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A CFD/CSD Model for Transonic Flutter

Tong-qing Guo, Zhi-liang Lu1

Abstract: In this paper, a rapid deforming technique
is developed to generate dynamic, three-dimensional,
multi-block, mesh. The second-order Runge-Kutta time-
marching method is used to solve the structural equa-
tions of motion. A dual-time method and finite volume
discretization are applied for the unsteady Euler/Navier-
Stokes equations to calculate the aerodynamic forces, in
which the physical time step is synchronous with the
structural equations of motion. The Spalart-Allmaras
turbulence model is adopted for a turbulent flow. Due
to mass dissimilarity, exiting in flutter calculations for a
compressible flow, methods of variable mass and variable
stiffness are developed to calculate the dynamic pressure
of flutter at the point of mass similarity, and the flutter
characteristics are then obtained in accordance with sim-
ilarity rule. For completeness, the calculated transonic
flutter characteristic results are presented and discussed
for a double-wing and an aircraft model.

keyword: Flutter, Transonic flow, Unsteady flow,
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1 Introduction

In recent years, computational fluid dynamics (CFD) has
been developed very fast. Some new developments have
been made for the simulation of incompressible and tur-
bulent flows [Shu, Ding and Yeo (2004); Wang, Zhang,
Chan and Wang (2004)] . In flutter computations for air-
craft, the calculation is usually done in the frequency
domain [De (1994)], where the unsteady aerodynamic
forces are all calculated by the doublet lattice method
based on the linear theory, and the computational method
for transonic flutter is usually a rough deducting method,
namely a deduction of an appropriate empirical percent
from the transonic results. The way is difficult to evalu-
ate the flutter characteristics accurately because the flut-
ter shape differs considerably from one kind of vehicle to
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anther. Hence, it is necessary to develop a computational
method based on the non-linear aerodynamic equations
for transonic flutter.

The transonic unsteady aerodynamic forces can be cal-
culated by solving small perturbation, full-potential [Lu
(2001)] or Euler/Navier-Stokes equations, and then the
calculated aerodynamic forces can be directly applied to
flutter computations in the frequency domain. Coupled
with the structural equations of motion, the happening of
flutter can be judged by calculating the generalized coor-
dinate time response in the time domain.

In the present paper, the second-order Runge-Kutta time-
marching method is used to solve the structural equa-
tions of motion. The finite-volume spatial discretisa-
tion [P’ascoa, Mendes, Gato and Elder (2004); Jame-
son, Schmidt and Turkel, (1981); Jameson, Schmidt
and Whitfield (1981)] is applied to the unsteady Eu-
ler/ Navier-Stokes equations, and then the time-accurate
aerodynamic forces are calculated by a dual-time method
[Gationde (1995)], in which the physical time step is
synchronous with the structural equations of motion.
In a physical time step, the aerodynamic equations are
marched to a steady state in pseudo time using a hybrid
multistage Runge-Kutta method. For a turbulent flow,
the Spalart-Allmaras [Spalart and Allmaras (1992)] one-
equation turbulence model is adopted.

Similar to a transonic flutter experiment, mass dissim-
ilarity would sometimes exit in the calculated dynamic
pressure for a compressible flow at a given freestream
Mach number, that is, the fluid density inversely eval-
uated from the calculated flutter dynamic pressure may
be much larger than that in the flight condition. In en-
gineering, the density must be matched to obey the sim-
ilarity rule in order to confirm a practicable margin of
the dynamic pressure of flutter. At present work, meth-
ods of variable mass and variable stiffness are developed
to calculate the dynamic pressure of flutter at the point
of mass similarity, and the practicable transonic flutter
characteristics are then obtained by analyzing the trend
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of the dynamic pressure of flutter varying with the multi-
ples of variable mass or variable stiffness. For complete-
ness, the transonic flutter characteristic results calculated
using the method are shown for a double-wing and an
aircraft model.

