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Chance-Constrained Optimization of Pumping in Coastal Aquifers by Stochastic
Boundary Element Method and Genetic Algorithm

B. Amaziane1, A. Naji2, D. Ouazar3, A. H.-D. Cheng4

Abstract: In this paper the optimization of ground-
water pumping in coastal aquifers under the threat of
saltwater intrusion is investigated. The aquifer is inho-
mogeneous and contains several hydraulic conductivities
zones. The aquifer data such as the hydraulic conduc-
tivities are uncertain, but with their expected mean and
standard deviation values given. A stochastic boundary
element method based on the perturbation technique is
employed as the simulation tool. The stochastic opti-
mization is handled by the chance-constrained program-
ming. Genetic algorithm is selected as the optimization
tool. Numerical examples of deterministic and stochastic
problems are provided to demonstrate the feasibility of
the proposed schemes.

keyword: Saltwater intrusion, optimization, uncer-
tainty modeling, boundary element method, stochastic
boundary element method, genetic algorithm, chance-
constrained programming.

1 Introduction

Groundwater is the main source of freshwater supply
in many parts of the world. As surface water is be-
ing depleted and/or contaminated, humanity’s reliance on
groundwater deepens with time. The over-exploitation
of groundwater can cause short-terms problems such as
the lowering of water table, the increase of pumping lift,
wells running dry, and land subsidence. For the long-
term, the depletion of water supply creates an unsustain-
able living environment and leads serious socioeconomic
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threats. The situation is even more critical in coastal
aquifers, where the declining freshwater head causes sea-
water to invade inland and contaminate the freshwater
sources. Once saltwater reaches the wells, the wells must
be abandoned, which causes supply problem and lost of
investment. These and many other issues of saltwater
intrusion into coastal aquifers have been discussed in de-
tail in the two books, Bear, et al. [1999] and Cheng and
Ouazar [2003].

With these ongoing and potential threats, groundwa-
ter extraction in coastal aquifers needs to be carefully
planned. One of the goals that water managers in coastal
regions strives for is to maximize the yield of ground-
water, yet without attracting saltwater into the wells. To
achieve this goal, the mathematical tool of optimization
can be utilized.

The optimization and management of water production
in a groundwater basin has been widely studied; see,
for example, Gorelick [1983] and Willis and Yeh [1987]
for a review. Applications of these techniques to coastal
aquifers, however, are relatively few. Only about a dozen
such studies have addressed the issues of saltwater intru-
sion into coastal aquifers and their consequences in water
supply. (See Qahman, et al. [2005] for a review.) In most
of these studies, the saltwater intrusion into wells was
indirectly addressed by using constraints such as moni-
toring salt concentration or piezometric head at certain
control points, or minimizing the total saltwater volume
in the aquifer. Only in the several recent studies the di-
rect constraints of preventing the encroachment of salt-
water front into the individual wells [Cheng, et al., 2000;
Cheng, et al., 2003; Park and Aral, 2004], and the con-
trolling of salt concentration in the wells [Qahman, et al.,
2005], were directly addressed.

The current study is an extension of the previous work
[Cheng, et al., 2000; Cheng, et al., 2003]. In Cheng, et
al. [2000], analytical solutions were provided for maxi-
mum pumping involving one and two wells in the coastal
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zone. For multiple wells, genetic algorithm was em-
ployed to search for the near optimal solution. The input
data, such as hydraulic conductivity, outflow rate, pump-
ing rate, etc., were assumed to be deterministic. In Naji,
et al. [1998a], analytical solutions for pumping induced
saltwater intrusion under stochastic input data were con-
sidered for homogeneous aquifers, but without optimiza-
tion. For inhomogeneous aquifers, numerical solution
was needed, and it was handled using a stochastic bound-
ary element method [Naji, et al., 1999]. In the next group
of papers [Benhachmi, et al., 2003; Cheng, et al., 2003],
pumping optimization was conducted under uncertain
data input. The chance-constrained programming was
used to convert the stochastic constraints into determinis-
tic ones. The maximum allowable pumping rate was ex-
pressed in terms of the desirable reliability of prediction.
The aquifer involved was homogeneous; hence analytical
solution was used as the simulation tool, and the genetic
algorithm was used for optimization. The present study
extends the work of Benhachmi, et al. [2003] and Cheng,
et al. [2003] by considering inhomogeneous aquifers
that contain several hydraulic conductivity zones. This
more realistic assumption prevents the use of analytical
solution for simulation and a numerical solution tool is
needed. The boundary element method, and particularly
the stochastic boundary element method, is employed as
the simulation tool in the present study.

