
Copyright c© 2005 Tech Science Press CMC, vol.2, no.1, pp.77-83, 2005

Application of Diffuse Approximate Method in Convective-Diffusive Solidification
Problems

B. Šarler1 and R.Vertnik, J. Perko1

Abstract: The steady-state convective-diffusive solid-
liquid phase change problem associated with tempera-
ture fields in direct-chill, semi-continuously cast billets
and slabs from aluminum alloys has been solved by the
Diffuse Approximate Method (DAM). The solution is
based on formulation, which incorporates the mixture
continuum physical model, nine-noded support, second
order polynomial trial functions, and Gaussian window
weighting functions. Realistic boundary conditions and
temperature variation of material properties are included.
Two-dimensional test case solution is shown, verified by
comparison with the Finite Volume Method (FVM) re-
sults for coarse and fine grid arrangement.

1 Introduction

Direct-chill (DC) casting is currently the most common
[Altenpohl (1998)] semi-continuous casting practice in
production of aluminum alloys. The process involves
molten metal being feed through a bottomless water-
cooled mould where it is sufficiently solidified around
the outer surface that it takes the shape of the mould
and acquires sufficient mechanical strength to contain the
molten core at the center. As the strand emerges from
the mould, water impinges directly from the mould onto
the surface (direct-chill), falls over the cast surface and
completes the solidification. Related transport, solid-
mechanics, and phase change kinetics phenomena are ex-
tensively studied [Beckermann (2002)] and many differ-
ent numerical methods have been used in the past to solve
the transport phenomena in the casting. The proper pre-
diction of the temperature, velocity, species, and phase
fields in the product is one of the prerequisites for au-
tomation of the process and related optimization with re-
spect to its quality and productivity. The FVM repre-
sents one of the most widely used techniques [Versteeg
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and Malalasekera (1995), Atluri, Han, and Rajendran
(2004)] for solving the discussed problem. Even when
using this classical numerical method in involved cou-
pled transport phenomena context, i.e. prediction of the
macrosegregation, several not sufficiently understood it-
eration scheme issues [Venneker and Katgerman (2002)]
surprisingly appear. Several mesh-reduction techniques
such as the Boundary Element Method (BEM) have been
used in the past to solve the heat transfer in respec-
tive DC casting model. The use of classical BEM in
the two-domain context of solidification has been devel-
oped in [Fic, Nowak, and Bialecki (2000)]. The use of
Dual Reciprocity Boundary Element Method (DRBEM)
in the framework of the one-domain context has been de-
veloped in [Šarler and Mencinger (1999)]. The use of
Radial Basis Function Collocation Method (RBFCM) in
present context has been pioneered in [Šarler, Kovačević
and Chen (2003)]. In this paper, the DAM [Nayroles,
Touzot, and Villon (1991); Sadat and Prax (1996)] is up-
graded to nonlinear convective-diffusive transport phe-
nomena problems with nonlinear material properties and
phase change, and applied to the posed industrial prob-
lem. The present research has been incited by the need
for straightforward numerical resolution refinement in ar-
eas with high gradients and difficulties in application of
the FVM in macrosegregation problems.

2 Governing Equations

The heat transfer in DC casting can be reasonably rep-
resented in the framework of the mixture continuum for-
mulation [Bennon and Incropera (1987)] which assumes
local thermodynamic equilibrium between the phases.
This formulation can in solidification context involve
quite complicated constitutive relations. This paper fo-
cuses on convective-diffusive heat transport. Consider a
connected fixed domain Ω with boundary Γ occupied by
a phase change material described with the temperature
dependent density ρ℘ of the phase ℘, temperature de-
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pendent specific heat at constant pressure c℘, effective
thermal conductivity k, and the specific latent heat of the
solid-liquid phase change hm. The mixture continuum
formulation of the enthalpy conservation for the assumed
system is

∂
∂t

(ρh)+∇ · (ρ�vh) = ∇ · (k∇T )

+∇ · (ρ�vh− fV
S ρS�vShS − fV

L ρL�vLhL
)

(1)

with subscripts S and L denoting the solid and the liquid
phase, respectively. The mixture density is defined as
ρ = fV

S ρS + fV
L ρL, the mixture velocity is defined as ρ�v =

fV
S ρS�vS + fV

L ρL�vL, and the mixture enthalpy is defined as
h = fV

S hS + fV
L hL. The constitutive mixture temperature

- mixture enthalpy relationships are

hS =
∫ T

Tre f

cSdT hL = hS (T )+
∫ T

TS

(cL −cS)dT +hm (2)

with Tre f and TS standing for the reference temperature
and solidus temperature, respectively. Thermal conduc-
tivity and specific heat of the phases can arbitrarily de-
pend on temperature. The liquid volume fraction fV

L is
assumed to vary from 0 to 1 between solidus TS and liq-
uidus temperature TL. We seek for mixture temperature
at time t0 + ∆t by assuming known temperature and ve-
locity fields at time t0, and boundary conditions.

