py, p2, ps are applied edge loads; ug, ug and ug
are the prescribed edge displacements; n; and npdenote
the outward unit normal at a point along the edge.

In addition, the edges are suitably grounded so that the
electric potential @ at the edges are zero and given by

d=0. (12)

According to Egs.(1)-(8), it is listed that there are twenty-
two basic equations for the present electroelastic analy-
sis of doubly curved laminated piezoelectric shells. For
a three-dimensional analysis, we have to determine the
aforementioned set of twenty-two unknown variables
that satisfies the basic equations (Eqgs.(1)+(8)) in the shell
domain, the boundary conditions at the top and bottom
surfaces (Eqs. (9)7(10)) and the edge boundary condi-
tions (Egs. (11)-(12)). Based on the perturbation method,
we present an asymptotic formulation for the 3D analysis
of laminated piezoelectric shells. The detailed derivation
is given as follows.
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3 Nondimensionalization

A set of dimensionless coordinates and variables are de-
fined as

o B g
X = , = —, = —7 1321
VRh Y VRh h (122)
Ug ug ug
U= , V= , w= =, 13b
v Rh v Rh R (13b)
R RB
Rx:%‘, Ry =2 (13c)
Oo, op Tap
Or=—, Oy=—, Ty=—); (13d)
0 Y0 ’ 0
Tt _ e _ ¢
xziaa )2_§7 z @v (13e)
Dy =Dy/ee, Dy=Dg/ee, D,=D¢/e; (13f)
0 = ®e/RQE; (13g)

where €2 = h/R ; R, Q and e denote a characteristic
length of the shell, a reference elastic moduli and a refer-
ence piezoelectric moduli, respectively.

In order to make the previous complicated formulation
(Egs. (1)-(12)) suitable for mathematical treatment, we
eliminate the in-surface stresses (O, GB,‘COLB) and elec-
tric displacements (D and Dg), the components of strain
(&as €8, €¢, Yal» VB¢ Yop) and electric field (Eq, Eg, Ey)
from Eqs.(1)-(8), introduce the set of dimensionless coor-
dinates and variables (Eq.(13)) in the resulting equations,
and then express the basic equations as follows:

w,=—Liu— ehyw+ e*hyo, + 35D, (14)
u.,= —Dw+e’L,u + €S o

+ e*L; 0, + €’ Ly 0, (15)
D,,.=—&’L;1d—€*[;,D,, (16)
O,; = —L5 u — L(,W — 82L7 (o

— € (Yoyp) L{ 0: —Ls D; (17)
6.,.=Lou + lgsw — D' 6, — €Ly o,

— €%la0, +lesD, (18)
0,=— (Yorvp) Lg u— (1/va¥g) losw

+e* 5o, +131 D, (19)
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and [; ; are given in Appendix A.

After the elimination process, we obtain the resulting
equations (Eqs.(14)-(19)) where all the differential op-
erators on the left-hand sides are with respect to z only,
whereas on the right-hand sides are with respect to x and
.

The in-surface stresses and electric displacements are de-
pendent field variables that can be expressed in terms of
the primary variables in the following form

6, = Biu+ Byw + €B3o,+BsD, (20)
d=Bs50,+Bs 0, 21)
where N N
(o biy bip
Gp = Gy N B] — éZI é22 )
:ny ~b31 b32
b3 b4
By=| by |.B3=| by |,
| b33 | b3y
~ b b
By— | Bos | .Bs— | 241 D
B bsy bsy
L 35

_ | bas
Bs = [ bs; ]

and b; ; are given in Appendix A.
The dimensionless form of boundary conditions of the
problem are specified as follows:

On the lateral surface the transverse load and electric po-
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tential are prescribed,

[t Tyl=[0 O] on {==+1, (22a)
0. =7q: (o, B) on {==%l1, (22b)
0=0. (x,y) on z==+I. (23)

At the edges one member of each pair of the following
quantities is satisfied:

N Ox +NTyy = Pux, OF U=, (24a)
N Ty + 120y = puy, OF V=1, (24b)
M Ty + 12Ty, = Py, OF W=W, (24¢)

In addition,

¢=0; (25)
where

7 =q; /0¢%

9. =g e/RQe;

(ana Pny; Pnz) = (PI/Q, PZ/Qv P3/Q8);

W) = (ﬁa/\/R_h, i/ VRh, ﬁC/R>.

(@, v,

4 Asymptotic expansion

Since Eqs.(14)-(19) contain terms involving only even
powers of €, we therefore asymptotically expand the pri-
mary variables in the powers € as given by

£y z8) =0y 2) + efD(x, y, 2)

+ et Py ) + (26)
Substituting Eq.(26) into Eqs.(14)-(19) and collecting co-
efficients of equal powers of €, we obtain the following
sets of recurrence equations.