In summary, the current study seeks to optimize the
pumping pattern of a well group located in an inhomo-
geneous coastal aquifer. The input data, such as the hy-
draulic conductivities and outflow rates, are uncertain,
but with their mean and the standard deviation values
provided. The goal is to maximize the total pumping
rate subject to the constraints of pumping capacity and
no saltwater intrusion into the wells. A number of tools
are needed for the present study. First, to solve a single
realization of a deterministic problem of saltwater intru-
sion in an inhomogeneous aquifer with the sharp inter-
face assumption, the boundary element method [Liu, et
al., 1981; Taigbenu, et al., 1984] is utilized. In view
of the uncertain input, the deterministic tool needs to
be converted to a stochastic one using the perturbation
technique [Cheng and Ouazar, 1995], which leads to the
stochastic boundary element method [Naji, et al., 1999].
For the stochastic optimization problem, the chance-
constrained programming of Charnes and Cooper [1959,
1963] is used to convert it to a deterministic optimization.

Finally, due to the complexity of the problem, the evolu-
tional optimization algorithm known as the genetic algo-
rithm [Holland, 1975; Ouazar and Cheng, 1999] is used
as the optimization tool. Numerical examples of deter-
ministic and stochastic problems are provided to demon-
strate the feasibility of the proposed schemes.

2 Sharp Interface Model

There are generally two approaches to model saltwater
intrusion, the sharp interface and the miscible transport
approach. (See Bear [1999] for the physical concepts be-
hind these two approaches.) The sharp interface model
assumes that the transition zone between the freshwater
and saltwater is relatively narrow such that the two fluids
can be considered immiscible with an interface separat-
ing them. The miscible model, on the other hand, con-
siders the active solute transport of salt concentration by
mechanisms of advection and dispersion, which further
creates a density difference that drives the flow. In the
present study, the sharp interface model is chosen for its
simplicity in mathematical modeling.

Figure 1 gives the definition sketch of saltwater intrusion
in confined and unconfined aquifers. We notice that h f

is the freshwater head, ξ is the interface location below
the mean sea level, B is confined aquifer thickness, and
d is the mean sea level above the aquifer datum. There
exist two zones: in zone 2, which is in contact with the
sea, saltwater and freshwater coexist, and in zone 1, only
freshwater is found.

By utilizing the Dupuit approximation in a constant hy-
draulic conductivity zone, Strack [1976] has demon-
strated that the single potential

φ =
1
2

[
h2

f − sd2] for zone 1

=
s

2(s−1)
(h f −d)2 for zone 2

(1)

for unconfined aquifer, and

φ = Bh f +
(s−1)B2

2
− sBd for zone 1

=
1

2(s−1)
[h f +(s−1)B− sd]2 for zone 2

(2)

for confined aquifers, satisfies the Laplace equation

∇2φ = 0 (3)
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Figure 1 : Definition sketch of saltwater intrusion in (a) a confined aquifer, and (b) an unconfined aquifer.

continuously across the two zones, where the Laplacian
is defined in the horizontal, or x–y plane. In the above s =
ρs/ρ f , and ρs and ρ f are respectively the saltwater and
the freshwater density. If there exist N pumping wells
of discharge Qi, n = 1, . . . ,N, they can be represented as
Dirac delta functions δ, and the governing equation (3)
becomes

∇2φ =
N

∑
i=1

Qi

K
δ(x−xi

w) (4)

where K is the hydraulic conductivity, and xi
w is the

pumping well location.