3 Solution Procedure

The solution of the problem is demonstrated on the gen-
eral transport equation defined on a fixed domain Ω with
boundary Γ, standing for a reasonably broad spectra of
mass, energy, momentum and species transfer problems
(and includes also equation (1) as a special case).

∂
∂t

[ρC (Φ)]+∇ · [ρ�vC (Φ)] = −∇ · (−D∇Φ)+S (3)

with ρ,Φ, t,�v,D, and S standing for density, transport
variable, time, velocity, diffusion matrix and source, re-
spectively. Scalar function C stands for possible more in-
volved constitutive relations between conserved and dif-
fused quantities. The solution of the governing equa-
tion for the transport variable at the final time t0 + ∆t
is sought, where t0 represents the initial time and ∆t

the positive time increment. The solution is constructed
by the initial and boundary conditions that follow. The
initial value of the transport variable Φ (�p, t) at point
with position vector �p and time t0 is defined through the
known function Φ0

Φ (�p, t) = Φ0 (�p) ; p ∈ Ω+Γ (4)

The boundary Γ is divided into not necessarily connected
parts Γ = ΓD ∪ ΓN ∪ ΓR with Dirichlet, Neumann and
Robin type boundary conditions, respectively. These
boundary conditions are at the boundary point �p with
normal �nΓ and time t0 < t ≤ t0 + ∆t defined through
known functions ΦD

Γ , ΦR
Γ, ΦR

Γre f

Φ = ΦD
Γ ; �p ∈ ΓD

∂
∂nΓ

Φ = ΦN
Γ ; p ∈ ΓN

∂
∂nΓ

Φ = ΦR
Γ
(
Φ−ΦR

Γre f

)
; p ∈ ΓR (5)

The involved parameters of the governing equation and
boundary conditions are assumed to depend on the trans-
port variable, space and time. The solution procedure
is in this paper based on the combined explicit-implicit
scheme. The discretisation in time can be written as

∂
∂t

(ρC (Φ)) ≈ ρC−ρ0C0

∆t

≈ ρC +ρ dC
dΦ

(
Φ−Φ

)−ρ0C0

∆t
(6)

by using the two-level time discretisation and Taylor ex-
pansion of the function C (Φ). The known quantities are
denoted with overbar. The source term can be expanded
as

S(Φ)≈ S +
dS
dΦ

(
Φ−Φ

)
(7)

The unknown Φ can be calculated from the equation

Φ = [
ρ0

∆t
C0 − ρ

∆t
C +

ρ
∆t

dC
dΦ

Φ+∇ · (D0∇Φ0)

−∇ · (ρ0�v0C0)+S− dS
dΦ

Φ]/[
ρ
∆t

dC
dΦ

− dS
dΦ

] (8)
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The value of the transport variable Φn is solved in a set
of nodes �pn;n = 1,2, ...,N of which NΩ belong to the do-
main and NΓ to the boundary. The iterations over one
timestep are completed when the equation (9) left is sat-
isfied, and the steady-state is achieved when the equation
(9) right is achieved

max
∣∣Φn −Φn

∣∣ ≤ Φitr max |Φn−Φ0| ≤ Φste (9)

The value of the unknown derivatives of the variable
Φn in point �pn is approximated by the moving least
squares method which uses the values of Φi at I points
�pi; i = 1,2, ..., I, situated in the vicinity of and including
�pn. One can write the following approximation of the
function and its first and second order partial derivatives

Φ (�p) ≈∑K
k=1 nαkψk (�p−�pn) (10)

∂
∂pς

Φ (�p) ≈∑K
k=1 nαk

∂
∂pς

ψk (�p−�pn) (11)

∂2

∂pςξ
Φ (�p) ≈∑K

k=1 nαk
∂2

∂pςξ
ψk (�p−�pn) ; ς,ξ = x,y;

(12)

Functions ψk have been chosen as polynomials
ψ1 = 1, ψ2 (�p) = px, ψ3 = py, ψ4 (�p) =
px py, ψ5 (�p) = p2

x , ψ6 = p2
y , i.e. K = 6. The

initial conditions are assumed to be known in all nodes
�pn. The coefficients nαk can be calculated from the
minimization of the following functional

ℑ(n�α) =
I

∑
i=1

ϒΩiωn (�pi −�pn)
[
Φi −∑K

k=1 nαkψk (�pi −�pn)
]2

+
I

∑
i=1

ϒD
Γiωn (�pi −�pn)

[
ΦD

Γi −∑K
k=1 nαkψk (�pi −�pn)

]2

+
I

∑
i=1

ϒN
Γiωn (�pi −�pn)

