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Analytical Approach to Cell Geometry Description

P. Dabnichki1 and A. Zhivkov2

Abstract: A novel method for geometric reconstruc-
tion of smooth pseudo-rotational objects based on elliptic
functions is developed. Based on the apparatus of theta
functions analytical expressions for the main geometric
invariants are derived. Reconstruction of asymmetric and
irregular objects is illustrated. The advantages of the pro-
posed technique lay in the following: i) reconstruction
is computationally very fast and would allow a qualita-
tive change in the current research practices, i. e. real-
time monitoring and analysis of the responses of large
cell samples ii) the accuracy of the method is very high
and can be flexibly varied iii) the method allows quanti-
tative analysis as demonstrated by the derived analytical
representation for the main geometric invariants. Poten-
tial applications to existing experimental techniques and
fundamental theoretical issues in mathematical models in
cell physiology are briefly discussed.

keyword: Elliptic functions, theta functions, cells, ge-
ometric reconstruction.

1 Introduction

Understanding the mechanical properties of cells is a
very significant step to the understanding of blood cir-
culation, tissue response to external loads and signals,
remodelling processes to name but few. Certain types
of cells in the living organisms are not physically con-
nected within the tissue structure. So to a certain extent
they function independently without a visible direct con-
tact or detectable exchanges with other cells.

The most obvious examples are cartilage cells called
chondrocytes, red blood cells – erytrocytes, white blood
cells – leukocytes and trombocytes. Changes in the shape
of these cells are induced by their status, functions or in-
teraction with the surrounding media and hence could be
used as an indicator for a variety of underlying processes
and study of different pathways [Guilack, Sato, Stanford
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and Brand (2000); Erickson, Alexopoulos and Guilack
(2001)]. For example, study of the deformation of the
white blood cells caused by external forces is expected to
provide insight on how these cells flow through capillar-
ies and reach different tissues [Hochmuth (2000)]. Cell
response to external forces and internal stress distribution
is an indicator for the integrity and viability of cartilage
[Guilack (1995)]. A study of chondrocytes’ response to
loading [Jones, Ting-Beall, Lee, Kelley, Hochmuth and
Guilak (1999)] found that the volumetric properties of
osteoarthritic cartilage differ significantly in statistical
from normal sample. However the selected measure is
too simplistic – cells’ height that provide very little fur-
ther information on the nature of pathological changes in
this particular condition. There is still a complete lack of
quantitative measure to identify pathological against nor-
mal responses to external loading although a good study
of [Kaspar, Seidl, Neidlinger-Wilke, Ignatius and Claes
(2000)] presents some very interesting findings.

The relationship between cell deformation and the cor-
responding tissue changes has not been fully understood
and one of the main reasons behind is the lack of accurate
and reliable experimental data. Such data can only be
obtained by non-direct, usually image based measuring
techniques. That is why a powerful analytical apparatus
is needed to allow a very fast quantitative assessment in
the changes in the global geometrical characteristics of
cells in real time. Such apparatus should be highly ac-
curate and computationally fast in order to maximize the
benefits of real time analysis.

One of the outstanding issues in describing cellular re-
sponses is the rate of exchange between cells and the
surrounding environment and how this exchange affects
their functions and viability. A necessary first step in
successful analysis of cellular exchange is an accurate
description of global geometric invariants including vol-
ume area, global curvatures. The aim of this work is to
assess the potential for the introduction of methods for
global analysis in cell mechanics research - in particular
the use of elliptic functions. The novel method developed
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is presented below.

2 Theta functions

It turns out that the solutions of some of the fundamen-
tal integrable differential equations arising in the classi-
cal mechanics can be usually expressed in terms of theta
functions [Whittaker and Watson (1935)]. For example
the classic equation of the harmonic oscillator ẍ = −ω2x
possess a general solution x = Acos(ωt−φ) with two ar-
bitrary constants A and φ representing the amplitude and
the phase shift of the oscillation respectively. So cosu
is defined as a genus 0 theta function that is obviously
periodic with a period 2π. There is a multitude of other
very important applications of genus 0 theta functions an
notable example being the heat diffusion equation.