For boundary conditions, there exist the physical condi-
tions of known piezometric head or flux on the external
boundary. On the interfaces between the hydraulic con-
ductivity zones, the following coupling conditions exist:

φ1 = φ2

K1
∂φ1

∂n1
= −K2

∂φ2

∂n2

(5)

where the subscripts 1 and 2 denote the two adjacent
zones. Equation (4) together with the boundary and in-
terface conditions forms a well-posed boundary value
problem that can be solved by an analytical or a numer-
ical method. After (4) is solved, the toe of the saltwater

wedge (Figure 1) is found at the location where the po-
tential φ takes the value φtoe given by

φtoe =
s(s−1)

2
d2 for unconfined aquifer

=
s−1

2
B2, for confined aquifer

(6)

3 Deterministic Boundary Element Method

To solve the above boundary value problem in arbitrary
aquifer geometry with multiple hydraulic conductivity
zones, a numerical solution tool is needed. The bound-
ary element method [Liu, et al., 1981; Taigbenu, et al.,
1984] is selected for this purpose. The boundary inte-
gral equation solving the governing equation (4) can be
represented as follows:

cφ =
∫

Γ

(
φ

∂G
∂n

−G
∂φ
∂n

)
dx+

1
2πK

N

∑
i=1

Qi lnri (7)

where ri =
√

(x−xi
w)2 +(y−yi

w)2, G = lnr/2π is the
free-space Green’s function, Γ is the solution boundary,
n is the outward normal of the boundary Γ, and c is
the jump constant of the singularity which is equal to
1/2 on a smooth part of the boundary. Equation (7) is
applied to each of the constant hydraulic conductivity
zones. The numerical solution procedure for solving this
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type of boundary integral equations, which includes the
discretization of boundary into elements, the interpola-
tion of discrete potential values using polynomial shape
functions, numerical integration of the kernel, the singu-
larity removal, the formation of a linear system of equa-
tions, etc., is well known, hence will not be elaborated
here.

4 Saltwater Front Tracking

Once the boundary integral equation (7) is solved to pro-
vide the full boundary and interface data, it can be uti-
lized to find the potential at any interior point by placing
the based point at that location. From the potential val-
ues found, it is necessary to trace the value φtoe in the
domain, which represents the trajectory of the saltwater
front. This is accomplished by the following optimiza-
tion procedure. Assume that the coastline is roughly par-
allel to the y-axis. A number of y = yi lines are drawn,
where yi are constants. On these lines, the x-coordinate
xi

toe where φ takes the value of φtoe is to be found. These
are the discrete locations of the saltwater front. The pro-
cess is formulated as a nonlinear optimization by mini-
mizing the objective function

F(x1,x2, . . .,xN) =
N

∑
i=1

[φ(xi,yi)−φtoe]
2 (8)

In the above φtoe is a known constant given by (6). Using
the Gauss-Marquardt method [Naji, et al., 1998b], the
objective function is minimized and the interface location
can be found.

5 Stochastic Solution by Perturbation

In real-world groundwater problems, the hydrological
and the hydrogeological input data, such as rainfall
recharge, hydraulic conductivity, freshwater outflow rate,
etc., are never certain. In the deterministic approach, the
estimated mean values are used as input data. The de-
terministic result produced is interpreted as the mean of
the output prediction. However, as the stochastic analysis
shows, the mean input does not necessarily produce the
mean output; also, the reliability of the prediction, hence
the risk, is not known. So it is more desirable to face the
random nature of the practical world and perform analy-
sis in the statistical space. In the stochastic analysis, the
input data are provided as the mean, the variance, and the
covariance; and the output prediction is likewise given.

Particularly, the question of reliability of prediction can
be addressed and risk assessment can be conducted.