2 Multi-block Grid Generation

The hybrid algebraic/elliptic differential equation
method is applied to generate multi-block static grids
for an aircraft configuration. For unsteady computations
with moving walls, the dynamic grids are adopted,
whose outer boundaries (far-field or block boundary) are
fixed and the inner ones (solid wall) move synchronously
with the motion or deformation of the solid walls. Since
the generation of grid is required for every time step and
it is very time-consuming, an approximately simplified
method is developed to generate three-dimensional
multi-block dynamic grids. At first, the instantaneous
boundary grids of each block are generated, and then
a rapid deforming technique [Lu (2001)] is used to
evaluate the dynamic coordinates for the inner grid
nodes of each block. The coordinates of the dynamic
grid node (denoted by the subscript u) is given by

xu = xr − (xr −xs) ·g (1)

where the subscript s denotes the coordinates of the ini-
tial static grid node, r the instantaneous coordinates when
the static grid node moves synchronously with the solid
walls, and g is a function of the grid node given by

g = max

((
i− ib
i f − ib

)2

,

(
j− jb
j f − jb

)2

,

(
k−kb

k f −kb

)2
)

(2)

Here the subscript b denotes inner boundary point, f
stands for the outer boundary point.

3 Structural Equations of motion

The longitudinal oscillating deformation of the wall sur-
face points of an aircraft is approximately expressed as

Z(x,y, t) =
n

∑
i=1

hi(x,y)qi(t) (3)

and the structural equations of motion are written as

[M]{qtt}+[G]{qt}+[K]{q} = {A} (4)

where n is the number of the structural mode considered,
h the structural mode data of each mode, q the general-
ized coordinate, M, G and K are the generalized mass,
the damping and the stiffness, respectively. Here, G = 0,
Kii = ω2

i Mii, ωi = 2π fi. The generalized aerodynamic
force is given by

Ai =
1
2

ρV 2
∫∫
©∆Cp(x,y, t)hi(x,y)ds (5)

After the instantaneous generalized aerodynamic A is
solved from the aerodynamic equations, a state variable
{E} is introduced to the structural equations of motion,
which is defined as

{E} =
[{q}T ,{qt}T

]T
= [q1,q2,q3, · · ·,qn,qt1,qt2,qt3, · · ·,qtn]T (6)

Then equation (4) becomes

{Et}=
[

[0] [I]
−[M]−1[K] − [M][G]

]T

{E}

+
[

[0]
[M]−1

]
{A} (7)

where [0] represents the zero matrix, [I] the identity ma-
trix.

Equation (7) are solved by the second-order five-stage
Runge-Kutta time-marching method.

4 Unsteady Euler/Navier-Stokes Equations On a
Moving Mesh

4.1 Governing Equations

In the Cartesian coordinate system, the differential form
of the unsteady Euler/Navier-Stokes equations on a mov-
ing mesh can be written in terms of non-dimensional
variables and in coordinate invariant formulation as

∂
⇀

U
∂t

+
∂

⇀

Fi

∂xi
=

∂
⇀

Gi

∂xi
(8)

where
⇀

U ,
⇀

Fiand
⇀

Giare respectively the unknown vector, the
convective flux vector and the viscous flux vector(equals
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to zero for the Euler equations), and they are given by

⇀

U =

⎡
⎢⎢⎢⎢⎣

ρ
ρu1

ρu2

ρu3

ρE

⎤
⎥⎥⎥⎥⎦

⇀

Fi =

⎡
⎢⎢⎢⎢⎣

ρUi

ρu1Ui + pδ1i

ρu2Ui + pδ2i

ρu3Ui + pδ3i

(ρE + p)Ui +(xi)t p

⎤
⎥⎥⎥⎥⎦

⇀

Gi =

⎡
⎢⎢⎢⎢⎣

0
σ1i

σ2i

σ3i

umσim +k ·∂T /∂xi

⎤
⎥⎥⎥⎥⎦ (9)

In the above, δi j is the Kronecker symbol, ρ is the fluid
density, ui are the Cartesian components of the fluid ve-
locity, E the total energy and p is the pressure which is
obtained from

p = (γ−1)[ρE−ρ(u2
i )/2] (10)