The higher order theta functions, i.e. genus one or bet-
ter known as elliptic functions, were introduced in the
19th century following the milestone works of some of
the most distinguished mathematicians of the time –
Bernoulli, Gauss, Abel, Jacobi and Legandre amongst
them. Their introduction was needed in order to derive
effective solutions of some more complex problems in
classical mechanics such as the simple pendulum equa-
tion ẍ = −sinx , the rotation of a planet about its cen-
tre of gravity [Jacobi (1849)] or more recently the La-
grange’s top equation [Gavrilov and Zhivkov (1998)]. In
the following centuries the elliptic functions facilitated
great advances in pure and applied mathematics [Lawden
(1989)]. The most celebrated application of theta func-
tions in modern mathematics is undoubtedly their use in
the proof of the great Fermat theorem [Wiles (1995)].

Despite all these remarkable successes this powerful ap-
paratus is far from being utilised to its full potential.
A very promising area for applications of theta/elliptic
functions – accurate geometric representation of rota-
tional and pseudo-rotational bodies has not been ex-
plored. This is an area of a great significance in biolog-
ical and medical research as biological objects such as
human organs, micro-organisms or aquatic animals such
as fish and sepia are more complicated for description
and reconstruction compared to manmade objects such
as machine parts. However, an important common fea-
ture of biological objects is that a large proportion of
them represent smooth pseudo-rotational bodies that can-
not be presented in closed analytical form. Accurate rep-
resentation of biological objects is very rear as simpli-
fied reconstruction are the norm [Aritan, Dabnichki and

Bartlett (1997)]. A thorough review of papers devoted to
theoretical and computational analysis of cells [Guilack
and Mao (2000); Iglic, Vranic, Batista and Kralj-Iglic
(2001)] show that as a rule cells are replaced with prime
geometrical curves such as ellipses or spheroids and el-
lipsoids in three dimensional studies. Similar status is
evident in studies of blood flow [Moore, Steinman and
Ethier (2000)]. As it is claimed that cell membranes can
undergo only relatively small strains of no more then four
[Fung (1993)], most of the current approaches achieve
similar order of reconstruction accuracy rendering them
inappropriate. Furthermore closer analysis is needed in
sub-cellular structure such as cell nucleus that sets even
more stringent requirements towards the accuracy of the
cell reconstruction [Caille, Thoumine, Tardy and Meister
(2002)].

A natural resolution of the above issue can be achieved
by the introduction of the theta functions in their more
elaborate form known as Jacobi’s functions. The impor-
tance of the Jacobi’s functions defined below stems from
the fact that they are closely related to circular and hy-
perbolic functions that have been proven extremely use-
ful for the solution of fundamental problems in celestial
mechanics, geometry, electrodynamics and many other
fields [Lawden (1989)].

The four Jacobi’s theta function defined below by their
Fourier series are used in this work to describe the geom-
etry of different cells:

θ0(z,q) := 1+2qcos2z+2q4 cos4z+2q9 cos6z+ · · · ,
θ1(z,q) := 1−2qcos2z+2q4 cos4z−2q9 cos6z+ · · · ,
θ2(z,q) := 2q

1
4 cos z+2q

9
4 cos3z+2q

25
4 cos5z+ · · · ,

θ3(z,q) := 2q
1
4 sinz−2q

9
4 sin3z+2q

25
4 sin5z+ · · · .

Each function θn depends on the complex arguments u
and q, |q|< 1. In order to ensure that the series represent
real-valued theta functions, the following constrains are
additionally imposed:

q ∈ R , 0 ≤ q < e−
π
4 ,

z = u ∈ R or z = iv ∈ iR, i :=
√−1 .

It is important to point out that the condition |q| < 0.46
assures exponentially fast convergence of all theta series
and their derivatives of any order dn

dzn θn(z,q).
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Particularly, we shall use the following ratios of thetas:

Θ1(u,v,q) :=
θ1(u,q)θ1(iv,q)
θ0(u,q)θ0(iv,q)

,

Θ2(u,v,q) :=
θ2(u,q)θ2(iv,q)
θ0(u,q)θ0(iv,q)

,

Θ3(u,v,q) :=
θ3(u,q)θ3(iv,q)
iθ0(u,q)θ0(iv,q)

.

These functions are real-valued if u,v and q are real. In
effect they represent a set of analytical coordinates for
any point on the sphere:

Θ1(u,v,q)2 + Θ2(u,v,q)2 + Θ3(u,v,q)2 ≡ 1 (1)

and this statement also applies to ellipsoids.