Order €° :

w? =0, 27)
u? = —Lw®, (28)
D% =o, (29)
ol = —Lsu® — Lew©® —LgD!", (30)
o = Lou® +Igsw® — D76\ 4 [0, (31)

¢(O)az: - (YaYB) LsT u® — (1/YaYB) l~65 w(©® +l~81D§0)7
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(32)
oy =Bju® + B, w® +B,D, (33)
d® =Bs0” +Beo”, (34)
Order €% (k=1, 2, 3,... ):
ng) = —Lju% ) — Lawk=b 4 l~34<5§k_2) + l~35D§k_1)7
(35)
u® = —pw® 4 LyutD 4 golkY
L3064 Lyo® D), (36)
o\ .= ~Lsu® —Lew® — Lol
— (Yayp) LT LD, (37)
.= Lou® + fizw® — D" o
—Lloﬁgk_l) — Igq ng_]) + Igs ng), (38)
PP = —Lyd* " — L p* Y, (39)
q)(k)az: - (Ya'YB) LST ul® — (I/YOLYB) l~65 wk)
+ Lol 47y DY), (40)
G[()k) = B]u(k) +B, W(k) —|—B3G§k_l) —|—B4D§k), (41)
d® = Bso® + Bgo®, 42)

The transverse loads and electric potential at the lateral
surfaces are given as

Order € :

[‘c(o)xz 1Oyzl =0 0] on z==I1, (43a)
o) =g (x, y) on z=1, (43b)
¢(°> = @i (x, y) on z==+lI. (44)
Order e%* (k=1,2,3,...):

[r,i? 1 6= 0 0 on z=+1, 5
o® =0 on z==4l.  (46)

Along the edges one member of each pair of the follow-
ing quantities must be satisfied:
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Order €Y :

mol” +n2‘C;(c(>)r) = Pnx, O U@) =1u, (47a)
nlf;(c());) —I-I”l]G)(;O) = Pny, O V()= v, (47b)
n6) +myt) = pr, or W) =W, 47¢)
o© =o. (48)
Order e (k=1,2,3,...):

nlc)(ck) —I—nz‘c)(!;) =0, or u¥ =0, (49a)
mtd) +niel) =0, or v =0, (49b)
nl‘c)(ckz) +n21§,’? =0, or wk) = 0, (49¢)
o™ =0 (50)

5 Asymptotic integration

Examination of the sets of asymptotic equations, it is
found that the analysis can be carried on by integrat-
ing those equations through the thickness direction. We
therefore integrate Eqs.(27)-(29) to obtain

w(® =0 (x,y) (5D
u® =g — zDu? (52)
D =D (x, y), (53)

where w°(x,y), u® = [uo(x,y) vo(x, y)]" and D?(x,y) rep-
resent the displacements and piezoelectric displacement
on the middle surface and those are also of the Kirchhoft-
Love type in CST.

With the lateral boundary conditions on z=-1 (i.e.,

Eqs.(43)-(44)), we then proceed to successively integrate
Eqs.(30)-(32) and it yields

__[ Ls (u’ —mDw?) + Lew® +LgD%]dn, (54)
Z

o =g+ [ Lo (- nDw®) + T an

+ / Z] (z—m)D" [Ls (v’ —mDw°) + Lew® + LgD?]dn

(55)
¢(O) :6; _/ [ YOLYBLT (u —nDw )

(I/YaYﬁ) Iss WP + I, DO ]dn- (56)
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Imposing the remaining lateral boundary conditions on
z=1 (i.e., Eqs.(43)-(44)) in Eqgs.(54)-(56), we obtain
Ky u® + Ko ? 4+ Kz w® + KDY = 0, (57)

Ko’ + K ' 4 Koz w° +K24DS =0,
K31 MO + K3; VO + K33 WO +K34Dg = q;_

(58)
(59)
(60)

=4
Ky’ + Kup V* + Kuz +K44DS = 6; —62_7
in which

K11 =A110u+ (A16+ A1) Oxy +Ae60yy »

K12 = A160. + (A12+ A6 ) Oxy +Ag20yy,

K3 = _Bllaxxx — (B](, —1—31(, +Bﬁl) axxy
— (Bi2+Bes + Bee) Oxyy — Bo2dyyy
+ (A11/R+A12/Ry) 0x + (A61 /Re + A2 /Ry) 0,

Ky4 = E310x + E360),
Ko = Ag10. + (A21 +Age ) Oxy +A260yy,
K> = Ag0xx + (Aze +A62) Oxy +A200yy,

K»; = _Blﬁaxxx — (Bz] —|—Bﬁﬁ +366) axxy
— (Ez(, + Ez(, + E(,z) axyy — Ezzayyy
+ (Aﬁ] /Rx +A62/R)7) ax + (Az] /Rx —|—A22/Ry) a)

Koy = E360x + E 320,

K31 = _Bllaxxx — (B](, +Bﬁl +Bﬁl)axxy
- (321 + Bﬁﬁ +§66) axyy - E%a)’)’y
+ (A11/Re+A21 /Ry) 0+ (A16 /Ry +Ads /Ry) 0y