Ui are the components of the contravariant velocity de-
fined by

Ui = ui − (xi)t (11)

where (xi)t are the Cartesian components of the grid
speed. The components of the viscous stress tensor σi j

are defined as

σi j = 2µSi j − 2
3

µ(
∂vk

∂xk
)δi j (12)

where the components of the strain-rate tensor are given
by

Si j =
1
2

(
∂vi

∂v j
+

∂v j

∂vi

)
(13)

During the process of coupling the Euler/Navier-Stokes
equations with the structural equations of motion, much
attention should be paid to the dimension-matching prob-
lem of the length and the area when a non-dimensional
aerodynamic coefficient is transformed into a dimen-
sional one. The same is applied to the time transforma-
tion.

4.2 Dual-Time Marching

The Euler/Navier-Stokes equations on a moving mesh
are solved using a cell-centered finite-volume method
[Jameson, Schmidt and Turkel (1981); Jameson, Schmidt
and Whitfield (1981)], in which the central scheme with
JST artificial dissipation [Jameson, Schmidt and Turkel
(1981)] is applied. After the finite-volume spatial dis-
cretisation is applied to equation (8), the system of equa-
tions takes the form

d
dt

(Hi jk
⇀

W i jk)+
⇀

Ri jk = 0 (14)

where
⇀

W ,
⇀

Hand
⇀

R are dependent variable, volume and
residual respectively, the indices (i jk) reference the con-
trol volume. Following the work of Jameson [Jameson
(1991)], an implicit algorithm is applied to equation (14)
at time level (n+1),

d
dt

(Hn+1
i jk

⇀

W
n+1

i jk )+R(
⇀

W
n+1

i jk ) = 0 (15)

Then a backward second-order finite difference scheme
is used to discretize d

/
dt. As a result, equation (15) be-

comes

3Hn+1
i jk

⇀

W
n+1

i jk −4Hn
i jk

⇀

W
n

i jk +Hn−1
i jk

⇀

W
n−1

i jk

2∆t
+

⇀

R(
⇀

W
n+1

i jk )

=
⇀

R
∗
(

⇀

W
n+1

i jk ) = 0 (16)

Finally, a derivative with respect to a pseudo time, τ, is
added to equation (16) to give

Hn+1
i jk

d
⇀

W
n+1

i jk

dτ
+R∗(

⇀

W
n+1

i jk ) = 0 (17)

The solution of equation (17) is obtained by marching
to a steady state in pseudo time using a hybrid explicit
five-stage Runge-Kutta method [Martinelli and Jameson
(1990)]. This solution has a feature of

d
⇀

W
n+1

i jk

dτ
= 0 (18)

which means that it satisfies R∗(W n+1
i jk )= 0 and hence it is

also the solution of equation (15) at time level (n+1)∆t.
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4.3 Geometric Conservation Law

The geometric conservation law (GCL) [Thomas and
Lombard (1979)] must be satisfied in order to avoid er-
rors induced by deformation of control volumes. The in-
tegral form of the GCL reads

∂
∂t

∫
Ω

dΩ−
∫

∂Ω

⇀

Vt ·⇀ndS = 0 (19)

where
⇀

V t ,
⇀n are respectively the velocity vector of the

face of the control volume dΩ, the outward facing unit
normal vector of the surface ∂Ω. In order to obtain a
self-consistent method, the GCL in equation (19) is tem-
porally discretised using the same scheme as applied to
the physical conservation laws.