Θ1, Θ2 and Θ3 have two independent semi-periods: π
with respect to u and lnq with respect to v:

Θ1(u+π,v,q) = Θ1(u,v,q) ,

Θ2(u+π,v,q) = −Θ2(u,v,q) ,

Θ3(u+π,v,q) = −Θ3(u,v,q) ,

Θ1(u, v+ ln q, q) = −Θ1(u,v,q) ,

Θ2(u, v+ ln q, q) = Θ2(u,v,q) ,

Θ3(u, v+ ln q, q) = −Θ3(u,v,q) .

Up to some non-significant constants, Θ1,2,3(u,v,q) are
equal to

sn(u,q)sn(iv,q), cn(u,q)cn(iv,q), dn(u,q)dn(iv,q)

respectively; sn, cn and dn stand for the classical Jacobi’s
elliptic functions.

The first derivatives of Θ1, Θ2 and Θ3 can be computed
with the help of the following identities:

d
dz

θ1(z,q)
θ0(z,q)

= θ2(0,q)2 θ2(z,q)
θ0(z,q)

θ3(z,q)
θ0(z,q)

,

d
dz

θ2(z,q)
θ0(z,q)

= −θ1(0,q)2 θ3(z,q)
θ0(z,q)

θ1(z,q)
θ0(z,q)

, (2)

d
dz

θ3(z,q)
θ0(z,q)

= θ0(0,q)2 θ1(z,q)
θ0(z,q)

θ2(z,q)
θ0(z,q)

.

Using again these formulas, we compute the second,
third, etc. derivatives of the thetas.

3 The smooth ellipsoid as a model of the cell

A natural first step of the geometrical reconstruction of a
stand alone cell is its approximation with a smooth three-
axial ellipsoid E. This of course places that assumption
that the cell is an ellipsoid or an equivalent geometric
shape – this holds for biological cells. Suppose that some
coordinates(
x1,1,x2,1,x3,1

)
,
(
x1,2,x2,2,x3,2

)
, . . . ,

(
x1,N ,x2,N ,x3,N

)
of N points

(
x1,k,x2,k,x3,k

)
lying on the cell surface are

experimentally derived. Then the analytical equation of
the ellipsoid E in the same reference system can be pre-
sented in the form

E : A1x2
1 +A2x2

2 +A3x2
3 +A4x1x2 +A5x1x3 +A6x2x3 +

+A7x1 +A8x2 +A9x3 +A10 = 0 .

The coefficients As in the above equation can be explic-
itly computed from the quadratic form

N

∑
k=1

(
A1x2

1,k +A2x2
2,k +A3x2

3,k +A4x1,kx2,k + · · ·+A10,k

)2

=
10

∑
i, j=1

ci jAiA j ,

which is positively defined as a sum of N squares.
Let λmin be the smallest eigenvalue of the matrix C :=(
ci j

)10
i, j=1. Then we define A :=

(
A1,A2, . . .,A10

)
to be the

eigenvector of the matrix C, corresponding to the eigen-
value λmin: CA = λminA.

Let us denote by µ1, µ2 and µ3 the eigenvalues of the
matrix

A =

⎛
⎝ A1 A4/2 A5/2

A4/2 A2 A6/2
A5/2 A6/2 A3

⎞
⎠

and let ξs = (ξs1,ξs2,ξs3)t are the correspondent eigen-
vectors. Hence Aξs = µsξs, where all the eigenvectors
are of unit length: ‖ξs‖ = 1, s = 1,2,3. Then the equa-
tion of the ellipsoid takes the form

0 = A1x2
1 +A2x2

2 +A3x2
3 +A4x1x2 +A5x1x3

+A6x2x3 +A7x1 +A8x2 +A9x3 +A10

=
3

∑
j=1

µ j

( 3

∑
s=1

ξ jsxs +η j

)2 −η0

= constant.
( y2

1

I1
+

y2
2

I2
+

y2
3

I3
−1

)
,
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i. e.

E :
y2

1

I1
+

y2
2

I2
+

y2
3

I3
= 1 , (3)

I1 =
η0

µ1
, I2 =

η0

µ2
, I3 =

η0

µ3
.