K32 = —Blﬁaxxx — (312 +B()6 +B()6) axx)’
— (Bas + Bez + Be2) Oxyy — B22dyyy

K33 = D110y + (D16 + D16 + De1 + De1)0xany
+ (Dlz + D31 + Dgs +2Dgs +D66) Oy
+ (526 +Da6 +Der + D62) Oxyyy + D220y
[2311/1? + (Bi2+Ba1) /Ry 0x«
316-1-361 +Bi6 +361) /Ry
+ (B2 +Bez + Bag + Be2) /Ry
— [(Bi2+B21) /Rc+2Bx/Ry] 9y,
A,

+[A11/R? + (A12+A42) /R.R, —|—A22/R2]
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K3g = —F5105 — (ﬁ36 +F36) Ory — F 320,y
+ (Es1/Rc+Ex/Ry),

Ky = —E310, — E360y, Kip = —E360; — E3dy,

Kz = F3105 + (f 36+ F36> Oxy + F 320,y
— <E31/Rx+E32/Ry> ;
Kyq4 = —E3p,
1 ~
Ajj= /_] (Qijvp/Yo) dz
~ 1 ~
Ajj :/1 Q;; dz,
—_ 1 ~
Ajj= /_ (QijYo/¥B) dz,

l]_/
Bij:/ z 0y dz,

QlfYB/YOL

Bi; —/ QIJYOL/YB dz,
Dij:/_] (sz’YB/'Ya)
_ 1
Dz]:/lz Qz] dz,
Dl]_/_ (Qina/YB) dZa
1
A A Tpe (6’33631'—631'033)
Ey By :/ 1 = 2 ) g,
(B Bi) —1( )Q €3y +M33c33
1
5. T Yol [ €33C3; —€3iC33
B )= [ (10t (st
(Esi Fai) —1( ) QO \ €3;+M33c3

Z)i<6’33c3i_

)= [ (1 )28 (s
i -1 10 \ €35 +M33c33
L 1 e [ e3303 —e3iC33
E3' F3' = / 1 z < dz
(B Fi) -1 ( )YaQ €33 +M33033

12 c
E3o :/ = (72 32 )dz
-1 0 \ €33 +N33¢33

Following a similar process in the early paper [Wu et
al. (1996a)], it can be shown that the governing equa-
tions for the displacements in CST are recovered from
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Eqs.(57)-(60) by introducing a geometry assumption of
the thin shell: z/Ry << 1 andz/Rg << 1. Thus, the
CST equations have been derived as the first-order ap-
proximation to the three-dimensional theory. Solution
of Eqgs.(57)(60) must be supplemented with the edge
boundary conditions Eqs.(47)-(48) to constitute a well-
posed boundary value problem. Once u’, v, w" and
DS are determined, the leading-order displacements are
given by Eqs.(51)7(53), the transverse shear and nor-
mal stresses by Eqgs.(54)-(55), the in-surface stresses by
Eq.(33), the in-surface electric displacements by Eq.(34)
and the electric potential by Eq.(56).

Proceed to order €> following the same line as was done
before, we readily obtain

1

w) =w! (x, )4+ 031 (x, v, 2), 6
u) = u! - D w' ¢, 62)
DY = D1 (x, ) +ou1 (x, v, 2), ©63)
Zz
ol =~ [ [Ls (u' —nDw') +Low! +LyD!]dn
-1
+ (x,,2), (64
m_ [* I N 4 Igzw!
o= [ sl ) i
@ o[ Ls(u' —nDw!)
+/_1 (z—m)D [ +Lew! +LgD! n
— 31 (%,,2), 63)
<1>:_/ (Yavp) Lg (u' —“DW) ]d
0 - [ (1/%%) Tosw! + I D! |1
_f41 (xayv )7 (66)

where @3 (x,y,2) = — [y [Ll )4 l3wl® )—1351950)}6”17

u' =[xy V)]

4
Lou® +86{ + 140 —Dgs, )dn,

z .
Q41 = —/ (Lnd(o) +l71D§O)> dn,
0
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.
f31——/_zll :
f41—/j[

] dn.

wl,ul and D! represent the modifications to the elas-
tic and electric displacements on the middle surface.
Upon imposing the associated lateral boundary condi-
tions Eqs.(45)-(46) on Egs.(64) and (66), we arrive again
at the CST-type equations, only with nonhomogeneous
terms that are known from the leading-order solution.
The resulting equations are

Copyright (©) 2005 Tech Science Press

Ls 0' + Lg @31 + L@y
0) r 0 | dn,
+L705" +Ya¥g L] O;

)

Loo' + Ig3 931 _LIOGE‘O

546" + 55041 —DTF!

Yo¥g L§ ©' + (1/Yo0v) los a1
—Isol” — I31P41

K ul + Ki» Vl + K13 W1 +K14D; = fll (X, Y 1)7 (67)
Ky u' + Kpv' + K3 w' + KDL = fo1(x, y, 1), (68)

Ky u' + K3 v'+ K33 w! +K34D!