5 Spalart-Allmaras Turbulence Model

For a turbulent flow, the viscosity coefficient and the ther-
mal conductivity coefficient are respectively replaced by

µ = µl +µt , k = kl +kt = cp(µl/Prl +µt/Prt) (20)

The Spalart-Allmaras [Spalart and Allmaras (1992)] one-
equation turbulence model employs transport equation
for an eddy-viscosity variable ṽ. It is developed from em-
piricism, dimensional analysis and Galilean invariance
selected dependence on the molecular viscosity. It is
calibrated using the experimental results for 2-D mixing
layers, wakes, and flat-plate boundary layer, and it also
provides accurate predictions of turbulent flows with ad-
verse pressure gradients. The model includes a wall de-
struction term that reduces the turbulent viscosity in the
laminar sublayer. The model takes the form

Dν̃
Dt

= Cb1S̃ν̃+
1
σ

[∇ · ((ν+ ν̃)∇ν)+Cb2(∇ν̃)2]

−Cw1 fw(
ν̃
d
)2 (21)

The turbulent kinematic viscosity is obtained from

νt =
µt

ρ
= ν̃ fv1, fv1 =

χ3

χ3 +C3
v1

, χ =
ν̃
ν

(22)

Let S denote the magnitude of the vorticity. The modified
vorticity is

S̃ = S +
(

ν̃
κ2d2

)
fv2, fv2 = 1− χ

1+χ fv1
(23)

where d is the distance to the closest wall. The wall de-
struction function fw is

fw = g(
1+C6

w3

g6 +C6
w3

)
1
6 , g = r +Cw2(r6 − r), r =

ν̃
S̃κ2d2

(24)

The model coefficients are

Cb1 = 0.1355 σ = 2/3 Cb2 = 0.622, κ = 0.41

Cw1 = Cb1/κ2 +(1+Cb2)/σ, Cw2 = 0.3,

Cw3 = 2.0, Cv1 = 7.1 (25)

Coupled with Navier-Stokes equations, the Spalart-
Allmaras turbulence model is solved using a finite-
volume method, in which the convective flux is discre-
tised using the first-order upwind scheme [Koomullil and
Soni (1999)].

6 Methods of Variable Mass and Variable Stiffness
for Flutter Calculation

Once the flight altitude and the flight Mach number are
given, the happening of flutter can be judged by ana-
lyzing the generalized coordinate time response of each
structural mode, which is solved from equation (4). The
variation of flutter altitude with Mach number forms the
flight flutter borderline.

In engineering, when the flutter does not happen at sea
level at a given Mach number, the specified dynamic
pressure of flutter must be obtained in order to confirm a
practicable margin of flutter. At a given freestream Mach
number, while the flutter calculations of a compressible
flow are done in the time domain, the freestream dynamic
pressure allows to be straightly increased to the critical
flutter point. Due to the existence of mass dissimilar-
ity, this dynamic pressure cannot be directly taken as the
flutter one. That is to say, because of the fixed veloc-
ity (a given freestream Mach number), the fluid density
inversely solved from the present dynamic pressure of
flutter may be much larger than the atmospheric density
in the flight condition, which violates the mass similarity
rule.

At present work, methods of variable mass and variable
stiffness are developed to calculate the dynamic pressure
of flutter at the point of mass similarity. For the method
of variable mass, the mass of an aircraft is increased to
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a serial of multiples, denoted by Cj( j = 1,2...), and the
corresponding dynamic pressure of flutter denoted by Q j

are calculated, then the density, denoted by ρ j, are solved
from the definition of dynamic pressure. Let D j rep-
resent the ratio of ρ j to the atmospheric density at the
given flight altitude. At a certain mass multiple, once Cj

equals to D j, the mass similarity rule is satisfied at an
overweight state, and the dynamic pressure at that mo-
ment can be thought as the dynamic pressure of flutter.
For the method of variable stiffness, the mass and the
freestream dynamic pressure are kept invariable, a gradu-
ally minished stiffness, denoted by stiffness multiple Nj,
will also lead to a flutter. The difference between this
stiffness and the original one can be taken as the stiffness
margin of flutter. Methods of variable mass and variable
stiffness are correlative. It is easy to derive

N = 1/
C (26)

where N represents the stiffness multiple when the flutter
happens using method of variable stiffness, C represents
the mss multiple when the flutter happens at the mass
similarity point using the method of variable mass.