There are a number of ways to solve stochastic prob-
lems. The most widely used technique is the perturbation
method. This technique assumes that the variation of a
random variable ζ about its mean ζ is relatively small.
Hence, given a function g that is dependent on the ran-
dom variables (ζ1,ζ2, . . .,ζm), we can expand it into a
Taylor series as

g(ζ1,ζ2, . . . ,ζm) = g(ζ1 +ζ′1,ζ2 +ζ′2, . . . ,ζm +ζ′m)

= g(ζ1,ζ2, . . . ,ζm)+
m

∑
i=1

∂g(ζ1,ζ2, . . . ,ζm)
∂ζi

ζ′i+

m

∑
i=1

m

∑
j=1

∂2g(ζ1,ζ2, . . .,ζm)

∂ζi∂ζ j

ζ′iζ
′
j + · · · (9)

where ζ′i = ζi −ζi is the fluctuation from the mean. Tak-
ing mean value of the above equation, we obtain

g(ζ1,ζ2, . . . ,ζm) ≈ g(ζ1,ζ2, . . . ,ζm)

+
m

∑
i=1

m

∑
j=1

∂2g(ζ1,ζ2, . . . ,ζm)
∂ζi∂ζ j

σζiζ j

(10)

where σζiζ j
is the covariance between the variables ζi and

ζ j, and when i = j the covariance becomes the variance
σ2

ζi
. Similarly, we can find the variance of the random

function g as [Cheng and Ouazar, 1995]

σ2
g(ζ1,ζ2, . . . ,ζm)

≈
m

∑
i=1

m

∑
j=1

∂g(ζ1,ζ2, . . . ,ζm)
∂ζi

∂g(ζ1,ζ2, . . . ,ζm)
∂ζ j

σζiζ j

(11)

Hence given the statistical information of the input pa-
rameters ζi and σζiζ j

, (10) and (11) allows the mean and
variance of the output, g and σ2

g, to be evaluated.

For the current problem, the random function g repre-
sents the n discrete saltwater front locations xi along
a set of rays y = yi. The random variables ζi

are the input parameters such as hydraulic conduc-
tivity K, freshwater outflow rate q, pumping rate Q,
etc. Hence we can express the random functions as
xi({K1,K2, . . .},{q1,q2, . . .},{Q1,Q2, . . .}). For each of
the input data, we are given its statistical moments such
as mean (K, q, Q), standard deviation (σ2

K , σ2
q, σ2

Q), and
covariance (σKq, σKQ, . . . ). Our goal is to find the solu-
tion, i.e., the saltwater front, in terms of mean xi and stan-
dard deviation σ2

xi
. Equations (10) and (11) are the ap-

proximation formulas that allow the evaluations of these
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statistical results via the perturbation of deterministic so-
lution.

6 Stochastic Boundary Element Method

The boundary element method introduced above is for
deterministic problems and needs to be modified to solve
stochastic problems. There are two ways to accomplish
this goal. One is to use the exact stochastic boundary
element method formulation which directly models and
solves for the mean, standard deviation, and covariances
of the prediction [Cheng and Lafe, 1991; Cheng, et al.,
1993]. However, the size of the solution system, which
is the square of the discrete unknowns for the covari-
ances involved, can be too large to be suitable for the
present applications. We hence adopt the perturbation
based methodology as described in the preceding section,
which provides an efficient, but approximate solution.

Equation (10) shows that the mean of saltwater front lo-
cation consists of two parts. The first part is obtained
from the conventional deterministic solution by using the
mean input parameters, K, q, Q, etc., in the determinis-
tic solution tool, such as the boundary element method
defined by (7). The second part needs the second deriva-
tives of the saltwater front location subjected to the vari-
ation of input parameters K, q, Q, etc. This is accom-
plished by small perturbations of input parameters and
the finite difference approximation. In other words, we
solve again the boundary value problem using the de-
terministic BEM, but with perturbed input data K ±∆K,
q±∆q, etc., to find the new saltwater front locations. The
second derivatives can be approximated by the central
difference formula such as the following

∂2xi(K,q,Q)

∂K
2 ≈

xi(K +∆K,q,Q)−2xi(K,q,Q)+xi(K−∆K,q,Q)
∆K2

(12)

Since the standard deviations and covariances, σ2
K , σ2

q,
σKq, etc., are provided data, (10) allows the evaluation of
the predicted mean location of saltwater front. Similarly
by utilizing (11) and the central difference for the first
derivative,

∂xi(K,q,Q)
∂K

≈ xi(K +∆K,q,Q)−xi(K −∆K,q,Q)
2∆K

(13)

the variances and covariances of the toe location can be
found [Naji, et al., 1999].