0 ,y, 1) 0 sy, 1
:f3l(x7 Vs 1)_ fll(g Y )_ f21 (g Y )7
X y

(69)

Ky u' + Kipv' + Kz w' + KDL = fa1(x, y, 1). (70)

The governing equations for the €2-order modifications
to u*(x,y), v (x,y) and wk(x,y) of order e (k = 2,3,...)
are obtained in a similar way by integrating the higher-
order equations Eqs.(25)-(28) in succession. The equa-
tions are given by

Ky uf + KV + Kis W+ KDt = fie(x, y, 1), (71)
Koy uf + K VF + Koy W+ KDt = for (x, , 1), (72)

Kau* + K v + K3 wh +KauD!

_ _aflk(xv Y, 1)_af2k(xa Y, 1)
_f3k(x7 Vs 1) ox ay )

(73)

Kq uf + KpVF + Kz W+ KDt = fur (x, 3, 1), (74)

|n

in which

o [ Ly ut) 4y wkD)
—l~35D§k_l) — l~340§k_2)

O3k (x,y,2) = —/

0

w= [y )]

|
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()

z ~ —
Par = _/ (Lnd(k_]) + I DY U) dn,
0
|

),
f3k:_/_z] [ dn,
f4k—/j[ ]dn.

6 Applications to benchmark problems

(plk(xvyvz) }
(sz(x,y,Z)

_ *) _ Qulk—1)
D@3 — Ly u'®) — Soy
—Liol ) —Ly gD

Ls ¢ + Le @3¢+ Lg®ax

Lo Lol

Lo@* + o3 93¢ — Lol
a0 4 o5y — DT H

YoygLg ¢k] + (1/%¥a¥p) los 93k
—lsol Y g Q4

The benchmark problems of simply supported, doubly
curved laminated piezoelectric shells under mechanical
or electric loads on lateral surfaces are studied using the
present asymptotic theory. The material of cross-ply lam-
inated piezoelectric shells is considered so that the elastic
moduli for orthotropic materials are

(Q16)i = (Q26)i = (Q36)i = (Qu5)i = (€36); =0 (75)
The boundary conditions on the four edges are of a shear
diaphragm type specified by

Og=ug=ug=P®=0 ono=0ando=ag, (76)

op =ug=ug=®=0 onf=0andf=ap. 77
The mechanical or electric loads acting on lateral surface
of the shell ({ = h) is considered. The mechanical and
electric loads are expressed by the double Fourier series
in the dimensionless form

8

M s

(78)

Q(xv y) = Gmn SINTAX SIN 7Ty,
1

1

3
Il

m

8

M s

o(x, y) = (79)

Oy SIN 771X SINTLY,
1

—_

m n

where 1 = mnv/Rh/aq, and it = nmv/Rh/ag.
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For this problem the governing equations of the leading-
order problem (i.e., Eqs.(57)-(60)) can be easily solved
by letting

u = Z Z ud  cosmx sinfy, (80)
m=1 n=1
W= Z Z V0, sinfix cosiiy, (81)
m=1 n=1
w'= 33w, sinsx siniy, (82)
m=1 n=1
D) =% % DY, sinsix sindy. (83)
m=1 n=1
Substituting Eqgs.(80)-(83) into Egs.(57)-(60) gives
ki ki kiz kg ud, 0
kot koo ko3 koa Vi _ )0
k3t ks k33 ksg Wl —Gmn [
kar  kay ka3 kag DY, Omn
(34)
where
kiy = —m* Ay —ii* Agg

kiz = m’Byy +iii* (B1a + Bes + Bes)
+1it (A1 /Re+A12/Ry)

ko3 = ii*ii (Ba1 + Bee + Bee) + 7 Baa
+71 (A21 /R + A% /Ry)
koa = AiE3,

k31 = m’Byy +1iii* (Bai + Bes + Bes)
+1it (A11/Rc+A21 /Ry)

k3o = i*ii (Bio+Bee + Bee) + 7 Ba
+7(A12/Re+A%/Ry)
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ky3 = —iii* Dy —ii* ii* (D12 + Doy + D +2De6 + Des)
— Dy — iit* [2B11 /R, + (B2 +B21) /R
— i [(Bia+Ba1) /Re+2Bn /R,
—[A11/R2+ (12 +A21) /RiRy +Ans /R

kg = —im’F3) —°F3, — (E31 /Re+Ex/R,)
ka1 = ks
kap = iE3)
kuz = —?Fy — 2 F a0 — <E31 /Rx +E32/Ry>
kas = —E30

u(()mn), W(mn) and w°(mn) can be obtained by solv-

ing the simultaneously algebraic equations (84). Once
ud,, Vo, and wY have been determined, the solu-
tion of €” order is obtained by introducing Eqs.(51)-(53)
into Eqs.(54)-(56) and Eqs.(20)(21). The explicit ex-
pressions are given in Appendix B. The summation signs
have been dropped for brevity.