Obviously, method of variable stiffness is much more
timesaving than method of variable mass, despite the fact
that the stiffness is no longer the original one. A syntheti-
cal consideration about the variation trend of the dynamic
pressure of flutter varying with the mass and stiffness
multiples will confirm a practicable transonic dynamic
pressure of flutter.

7 Results and Discussion

Results have been obtained for two cases using the
present transonic flutter computational method. In each
case, the structural modal value of each grid node is ob-
tained by a double linear interpolation method. In a phys-
ical time step, the calculation order is: firstly solving the
time-accurate generalized aerodynamic forces by equa-
tion (8), secondly solving the generalized coordinates by
equation (4), thirdly solving the longitudinal oscillation
deformation of the wall surface points by equation (3)
and generating the dynamic grids for the next physical
time, and then repeating the above three steps at the next
time loop. Finally, the generalized coordinate time re-
sponse is obtained.

The first problem considered is about a double-wing, to
which the flutter happens at sea level. Solutions with

Figure 1 : Surface grid for a double-wing
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Figure 2 : Flutter borderline

Navier-Stokes equations are shown for computations per-
formed on the H-H type multi-block grids, the Reynolds
number based on the root chord length is 12×106. Fig.
1 shows its surface grid. Fig. 2 shows the calculated
flutter borderline. Fig. 3 and Fig. 4 respectively show
the generalized coordinate time response for Ma=0.45
and Ma=0.5 at sea level, where q(i) denotes the gener-
alized coordinate time response of the ith-order struc-
tural mode. As a result, the calculated flutter velocity
is 158m/s which is very close to the result 160m/s [Guo,
Lu, and Cheng (2004)] calculated using the traditional
doublet lattice method.

The next test case considered is about an aircraft model,
to which the flutter doses not happen at sea level. The
margin of flutter should be confirmed, so the methods of
variable mass and variable stiffness are applied. Seven
structural modes and natural frequencies are considered
for the test cases: first bending mode of wing, first bend-
ing mode of fuselage, first bending mode of horizontal
tail, first twisting mode of wing, second bending mode
of fuselage, second bending mode of wing, second twist-
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Figure 3 : Generalized coordinate time response
(H=0km, Ma=0.45)
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Figure 4 : Generalized coordinate time response
(H=0km, Ma=0.5)
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Figure 5 : Generalized coordinate time response
with Euler equations
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Figure 6 : Comparisons between Euler and Navier-
Stokes equations at N=0.5
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ing mode of wing. The H-H type multi-block grids are
used. Cases at sea level are considered: the atmosphere
density at sea level is chosen as the reference density, and
the freestream Mach number is 0.9. For the calculation
of the Navier-Stokes equations, the Reynolds number is
12×106 based on the root chord length. Some results are
illustrated and analyzed as follows.

Fig.5 shows the generalized coordinate time response of
the first structural modes when the stiffness is respec-
tively reduced to 0.5 and 0.6 times of the original one
with Euler equations, in which the abscissa is the time
and the ordinate is the generalized coordinate. In Fig.5,
the structure is convergent at N=0.6, but divergent at
N=0.5, which means that the flutter has happened. The
stiffness multiple at the critical state can be obtained by
interpolation, while more intermediate values should be
evaluated because of the severely non-linear properties
in transonic range. Fig.6 is a comparison between Eu-
ler and Navier-Stokes equations at N=0.6. Theoretically,
results from Navier-Stokes equations are more conserva-
tive than those from Euler equations, since the work that
the aerodynamic forces do on the structure is less when
Navier-Stokes equations are applied. Therefore, results
shown in Fig.6 are reasonable.

8 Conclusions

Euler/Navier-Stokes equations coupled with structural
equations of motion are applied to flutter computation in
the time domain. Methods of variable mass and variable
stiffness are developed to resolve problem of mass dis-
similarity. As a result, a transonic flutter characteristic
computational method, which is applicable to real prob-
lems in engineering, is established. Results of test cases
prove the validity of the present method.
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