7 Pumping Optimization in Coastal Aquifer

The objectives and constraints of water management in
coastal regions can be quite complex. The goals can in-
clude maximizing the pumped volume of water, minimiz-
ing the utility cost as well as the capital investment, keep-
ing the salt concentration in water to a tolerable level,
spreading the risk of water shortage by the conjunctive
use of surface water and groundwater, and other qual-
ity management, resources allocation, economic devel-
opment, and policy decision objectives. To accomplish
these goals, there may exist constraints such as max-
imum pumping rate due to equipment capacity, mini-
mum pumping rate for cost effective operation, draw-
down limits due to land subsidence and pumping lift con-
cerns, prevention of intrusion of saltwater front into the
wells, avoiding irreversible damage to aquifers, and other
environmental, ecological, and social-economical con-
straints. In the current study, we focus on only a few
of the above objectives and constraints. Particularly, our
objective is to maximize the pumping rate from all wells
combined. This goal is constrained by the conditions that
each well has a minimum and maximum pumping limit,
and that no pumping wells can be invaded by the saltwa-
ter front.

The mathematical statement of optimization is given as
follows [Cheng et al., 2000]:

max
Qi

Z =
N

∑
i=1

Qi (14)

where Z is the objective function to be maximized with
respect to the design variables Qi, the pumping rate. The
constraints of the optimization are

xi
toe < xi

w; i = 1, . . .,N (15)

where xi
w is the distance of the well to the coast, and xi

toe
is the saltwater toe location in front of the well, and

Qmin ≤ Qi ≤ Qmax or Qi = 0 (16)

in which we notice that the last condition allows the wells
to be shut down.

Since most search methods work only in the uncon-
strained search space, the constrained optimization needs
to be transformed into an unconstrained one. This can be
accomplished by the penalty method. The constraint (15)
is incorporated into the objective function as a penalty

max
Qi

Z =
N

∑
i=1

Qi − r Hi(xi
toe −xi

w)
(

xi
toe

xi
w

−1

)2

(17)



90 Copyright c© 2005 Tech Science Press CMC, vol.2, no.1, pp.85-96, 2005

where r is a penalty factor, Hi is the Heaviside unit
step function, and Hi = 1 for xi

toe ≥ xi
w and Hi = 0 for

xi
toe < xi

w. The constraint (16) is not incorporated be-
cause it will be automatically satisfied in the genetic al-
gorithm optimization through the selection of the popu-
lation space as described below.

8 Chance-Constrained Optimization

As the current problem is of random nature, the optimiza-
tion needs to be conducted in the probability space. For
example, the deterministic constraint of no saltwater in-
trusion into the wells as described in (15) needs to be
modified to be a probabilistic constraint:

Prob(xi
toe < xi

w) > R (18)

which states that the probability of a well not being in-
truded is greater than a reliability level R.

Optimization in the probability space is a difficult task.
Often an approximation is sought using the determinis-
tic method. One popular method that allows this conver-
sion is the chance-constrained programming pioneered
by Charnes and Cooper [1959, 1963]. The chance-
constrained programming transforms a stochastic opti-
mization into a deterministic equivalent with reliability
measure incorporated as a decision variable. The deter-
ministic equivalent of (18) is then:

xi
toe +F−1(R)σxi

toe
< xi

w (19)

where xi
toe is the expectation of toe location and σxi

toe
is its

standard deviation, and F−1 is the value of standard nor-
mal cumulative probability distribution corresponding to
the reliability level R. The mean and standard devia-
tion of toe location can be computed using the stochastic
boundary element method as described above.