Carrying on the solution to order &2, we find that the non-

homogeneous terms for fixed values of m and n in the
g2-order equations are

fiilx, v, 1) = fi1(1) cosmx siniy (85)
foi(x, y, 1) = far(1) sinfix cosity (86)
f31(x, v, 1) = f31(1) sinsx siniy (87)
far(x, y, 1) = far(1) sinsix siniy (88)

where fi1, f>1, f31, fa1 are given in Appendix B.

In view of the recurrence of the equations, the e2-order

solution can be obtained by letting
1

u' = ul cosmx sinfiy (89)
vl = vl sinmx cosiiy (90)
wl = wl sinmx siniy 1)
D! = D!, sinsix siniiy (92)
Substituting Eqs.(89)-(92) into Eqs.(67)-(70) gives

kiy ki2 kiz kg Uy

ko ka koz  koa Vi

k31 k3x k33 kaa Whn

kar  kar ka3 kas D},

fu(1)
_ ) ) ©93)

—(fr()+mfu(0) +afa (1) [
fa(1)



128 Copyright (©) 2005 Tech Science Press

ul (mn), v!(mn), w!(mn) and D), are easily obtained
by solving the system of algebraic equations (83). Af-
terwards, the €?-order corrections are determined from
Eqs.(61)(66) and Eqs.(41)-(42). The explicit expres-
sions are given in Appendix B.

Examining Eqs.(57)-(60) and Eqs.(67)-(70), we find that
the solutions are in recurrent forms. The higher-order
corrections can be determined using the lower-order so-
lutions in a hierarchic manner.

The performance of the asymptotic solution will be illus-
trated in the following examples.

6.1 Laminated piezoelectric plates and strips

Several benchmark solutions of laminated piezoelectric
plates and strips were given in the literature [Heyliger
(1994, 1997a), Cheng et al. (2000)]. The laminated
piezoelectric plates and strips are regarded as a special
case of doubly curved shells in which Ry and Rg ap-
proach oo and 1/Ry = 1/Rg = 0. To facilitate numerical
comparisons, we first compute the results for a simply
supported, two-layer plate of dissimilar piezoelectric ma-
terials where PZT-4 is on the top and PVDF on the bot-
tom [Heyliger (1994, 1997a)], and then compute those
of a three-layer cross-ply strip of PVDF [Cheng et al.
(2000)].

The laminated piezoelectric plates considered are sub-
jected to either mechanical or electrical loads (i.e.,
qg(oc, B) = qo sinma/ay sinnP/ag, go = 1 N/m? or

5{(0(, B) = @ sinmoi/aq sinwP/ap, ¢ =1 V) on the
lateral surfaces. The elastic, piezoelectric and dielectric
properties of piezoelectric materials used in Tables 2-3
are given in Table 1. For comparison purpose, the geom-
etry parameters are taken as aq/ag = 2, dq/2h=10 and
2h=0.005 m. Tables 2-3 show the asymptotic solutions
of various orders for mechanical and electrical field vari-
ables of laminated piezoelectric plates under lateral loads
and lateral potentials, respectively. The asymptotic so-
lution is computed up to the €'-order level in order to
closely examine the convergence of the present asymp-
totic theory. It is shown that the convergent solution
is obtained at the *-order level where aq/2h=10. The
convergent solution is also compared with the 3D piezo-
electricity solution [Heyliger (1997a)] and the solution of
discrete-layer theory [Heyliger et al. (1994)] available in
the literature. It is shown that the convergent solution of
the present asymptotic theory is in excellent agreement

CMC, vol.2, no.1, pp.119-137, 2005

Table 1 : Elastic, piezoelectric and dielectric properties
of piezoelectric Materials

Moduli PVDF PZT-4
c11(GPa) 238.00 139.00
c22(GPa) 23.60 139.00
c33(GPa) 10.60 115.00
C]Q(GP&) 3.98 77.80
c13(GPa) 2.19 74.30
23 (GPa) 1.92 74.30
C44(GP21) 2.15 25.60
cs5(GPa) 4.40 25.60
ce6(GPa) 6.43 30.60
e4(C/m?) | -0.01 12.72
e1s(C/m?) | -0.01 12.72
e31(C/m?) | -0.13 -5.20
e3(C/m?) | -0.14 -5.20
e33(C/m?) | -0.28 15.08
Ni1/€o 12.50 1475.00
N22/€0 11.98 1475.00
N33/€0 11.98 1300.00

g0 = 8.854X10~'% (F/m)

with the 3D piezoelectricity solution.