[
ΦN

Γi −∑K
k=1 nαk

∂
∂nΓ

ψk (�pi −�pn)
]2

+
I

∑
i=1

ϒR
Γiωn (�pi −�pn)

[ΦR
Γi

(
∑K

k=1 nαkψk (�pi −�pn)−ΦR
Γre f i

)

−∑K
k=1 nαk

∂
∂nΓ

ψk (�pi −�pn)]2 (13)

This leads to the following system of K ×K equations
for calculation of the unknown coefficients nαk in each
of the points �pn

∑K
k=1 nA jknαk = nb j; j = 1,2, ...,K (14)

nA jk =
I

∑
i=1

ϒΩiψ j (�pi −�pn)ωn (�pi −�pn)ψk (�pi −�pn)

+
I

∑
i=1

ϒD
Γiψ j (�pi −�pn) ωn (�pi −�pn)ψk (�pi −�pn)

+
I

∑
i=1

ϒN
Γi

∂
∂nΓ

ψ j (�pi −�pn)ωn (�pi −�pn)
∂

∂nΓ
ψk (�pi −�pn)

+
I

∑
i=1

ϒR
Γi

(
ΦR

Γre f iψ j (�pi −�pn)+
∂

∂nΓ
ψ j (�pi −�pn)

)
ωn

· (�pi −�pn)
(

ΦR
Γre f iψk (�pi −�pn)+

∂
∂nΓ

ψk (�pi −�pn)
)

(15)

nb j =
I

∑
i=1

ϒΩiψ j (�pi −�pn)ωn (�pi −�pn)Φi +

I

∑
i=1

ϒD
Γiψ j (�pi −�pn) ωn (�pi −�pn)ΦD

Γi

+
I

∑
i=1

ϒN
Γi

∂
∂nΓ

ψ j (�pi −�pn)ωn (�pi −�pn)ΦN
Γi

+
I

∑
i=1

ϒR
Γi[

(
ΦR

Γi

)2 ΦR
Γre f iψ j (�pi −�pn)+

ΦR
ΓiΦ

R
Γre f i

∂
∂nΓ

ψ j (�pi −�pn)]ωn (�pi −�pn) (16)

The following point condition indicators have been used
in equations (13,14,15,16)

ϒD
Ωi =

{
1;�p ∈ Ω
0;�p /∈ Ω ϒD

Γi =
{

1;�p ∈ ΓD

0;�p /∈ ΓD

ϒN
Γi =

{
1;�p ∈ ΓN

0;�p /∈ ΓN ϒR
Γi =

{
1;�p ∈ ΓR

0;�p /∈ ΓR (17)

The following weighting function has been chosen

ωn (�p) = exp
(−cn�p ·�p/σ2

n

)
; |�p| ≤ σn;

ωn (�p) = 0; |�p| > σn (18)
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according with the recommendations from [Sadat and
Prax (1996)] with cn = 7. The size of support σn is cho-
sen to contain 9 nodes. The calculation over one timestep
involves the following operations: I) coefficients nαk are
calculated from initial conditions in the domain nodes
from system (14), II) Equation (8) is used to calculate
unknowns in the domain nodes at t0 + ∆t, III) unknowns
at the Dirichlet boundary at time t0 + ∆t are determined
from the Dirichlet boundary conditions, IV) nαk at time
t0 + ∆t are calculated in the domain nodes from system
(14), V) finally, the unknowns at time t0 +∆t in the Neu-
mann and Robin boundary points are determined from
equation (10) by extrapolation from the nearest domain
node.

4 Numerical Example

This section elaborates the solution of a simplified model
of the DC casting process by the developed DAM in two
dimensions. The steady state solution is shown in this
paper, approached by a false transient calculation using
a fixed timestep of 0.5s for uniform 125× 25 node ar-
rangement and 0.1s for uniform 250×50 node arrange-
ment. The temperature iteration error Titr has been set
to 0.001K and the steady state criterion Tste to 0.01K.
The enthalpy reference temperature Tre f has been set to
0K. The following simplified DC casting case is con-
sidered. The computational domain is a rectangle (coor-
dinates px, py) −1.25m ≤ px ≤ 0m, 0m ≤ py ≤ 0.25m.
The boundary conditions on the top at px = 0m are
of the Dirichlet type with T D

Γ = 980K, and the bound-
ary conditions at the bottom at px = −1.25m are of
the Neumann type with FN

Γ = 0W/m2. The boundary
conditions at the outer surface are of the Robin type
with T R

Γre f = 298K. The heat transfer coefficients be-
tween 0m ≤ px ≤ −0.01m, −0.01m < px ≤ −0.06m,
−0.06m < px ≤−0.1m, and −0.1m < px ≤−1.25m, are
T R