This is a classical procedure which transforms the mo-
ment of inertia tensor to its principal axes. Without loss
of generality we may consider that the main inertia mo-
ments I1,2,3 satisfy the condition

0 < I1 ≤ I2 ≤ I3 .

This can always be met by a re-ordering of the coordi-
nates y1, y2 and y3.

Therefore the coordinate solution of equation (3) can be
derived in terms of elliptic theta functions as

y1 =
√

I1 Θ1(u,v,q) , I1 = R2 (
θ2(0,q)4−λ

)
,

y2 =
√

I2 Θ2(u,v,q) , I2 = R2 (
θ1(0,q)4−λ

)
, (4)

y3 =
√

I3 Θ3(u,v,q) , I3 = R2 (
θ0(0,q)4−λ

)
,

where the constants R, q and λ define the form of the
ellipsoid E; u ∈ [

0,2π
)

and v ∈ [
0,− lnq

)
are the surface

coordinates defining uniquely any point on the ellipsoid
E. Explicitly,

R2 λ = I3 − I1 − I2 (defines R2 λ) ,

I1 +R2λ
I2 +R2λ

=
θ2(0,q)4

θ1(0,q)4 (defines q) ,

I3 = R2
(

θ0(0,q)4−λ
)

(defines R > 0 and λ) .

According to the signs of y1(u,v), y2(u,v) and y3(u,v),
the ellipsoid E can be divided into 8 parts

(+++) , (++−) , . . . , (−−−) :

Recall that correspondingly

Θ1(u,v,q) = 0 if v = n
2 lnq ,

Θ2(u,v,q) = 0 if u = 2n+1
2 π ,

Θ3(u,v,q) = 0 if u = nπ
for n = 0,±1, ±2, . . ., and this defines the zeroes of
y1,2,3.

y1 = 0

y2 = 0

y3 = 0

Figure 1 : The 8 parts of the ellipsoid.

u = 0 u = π
2 u = π u = 3π

2 u = 2π
v = 0

v = − ln q
2

v = − lnq

+++

−++

+−+

−−+

+−−

−−−

++−

−+−

Figure 2 : The (u,v)–parameterization of the ellipsoid.

4 Asymmetric cells

Varying the coefficients R0,R1,R2, . . . in the form

R = R0 +R1 cosu+R2 sinu+R3 cosw+R4 sinw

+R5 cosu cosw+R6 cosu sinw+R7 sinu cosw

+R8 sinu sinw+ · · ·
+R j cosnu coskw+R j+1 cosnu sinkw

+R j+2 sinnu coskw+R j+3 sinnu sinkw+ · · · ,

w := − πv
lnq

,

we can obtain all possible asymmetric cells.

Next examples illustrate correspondingly (i) a concave
blood cell, (ii) a rough cell, (iii) and (iv) are two differ-
ent asymmetric cells: Combinations of the above shape
could represent every possible type of cells. The more
important issue is whether essential quantitative assess-
ment could be undertaken by applying theta functions.
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Figure 3 : A concave blood cell: q = 0.02, λ =
0, R = 2−cos2u.

Figure 4 : A rough cell: q = 0.03 , λ = −2, R =
4+ 1

10 sin40u.

All the important geometric invariants can be explicitly
formulated. It should also be added that these presen-
tations allow direct high-speed computation of those in-
variants. Some of the most important ones are described
below.

The surface area of any type of cell can be obtained from

S =
∫∫

0≤u<2π

0≤v<− lnq

d S =
∫∫

0≤u<2π

0≤v<− lnq

√
A2 +B2 +C2 du dv , (5)

where

A =
∂y2

∂u
∂y3

∂v
− ∂y3

∂u
∂y2

∂v
, B =

∂y3

∂u
∂y1

∂v
− ∂y1

∂u
∂y3

∂v
,

C =
∂y1

∂u
∂y2

∂v
− ∂y2

∂u
∂y1

∂v
,

and (2) has to be used in order to calculate ∂y j

∂u and ∂y j

∂v .

The volume of a cell can be expressed as

V =
∫∫

0≤u<2π

0≤v<− lnq

1
3

(
y1A+y2B+y3C

)
dudv .