Similar to the deterministic optimization, it is necessary
to convert the constrained optimization into an uncon-
strained one. This is again accomplished by the penalty
method. Hence the stochastic optimization problem be-
comes:

max
Qi

Z =
n

∑
i=1

Qi − r Hi(xi
toe +F−1(R)σxi

toe
−xi

w)

(
xi

toe +F−1(R)σxi
toe

xi
w

−1

)2 (20)

9 Simple Genetic Algorithm

Genetic algorithm, first introduced by Holland [1975],
is an optimization technique based on natural evolu-
tion phenomena. It has been extensively used to solve
engineering design problems such as pipe network op-
timization, dynamic groundwater remediation manage-
ment, free surface flow, etc. [Ouazar and Cheng, 1999].
It has also been used to optimize saltwater intrusion prob-
lems [Cheng, et al., 2000; Cheng, et al., 2003, Park and
Aral, 2004].

The simple genetic algorithm works with a design family
consisting of a population of individuals. Each individual
of the population represents one trial case of the design
variables. In the present case, this is given by a selec-
tion of {Q1,Q2, . . .,Qn} taken from the population space
Qmin ≤ Qi ≤ Qmax. Each individual is regarded as a chro-
mosome and is coded into a binary string (0110 . . .01).
The length of the string is defined by the precision re-
quired to evaluate the corresponding design variables.
Within an evolutional iteration, three basic genetic op-
erators, known as selection, crossover, and mutation, are
applied to the family of individuals to produce stronger
offsprings. Starting with a random selection of an ini-
tial population, the fitness (objective function value) of
each individual (trial case) is computed. The solutions of
higher fitness values are considered as better parents who
receive higher priority to reproduce (selection) by a va-
riety of mating procedures (crossover). To allow for the
diversity of offsprings, and not to converge into an evo-
lutional dead end, the bits can be randomly flipped based
on certain probability for mutation. This procedure pro-
duces a generation of offsprings, which in turn becomes
the parents of another generation. The process continues
until a convergence is detected or a specified maximum
number of generation is reached. The reader is referred
to a textbook of genetic algorithm [Michalewicz, 1992]
for details of this optimization technique.

In the present application, 5 individuals are used to form
each generation, and each string of the chromosome is
represented using 15 binary bits. The selection algorithm
is the tournament scheme with a shuffling technique for
choosing random pairs for mating. The routines used
also include jump mutation, creep mutation, the options
for single-point or uniform crossover, niching, and an op-
tion for variable number of children per pair of parents.
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Figure 2 : Deterministic saltwater toe location for optimal pumping from one well at (1200m, -300m).

10 Numerical Examples

To demonstrate the feasibility of the above presented al-
gorithms, the procedure is tested on a fictitious aquifer.
We assume an unconfined aquifer of the horizontal di-
mension 2km×2km, as shown in Figure 2. The aquifer
has three hydraulic conductivity zones of K1 = 280
m/day, K2 = 140 m/day, and K3 = 70 m/day, as indicated
in the figure. Other input parameters include the freshwa-
ter and saltwater densities ρ f = 1.0 g/cm3 and ρs = 1.025
g/m3, and the mean sea level above the aquifer datum
d = 20 m (Figure 1b). The problem is defined by the fol-
lowing boundary conditions: the left side of the bound-
ary is the seashore with freshwater head h f = 20 m; the
right side boundary is maintained at a constant head of
h f = 21.6 m; and the top and bottom sides are assumed
to have no flow across the boundary, hence ∂h f /∂n = 0.
These conditions are converted to the Strack potential as
defined in (1) and expressed as

φ(0,y) = 0

φ(2000m,y) = 28.28m2

∂φ
∂n

(x,1000m) =
∂φ
∂n

(x,−1000m) = 0

(21)

Together with the Laplace equation (4), these define a
well-posed boundary value problem. The toe location

is represented by the equipotential line φ = φtoe = 5.125
m2, as defined in (6). The above aquifer, with a num-
ber of pumping wells deployed, is first solved as a deter-
ministic optimization problem, and then as a stochastic
optimization problem.

10.1 Deterministic Optimization Problem

In the first set of the examples, we assume that all input
data are given with certainty; hence the solution is de-
terministic. The first problem involves the optimization
of one pumping well located at (1200m,−300m). (See
Figure 2.) The solution procedure for this one well and
later multiple well problems is described as follows:

1. First, we start with the genetic algorithm by creating
a family of 5 trial cases. For each case, pumping
rate for each well is randomly selected within the
minimum and maximum pumping rate constraints.