Γ = 0W/m2K, T R
Γ = 3000W/m2K, T R

Γ = 150W/m2K,
and T R

Γ = 4000W/m2K, respectively. Material proper-
ties correspond to a simplified Al4.5%Cu alloy [Šarler
and Mencinger (1999)]: ρS = ρL = 2982kg/m3, kS =
120.7W/mK, kL = 57.3W/mK, k = fV

S kS + fV
L kL, cS =

1032W/mK, cL = 1179W/mK, hM = 348.2kJ/kgK, TS =
775K, TL = 911K. The liquid fraction increases linearly
between TS and TL. The initial temperature grows lin-
early with the px coordinate from 298K at the bottom to
980Kat the top of the slab. The uniform casting veloc-
ity is vSx = vLx = −0.000633m/s, vSy = vLy = 0m/s. The

DAM solution has been obtained on equidistant 125×25
and 250×50 node arrangements. The calculated results
for 125×25 node arrangement are shown in Figure 1, to-
gether with the reference FVM results, calculated in the
same nodes. Visual comparison of the results on finer
grid arrangement 250×50 shows no difference between
the two methods. Absolute difference for the coarse grid
are shown in Figure 2 and for the fine grid in Figure 3.
The DAM calculation requires approximately five times
more CPU time than the FVM calculation. By compar-
ing the difference between the two methods in Figure 2
and Figure 3 one can observe the convergence of both
methods towards the same results.

5 Conclusions

The present paper demonstrates the successful use of the
DAM for numerical evaluation of a physical model that
could be previously efficiently solved only by more es-
tablished numerical methods. It probably represents the
first industrial use of this type of mesh-free method for
solving convective-diffusive solid-liquid phase change
problems with temperature dependent material properties
and complex boundary conditions. All types of techni-
cally relevant boundary conditions have been introduced
in a systematic way. The accuracy of the method is
similar to the FVM. When compared with other mesh-
free methods used in present context one can conclude:
The method can cope with physically more involved sit-
uations than the front tracking BEM [Fic, Nowak and
Bialecki (2000)], where the calculations are limited to
a uniform velocity field, constant material properties of
the phases, and isothermal phase-change. When com-
pared with the DRBEM [Šarler and Mencinger (1999)],
the method does not need any integrations and boundary
polygonisation. The method appears much more efficient
as the RBFCM [Šarler, Kovačević and Chen (2003)], be-
cause it does not require a solution of the large systems
of equations. Instead, small (in our case 6x6) systems of
linear equations have to be solved in each timestep for
each node. The method is going to be used in coupled
transport phenomena context in our future work.
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Figure 1 : Calculated temperature distribution in the slab for 125x25 node arrangement. Solid curve: FVM, dashed
curve: DAM. Upper curve – centerline, center curve – mid thickness, and lower curve – surface temperature.

Figure 2 : Absolute difference between the FVM and DAM solutions for 125x25 node arrangement. Dashed curve
– surface temperature, dotted curve – mid-thickness temperature, and dot-dashed curve – centerline temperature.
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Figure 3 : Absolute difference between the FVM and DAM solutions for 250x50 node arrangement. Dashed curve
– surface temperature, dotted curve – mid-thickness temperature, and dot-dashed curve – centerline temperature.

Continuous Casting. The present paper forms a part of
the EU project COST-526: APOMAT, and US National
Research Council project COBASE.

References

Altenpohl, D. G. (1998): Aluminum: Technology, Appli-
cations, and Environment: A profile of a Modern Metal,
Aluminium Association & TMS.

Atluri, S. N.; Han, Z. D.; Rajendran, A. M. (2004):
A new implementation of the meshless finite volume
method, through the MLPG “mixed” approach. CMES:
Computer Modeling in Engineering & Sciences, vol. 6,
no. 6, 491–514.

Beckermann, C. (2002): Modeling of Macrosegrega-
tion: Applications and Future Needs. International
Matarials Reviews, Vol. 47, pp. 243-261.

Bennon, W. D.; Incropera, F. P. (1987): A Contin-
uum Model for Momentum, Heat and Species Transport
in Binary Solid-Liquid Phase Change Systems- I. Formu-
lation. International Journal of Heat and Mass Transer,
Vol. 30, pp. 2161-2170.

Fic, A.; Nowak, A. J.; Bialecki, R. (2000): Heat Trans-
fer Analysis of the Continuous Casting Process by the
Front Tracking BEM. Engineering Analysis with Bound-
ary Elements, Vol. 24, pp. 215-223.

Nayroles, B.; Touzot, G.; Villon, P. (1991): The Diffuse
Approximation. C.R.Acad.Sci.Paris, , Vol. 313-II, pp.
293-296.

Sadat, H.; Prax, C. (1996): Application of the Diffuse
Approximation for Solving Fluid Flow and Heat Trans-
fer Problems. International Journal of Heat and Mass
Transer, Vol. 39, pp. 214-218.
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