A [0/90/0] laminated PVDF piezoelectric strip (i.e., ag —
o and 1/ag = 0) is considered in Tables 4-5. The
mechanical and electrical loads applied on the lateral
surfaces are specified as qg(oc, B) = go sinmol/ay and

5{ (o) = ¢ sinma/ay. The elastic, piezoelectric and
dielectric properties of piezoelectric materials used in Ta-
bles 4-5 [Cheng et al. (2000)] are slightly different from
those properties in Table 1 where the values of c¢11, ¢33
are replaced by 238.24 GPa, 10.64 GPa, and those of
€24, €15, €32, €33 by -0.009 C/mz, -0.135 C/mz, -0.145
C/m?, -0.276 C/m?. The geometry parameters are taken
as aq/2h=4, 10, 100. The mechanical and electrical
field variables are nondimensionalized in the same form
as used in Cheng et al. (2000) where u; = u;c*/qoao,
Ti; = Tij/q0, ® = ®/qoaa, Di = D;c*/qoe* are used for
the applied load cases; ; = u;c* /0p e, Tjj = Tijao/Poe”,
® =D/, D; = Dic* ag/do (e*)2 for the applied poten-
tial cases and ¢* = 1 N/m?, ¢* =1 C/m?. The present
asymptotic solution of mechanical and electric field vari-
ables for the applied load and potential cases is presented
in Tables 4-5, respectively. By comparing the present
asymptotic solution with the 3D piezoelectricity solution,



A Three-Dimensional Asymptotic Theory

129

Table 2 : Mechanical and electric field variables of laminated piezoelectric plates under lateral loads (aq/2h = 10)

e ug (%, 7, —h) [ D(%, T —h) [ 1c(0.7,0) [1e(%.0,0) [0(%.7.0) [ @(%,7.0)
el 5.0319¢-12 1.11805¢e-11 1.2317 1.4519 0.40063 1.3735¢-4
€2 6.6920e-12 0.77623e-11 1.1402 1.3223 0.35130 1.1332¢-4
et 6.4964¢-12 0.81738e-11 1.1506 1.3390 0.35797 1.1747e-4
€0 6.5219¢-12 0.81205¢e-11 1.1493 1.3367 0.35706 1.1685¢-4
el 6.5188e-12 0.81269e-11 1.1494 1.3370 0.35716 1.1693e-4
3D solutions 6.5167e-12 0.82096¢-11 1.1491 1.3367 0.35705 1.1675e-4
[Heyliger

(1997a)]

Discrete-layer | 6.5158e-12 0.82092e-11 1.1501 1.3385 0.35681 1.1675e-4
theory

[Heyliger et al.

(1994)]

we conclude that the convergent solution yields at the £2-
order level in the cases of thin laminates (aq 27 = 100),
at the €*-order level in the cases of moderately thick lam-
inates (aq,/2h = 10) and at the €%-order level in the cases
of thick laminates (aq/2h = 4).

6.2 Doubly curved laminated piezoelectric shells

Tables 6-7 consider the doubly curved [0/90/0] laminated
PVDF piezoelectric shells under either mechanical or
electrical loads (i.e., qg(oc, B) = qo sinwo/ag sinnfB/ap,

go=1N/m? or 5{(0@ B) = @g sinmar/ay sinnfB/ag,
do =1 V) on the lateral surfaces. The elastic, piezoelec-
tric and dielectric properties of piezoelectric materials
used in Cheng et al. (2000) are adopted in the numeri-
cal applications. The geometry parameters are taken as
ag/ag = 1; aq/2h=10, 20, 100; Ry /as=1; Rg/ag=1, 5,
10 and a4=0.2 m. Based on the previous results, we re-
alize that the €'*-order solution is merely the 3D piezo-
electricity solution. The present £'#-order solution for the
mechanical and electric field variables are given in Tables
6-7. For a fixed value of ay/2h, it is shown that the cen-
tral deflection u increases as the shell is getting flat (i.e.,
the curvature radius increases) in the applied load cases,
and variation of the central electric displacement with the
curvature radius in the applied load cases is much more
sensitive than that in the applied potential cases. To the
best of the authors’ knowledge, the 3D piezoelectricity
solution of doubly curved laminated piezoelectric shells
is lacking in the literature. The present solution in Tables
6-7 can be provided as the benchmark solution for as-
sessing various approximate 2D shell theories. To have

a more clear picture in the laminates, we present the dis-
tributions of the mechanical and electric field variables
through the thickness of the shell in Figs 2-5 for the ap-
plied load cases and in Figs 6-9 for the applied potential
cases. The geometry parameters are taken as aq/ag = 1,
aq/2h=10, Ry/ag=1, Rg/ap=1 and 21=0.0075 m. It is
shown that the asymptotic solution yields continuous in-
terlaminar mechanical and electric field variables and the
lateral boundary conditions are satisfied exactly. It is ob-
served from Figs. 5 and 9 that the electric potential is a
higher-degree polynomial function through the thickness
direction in the applied load cases and an almost linear
function in the applied potential cases. The distributions
of the transverse stresses through the thickness direction
in the applied load cases are different from those in the
applied potential cases.