2. By the desirable decimal precision, these pumping
rates are converted into binary codes for genetic op-
erations.

3. For each individual (trial case), the boundary value
problem defined by (4) and (21) is solved using the
boundary integral equation (7).
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4. Along rays perpendicular to the coastline and inter-
secting the wells, Gauss-Marquardt method is used
to find the toe location by searching the potential
value that equals to φtoe.

5. The “fitness” of each individual is assessed using
the objective function (17), which contains a penalty
if wells are invaded.

6. Once the fitness of the whole generation is evalu-
ated, the best solution so far is identified and stored.

7. Genetic operators, such as selection, crossover, and
mutation are applied to these “chromosomes” to
generate new offsprings.

8. Once the new family is formed, it loops back to the
solution procedure as described in step 2.

For the current one-well problem, the above procedure
produces the optimal discharge of Q = 594 m3/day. The
saltwater front location from this pumping is plotted in
Figure 2. For comparison, we also show the original salt-
water front due to the natural head difference without the
presence of pumping well. The effect of pumping in at-
tracting saltwater front to invade inland is clearly shown.

In the next case, we position the well to a new location
at (1200m,300m). (See Figure 3.) The well is now lo-
cated in front of the more permeable zone with K1 = 280
m/day, instead of K2 = 140 m/day as the previous case. In
this case, we obtain the optimal pumping rate of Q = 443
m3/day, which is a significant decrease from the previous
case. This reduction is anticipated as it is easier for salt-
water to move through the higher hydraulic conductivity
zone. The well in this case is less protected than the pre-
vious case; hence a smaller pumping rate is found. The
toe location is plotted in Figure 3.

Finally, we test the case with three pumping wells,
respectively located at (1100m,700m) for well 1,
(1300m,−200m) for well 2, and (1200m,−500m) for
well 3. (See Figure 4.) All wells are subject to the pump-
ing limits of Qmin = 100 m3/day and Qmax = 700 m3/day.
The optimal pumping pattern is found to be Q1 = 108
m3/day, Q2 = 512 m3/day, and Q3 = 250 m3/day. Fig-
ure 4 shows the resultant saltwater front. We observe
that for the two lower wells, well 2 is able to pump at a
higher rate than well 3 because it is farther away from
the sea. These two wells combine to give a pumping
of 762 m3/day, which is more than the single well case

represented in Figure 2. The upper well is able to add
another Q1 = 108 m3/day, which is much less than the
single well case shown as Figure 3. The total pumping
rate is 870 m3/day. So the three well system is more ef-
fective in producing freshwater from this aquifer than the
one well cases.

10.2 Stochastic Optimization Problem

In this section we consider cases with uncertain input
data. In reality, the hydraulic conductivity values pro-
vided cannot be certain, and should only be interpreted
as the estimated mean values; hence we assign the hy-
draulic conductivity for the three zones as K1 = 280
m/day, K2 = 140 m/day, and K3 = 70 m/day. The de-
gree of uncertainty needs to be quantified in order to pro-
duce results useful to managers. This can be described
by the coefficient of variation, which is set to 10% for
the current case. This value is translated into the stan-
dard deviations of σK1 = 28 m/day, σK2 = 14 m/day,
and σK3 = 7 m/day. We assume that there is no corre-
lation between the hydraulic conductivity zones; hence
σK1K2 , σK1K3 , . . . = 0. All other input parameters are as-
sumed to be deterministic. For the output, the manager
can set the reliability of prediction, which is chosen to be
90%, meaning that the chance of failure of prediction is
10%.

In the first example, we treat the same three well case
as reported in the preceding section, except that the hy-
draulic conductivities are uncertain with the data given
above. The solution procedure follows the same steps
of the deterministic case, except for these additions and
modifications:

4a. Step 4 is repeated by changing the hydraulic con-
ductivity data. The hydraulic conductivity is in-
creased, and then decreased by a small amount ∆K,
one at a time for each zone. For each change, the
new boundary value problem is solved and the salt-
water toe location is found.