Recall that the local geometry of the cell is defined by the
first and second quadratic forms g11 du2 + 2g12 dudv +

g22 dv2 and b11 du2 +2b12 dudv+b22 dv2 ,

g11 =
3

∑
s=1

(∂ys

∂u

)2
, g12 =

3

∑
s=1

∂ys

∂u
∂ys

∂v
, g22 =

3

∑
s=1

(∂ys

∂v

)2
,

b11 =
1√

A2 +B2 +C2

(
A

∂2y1

∂u2 + B
∂2y2

∂u2 + C
∂2y3

∂u2

)
,

b12 =
1√

A2 +B2 +C2

(
A

∂2y1

∂u∂v
+ B

∂2y2

∂u∂v
+ C

∂2y3

∂u∂v

)
,

b22 =
1√

A2 +B2 +C2

(
A

∂2y1

∂v2 + B
∂2y2

∂v2 + C
∂2y3

∂v2

)
.

Finally, the solutions µ = µ1 and µ = µ2 of the quadratic
equation
(
b11−µg11

)(
b22−µg22

)
=

(
b12 −µg12

)2

are the main curvatures, µ1µ2 is the scalar curvature and
µ1 +µ2 is the mean curvature.

5 Discussion

An advanced technique for geometric reconstruction and
analysis of cell interactions is proposed. The advantages
of the proposed technique lay in the following:

• geometric reconstruction is computationally very
fast, highly accurate and it is applicable to non-
symmetric objects. This would allow a qualitative
change in the current research – namely to moni-
tor and analyse the response of large cell samples
allowing more representative and accurate conclu-
sions

• the accuracy of the method is very high and can
be flexibly adjust according to the requirements of
a particular task without significantly affecting the
computational speed
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Figure 5 : An asymmetric cell: q = 0.02 , λ = 0, R =
2− sinu−cos2u .

Figure 6 : Second asymmetric cell: q = 0.04, λ =
0, R = 2−1.5cosu .

• the method allows real-time quantitative analysis
as demonstrated by the derived expressions for the
main geometric invariants.

The three most important characteristics described above
allow the introduction of quantitative global analysis in
cells’ response to external signals and loads. One ex-
tremely important application is the accurate estimate
of matter exchanged by chondrocytes during mechanical
loading and the associated change in the surface area that
will be accomplished in a very near future.

The reader can notice in the previous sections that the
experimental data input are considered error-free. It is
obviously not the case in real situations. However, this
issue is beyond the scope of the current work as it is not
specific to the proposed apparatus. Existing current tech-
niques for reduction in the error of data measurement or
conditioning of the signal input can be utilised similarly
to other signal processing applications. There are also a
number of theoretical methods for approximation of the
input data coordinates.

Below we outline a number of problems that the pro-
posed apparatus is to be applied. They can be divided
into two categories – practical improvements in existing
experimental techniques and application to fundamental
theoretical issues.

We would like to point out that the developed apparatus
could be immediately applied in existing observational
techniques such as confocal or electronic microscopy as
these techniques already utilise computers for data pro-
cessing and their reconstruction algorithms can be eas-
ily modified. Similarly the apparatus can be applied for
improved image reconstruction of blood vessels of MRI
scans [Moore, Steinman and Ethier (1998)] or CT-scans

of bones. Even the accuracy of the computation the
material parameters of well-established techniques such
as micro-pipette aspiration [Cheng, Hartemink, Hartwig
and Forbes Dewey Jr (2000)] can be further improved
and fine-tuned.

The theoretical issues that the authors intend to tackle
are: i) mass exchange between red blood cells and en-
dothelial cells [Dong (2000)] ii) analytical method for
establishment the homeostatic shape of chondrocytes iii)
non-isochoric interactions of the blood cell and capillar-
ies. The technique allows the development of sophisti-
cated models for dynamic interactions between the cells
and the surrounding environment.

The technique allows the development of sophisticated
models for dynamic interactions between the cells and
the surrounding environment. It is obvious that a per-
ceived shortcoming is that this apparatus cannot deal
with edges or similar irregularities. This is not really the
case as such irregularities may be approximated with an
any desirable accuracy as only the number of the curves
will increase. Similar approach has already been applied
in signal processing where Fourier transformation is ap-
plied to irregular signals – this in effect is the built-in
capability of the apparatus to act as simultaneously as a
filter.
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