7 Conclusions

The 3D asymptotic solutions for the mechanical and elec-
tric field variables of doubly curved laminated piezoelec-
tric shells under either the lateral loads or the lateral po-
tentials have been presented. The derivation is based on
3D linear piezoelectricity and requires neither kinematic
nor static assumptions. The present asymptotic formula-
tion is reduced to that of laminated piezoelectric plates
by letting 1 /Ry = 1/Rg = 0, and further to that of lami-
nated piezoelectric strips by letting 1/ag=0. Applications
to the benchmark problems show that accurate results are
obtained by carrying out only two steps of the solution in
the case of thin laminates (aq/2h = 100), three steps in
the case of moderately thick laminats(ay/2h = 10) and
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Table 3 : Mechanical and electric field variables of laminated piezoelectric plates under lateral potentials (aq/2h =
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10)
€ uc(%";_ﬁ’_h) DC(%?Z_Bv_h) TOLC(Oan_BvO) TBC(%,0,0) GC(%vaz_Bao) (D(%aaz_ﬁao)
el -0.1118e-10 -0.45167¢-7 -1.5469 3.2518 0.2207 0.99308
2 -2.0693e-10 -0.40982e-7 -8.1938 -6.2405 -4.6090 0.91784
et -2.0797e-10 -0.41223e-7 -6.6418 -4.2433 -3.5897 0.92288
ef -2.0522e-10 -0.41214e-7 -6.9396 -4.5508 -3.7514 0.92251
el -2.0570e-10 | -0.41214e-7 -6.8920 -4.5154 -3.7307 0.92253
3D solutions -2.0599¢-10 -0.41175e-7 -6.9023 -4.5247 -3.7377 0.92243
[Heyliger
(1997a)]
Discrete-layer | -2.0607e-10 -0.41174e-7 -6.9095 -4.5102 -3.7486 0.92243
theory
[Heyliger et al.
(1994)]
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Figure 2 : Distribution of transverse shear stress
through the thickness of [0/90/0] laminated PVDF
piezoelectric shells under applied load.
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Figure 3 : Distribution of transverse shear stress
through the thickness of [0/90/0] laminated PVDF

piezoelectric shells under applied load.
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Table 4 : Mechanical and electric field variables of [0/90/0] laminated PVDF piezoelectric strips under lateral loads
Yafp | € i(3.7.0) [ D%.7.0 |%(0.7.3) [o%.5.%) [®(%.7.0
el 0.3429¢-10 -0.13551e-23 1.7563 0.73178 0.0015194
€’ 2.0517e-10 -0.12922e-10 1.3607 0.67784 0.0041849
e* 1.8120e-10 -0.12908e-10 1.5414 0.69730 0.0032791
4 €l 1.9174e-10 -0.12771e-10 1.4587 0.68802 0.0036750
el 1.8857e-10 -0.12810e-10 | 1.4835 0.69088 0.0035560
3D solutions 1.8841e-10 -0.12811e-10 1.4847 0.69102 0.0035504
[Cheng et al.
(2000)]
el 5.3587¢e-10 -0.54991e-21 4.3908 0.73178 0.0037985
€’ 9.6306e-10 -0.12922e-10 4.2325 0.72315 0.0048647
et 9.5348e-10 -0.12920e-10 4.2441 0.72365 0.0048067
10 el 9.5415e-10 -0.12916e-10 4.2432 0.72361 0.0048108
el 9.5410e-10 -0.12916e-10 | 4.2433 0.72361 0.0048105
3D solutions 9.5409¢e-10 -0.12916e-10 4.2433 0.72360 0.0048103
[Cheng et al.
(2000)]
el 5358.7e-10 -0.55378e-17 43.908 0.73178 0.037985
€2 5401.4e-10 -0.12922e-10 43.892 0.73169 0.038091
e 5401.4e-10 -0.12922e-10 43.892 0.73169 0.038091
100 7o 5401.4¢-10 -0.12922e-10 | 43.892 0.73169 0.038091
el? 5401.4e-10 -0.12922e-10 43.892 0.73169 0.038091
3D solutions 5401.4e-10 -0.12922e-10 43.892 0.73168 0.038091
[Cheng et al.
(2000)]
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Figure 4 : Distribution of transverse normal stress
through the thickness of [0/90/0] laminated PVDF

piezoelectric shells under applied load.
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Figure 5 : Distribution of electric potential through
the thickness of [0/90/0] laminated PVDF piezoelec-
tric shells under applied load.
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Table 5 : Mechanical and electric field variables of [0/90/0] laminated PVDF piezoelectric strips under lateral
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potentials

Yafon | € w(%,7,0) D(%.7.0) |Ta(0, 2.4 [Sc(% 2 [o%.3.Y
el 0.01480e-21 -4.5308e-10 | 0.043945 -0.0057523 | 0.66666
€2 0.09357e-10 -4.4137e-10 | 0.062773 0.0023293 0.62940
et 0.10146e-10 -4.4169e-10 | 0.051545 -0.0013450 | 0.63157