4b. Equations (12) and (13) are utilized to find the first
and second derivatives of toe location subject to hy-
draulic conductivity changes.

4c. Equations (10) and (11) are used to find the mean
and the standard deviation of toe location, xi

toe and
σxi

toe
.
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5. The “fitness” of each individual is assessed using
the objective function (20).

In the genetic optimization procedure, we allow one more
level of sophistication: in addition to pumping between
the prescribed minimum and maximum rates, wells are
allowed to shut down, and the saltwater front is permitted
to invade the inactive wells. Shutting down wells nearer
to the coast can allow other wells to pump more, if their
maximum capacities have not been reached. The total
pumped water can be more than the case that all wells are
pumping. To allow for this option, the genetic algorithm
is modified by adding a random bit (0 or 1) at the end
of each substrings in the chromosome. The value of this
added bit, with certain probability, decides whether the
well is turned on or off. For the objective function, if an
inactive well is invaded, no penalty is imposed.

For the stochastic optimization cases, the pumping rate
constraints are set to be Qmin = 150 m3/day and Qmax =
700 m3/day. The optimal solution from genetic algorithm
indicates that well 1 is shut down and only two wells are
pumping. (See Figure 5.) The pumping rates are Q1 = 0,
Q2 = 571 m3/day, and Q3 = 250 m3/day. We notice that
well 2 is allowed to pump more than that in the determin-
istic case, despite the added reliability constraint. This is
likely to be the consequence of the shutting down of well
1. The total pumping is 821 m3/day, which is less than
the deterministic case, as expected. (The deterministic
case can be roughly viewed as the case of 50% relia-
bility. The higher the required reliability, the lower the
pumping rate.) Figure 5 shows the mean saltwater front
location from the suggested pumping rates. Also shown
in the figure are the 90% reliability envelopes from the
uncertainty analysis.

The second example treated has 5 pumping wells, located
at: well 1 (1100m,700m), well 2 (1300m,−200m),
well 3 (1200m,−500m), well 4 (1800m,100m), and
well 5 (1300m,300m). (See Figure 6.) The coefficient
of variation for hydraulic conductivities is increased to
20%. Other parameters are the same as the above three
well case. The result of the optimization again shows that
well 1 is shut down, and the optimal pumping rates are:
Q1 = 0, Q2 = 313 m3/day, Q3 = 184 m3/day, Q4 = 696
m3/day, and Q5 = 269 m3/day. As compared to the three
well case, we observe that wells 2 and 3 are pumped
much less. But the two new wells 4 and 5 provide ex-
tra pumping. Particularly well 4, being farthest from the

sea and placed in a gap between other wells, is able to
pump at a rather large rate. The total pumping rate is
1462 m3/day, which is significantly larger than the three
well case. Figure 6 gives the mean and the 90% reliabil-
ity saltwater front locations based on the optimal pump-
ing rate.

11 Conclusion

In this paper we used a number of advanced techniques,
including the stochastic boundary element method,
chance-constrained programming, and the genetic al-
gorithm to solve problems of pumping optimization in
coastal aquifers containing multiple hydraulic conductiv-
ity zones with uncertain data input. The output is pre-
sented as a reliability analysis, which is most useful to
the water managers and decision makers. The stochastic
analysis shows that if the input data has high degree of
uncertainty, the allowable pumping rate must be reduced
to ensure the same level of reliability in the prediction. If
a high degree of reliability is demanded by the manager,
the pumping rate must also be lowered. These trends can
be interpreted the other way around. If money can be
invested in hydrological and hydrogeological investiga-
tions to reduce the uncertainty, then higher pumping rate
is allowed. Or, if there exist alternative water resources in
case of prediction failure, then the reliability demand can
be lessened, and more water can be produced from the
aquifers. As the water shortage becomes more and more
severe in many parts of the world, this type of simulation
capability as developed in this paper can assist the soci-
ety to achieve the most effective use of the valuable water
resources and to have a sustainable living environment.
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