4 ed 0.09407e-10 -4.4164e-10 | 0.056991 0.0002296 0.63140
elt 0.09644e-10 -4.4165e-10 | 0.055326 -0.0002255 0.63143
3D solutions | 0.09654e-10 -4.4166e-10 | 0.055241 -0.0002430 | 0.63130
[Cheng et al.
(2000)]
el 0.05577e-20 -11.327e-10 | 0.043945 -0.0023009 | 0.66666
g2 0.09357e-10 -11.280e-10 | 0.046957 -0.0017837 | 0.66070
et 0.09483¢-10 -11.280e-10 | 0.046670 -0.0018213 | 0.66075

10 €d 0.09464¢-10 -11.280e-10 | 0.046692 -0.0018188 | 0.66075
el? 0.09464e-10 -11.280e-10 | 0.046692 -0.0018188 0.66075
3D solutions | 0.09466e-10 -11.281e-10 | 0.046689 -0.0018187 | 0.66083
[Cheng et al.
(2000)]
el 0.05539¢-16 -113.27e-10 | 0.043944 -0.00023009 | 0.66666
g2 0.09358e-10 -113.26e-10 | 0.043975 -0.00022958 | 0.66660
et 0.09358¢-10 -113.26e-10 | 0.043975 -0.00022958 | 0.66660

100 |76 0.09358e-10 | -113.26e-10 | 0.043975 20.00022958 | 0.66660
elt 0.09358e-10 -113.26e-10 | 0.043975 -0.00022958 | 0.66660
3D solutions | 0.09361e-10 -113.27e-10 | 0.043975 -0.00022958 | 0.66675
[Cheng et al.
(2000)]

Table 6 : Mechanical and electric field variables of [0/90/0] laminated PVDF piezoelectric shells under lateral loads.

(ag, =0.2m)

%o le @ w570 | pu%.2.0) | w©.F.)) | 5409 o430 | @5 T D)
1 8.5956e-10 | -0.7952e-10 | 0.5529 -0.33215 0.61317 0.1954e-3

100 |1 5 23.428e-10 | -1.1988e-10 | 1.2677 -0.47467 0.31751 0.4320e-3
10 27.747e-10 | -1.2887e-10 | 1.4659 -0.49984 0.24177 0.4996e-3
1 1.5313e-10 | -1.7161e-11 | 1.4100 -0.11444 0.33514 0.8271e-3

20 1 5 3.2646e-10 | -1.3352e-11 | 2.8411 0.07839 -0.14013 1.4331e-3
10 3.6440e-10 | -1.2262e-11 | 3.1484 0.12810 -0.23384 1.5627e-3
1 0.6315e-10 | -9.4087e-12 | 1.4294 0.04605 0.33011 1.2302e-3

10 1 5 1.0403e-10 | -5.5618e-12 | 2.2602 0.29502 0.06833 1.6126e-3
10 1.1081e-10 | -4.9377e-12 | 2.3953 0.33872 0.03270 1.6730e-3
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Figure 6 : Distribution of transverse shear stress
through the thickness of [0/90/0] laminated PVDF
piezoelectric shells under applied potential.
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Figure 8 : Distribution of transverse normal stress
through the thickness of [0/90/0] laminated PVDF
piezoelectric shells under applied potential.
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Table 7 : Mechanical and electric field variables of [0/90/0] laminated PVDF piezoelectric shells under lateral

potentials. (aq = 0.2m)

%o m @ w520 [ 0%20 w03 | wE 0| os 3D | %)
1 66.064e-12 | -5.66669¢-8 | 0.34327 -0.35936 0.00694 0.66883
100 |1 5 106.84e-12 | -5.66676e-8 | 0.35618 -0.36530 -0.08813 0.66793
10 115.67e-12 | -5.66676e-8 | 0.35917 -0.36572 -0.10070 0.66781
1 5.5091e-12 | -1.13040e-8 | 0.60787 -0.29727 -0.09360 0.67494
20 1 5 3.9319e-12 | -1.13076e-8 | 0.58524 -0.33845 -0.15893 0.67042
10 3.3073e-12 | -1.13078e-8 | 0.57878 -0.34821 -0.16757 0.66985
1 -0.0219e-12 | -0.56144e-8 | 0.54564 -0.27606 -0.08794 0.67706
10 1 5 -0.9711e-12 | -0.56199¢-8 | 0.52481 -0.36087 -0.14170 0.66818
10 -1.1367e-12 | -0.56200e-8 | 0.52113 -0.37229 -0.15125 0.66706

four steps in the case of thick laminats(a/2h =4). In
general, performing two steps of the asymptotic solution
is sufficient to yield acceptable results and the present
e!*-order solution is merely the 3D piezoelectricity solu-
tion for a wide range of various geometry parameters.
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The relevant functions b;; in Egs.(20)-(21) are given by
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