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Benchmark Solutions for Three-Dimensional Transient Heat Transfer in
Two-Dimensional Environments Via the Time Fourier Transform
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Abstract: The evaluation of heat propagation in the
time domain generated by transient heat sources placed
in the presence of three-dimensional media requires the
use of computationally demanding numerical schemes.
The implementation of numerical 3D solutions may ben-
efit from the existence of benchmark solutions to test the
accuracy of approximate schemes.

With this purpose in mind, this article presents analytical-
numerical solutions to evaluate the heat-field elicited by
monopole heat sources in the presence of three differ-
ent inclusions, namely, a cylindrical circular solid inclu-
sion, a cylindrical circular cavity with null fluxes and a
cavity with null temperatures prescribed along its bound-
ary, buried in an unbounded medium. The problem is
first subjected to a time and space Fourier Transform,
which allows the solution to be obtained in the frequency
domain as summation of 2D solutions for different spa-
tial wavenumbers. Then, using the inverse Fourier trans-
forms in the wavenumber and frequency domains, the 3D
time responses are synthesized. Complex frequencies are
used to avoid the aliasing phenomena.

This methodology is first validated calculating the funda-
mental time solutions for one, two and three dimensions
in an unbounded medium. Simulation analyses of these
idealized models are then used to study the patterns of
heat propagation in the vicinity of the inclusions.

1 Introduction

The propagation of heat through inclusions and irregu-
lar boundaries is a fundamental problem in many fields,
including the thermal engineering, building physics, and
non-destructive testing. In some of these areas, interest
is usually focused on the inverse problem: as heat travels
through a medium with spatially varying thermal prop-
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erties, its propagation varies giving rise to reflected heat
fields. These variations are recorded by appropriately lo-
cated receptors and the problem is how to use features
of the records to infer the structure and properties of the
medium.

For inclusions with simple geometry, for example
spheres, the solution of the heat diffusion equation can
be obtained by separation of variables. The same tech-
nique does not work for anisotropic and inhomogeneous
media, for which the solution to the heat equation is also
much more difficult to obtain computationally. The Fi-
nite Differences and Finite Element Methods require full
discretization of the space under consideration and are
computationally demanding. Approaches using Bound-
ary Elements reduce the computational effort, since they
require discretization only of the surfaces along ma-
terial discontinuities. However, the solution of three-
dimensional transient heat problems is still hard to im-
plement and remains computationally demanding.

The solution becomes much simpler if the medium is
two-dimensional (2D), even if the heat source remains
three-dimensional (3D), for example a point. The solu-
tion can be obtained by means of a temporal and spatial
Fourier transform in the direction in which the geome-
try does not vary. This involves solving a sequence of
2D problems with different spatial wavenumbers, kz, and
frequencies. Then, using the inverse Fourier transforms,
in the frequency and kz wavenumber domain, the 3D field
in the time domain can be synthesized.

This method is practical for inclusions whose geometry
is simple, such as circular cylinder, for which the equa-
tion is separable. The solution at each frequency is ex-
pressed in terms of heat terms with varying wavenumber
kz, (with z being the cylindrical axis), which is subse-
quently Fourier-transformed into the spatial domain. The
wavenumber transform in discrete form is obtained by
considering an infinite number of virtual point sources
equally spaced along the z axis, at a sufficient distance
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from each other to avoid spatial contamination (e.g. Bou-
chon and Aki (1977), Tadeu, Antonio and Simoes(2004).
The analysis uses complex frequencies to avoid the alias-
ing phenomenon and to minimize the influence of the
neighboring fictitious sources (e.g. Phinney (1965)).

In this work the exact solution is used to obtain the heat
generated by monopole heat sources as they illuminate
cylindrical inclusions buried in an unbounded medium.
Three different inclusions are used, namely a cylindrical
inclusion, a cavity with null fluxes and a cavity for which
null temperatures are prescribed along its boundary.

A short presentation of the three-dimensional problem
formulation is given in the next section of this article.
First, the analytical solutions used to compute the fre-
quency domain responses are described, followed by the
details of the procedure used to obtain time domain re-
sults. The present expressions are validated by compar-
ing the results obtained for one, two and three dimen-
sional heat sources in an unbounded medium with those
given by analytical fundamental solutions in the time do-
main. To conclude, a selection of numerical examples is
presented, to show the main aspects of the heat propaga-
tion.

2 3D problem formulation

The transient heat conduction in solids can be described
by the diffusion equation

∇2T =
1
K

∂T
∂t

(1)

where ∇2 =
(

∂2

∂r2 + 1
r

∂
∂r + 1

r2
∂2

∂θ2 + ∂2

∂z2

)
, r =

√
x2 +y2,

θ is the azimuth, t is time, T (t, r,θ, z) is temperature,
K = k

ρ c is the thermal diffusivity, k is the thermal con-
ductivity, ρ is the density and c is the specific heat.
Fourier transforming the time domain expression gives
the Helmholtz equation in the frequency domain

⎛
⎝∇2 +

(√
−iω

K

)2
⎞
⎠ T̂ (ω, r,θ, z) = 0 (2)

where i =
√−1 and ω is the frequency. Eq. (2) is anal-

ogous to the one used to solve acoustic problems where

ω
/
(velocity o f pressure waves) corresponds to

√
−iω

K in
the diffusion equation. In this way, the transient heat

propagation solution can be understood as a propagation
of heat waves.

Eq. (2) can be solved for a heat point source
(p(x,y, z, t) = δ(x)δ(y)δ(z)ei(ωt) where δ(x), δ(y) and
δ(z) are Dirac-delta functions) in an unbounded medium,
located at the origin of the coordinate system, to give the
fundamental solution

T̂f (ω, r,θ, z)=
1

2k
√

r2 + z2
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√
iω
K

√
r2+z2

(3)

The computation of 3D problems is, in many cases, very
costly in terms of computer effort. If the geometry of the
problem remains constant along one direction (z) the so-
lution becomes simpler, expressing the full 3D problem
as a summation of 2D solutions with different spatial kz

wavenumbers (e.g. Tadeu and Kausel (2000)). This is
implemented applying a Fourier transformation along the
z direction. Applying this procedure to equation (2) leads
to the following equation⎛
⎝∇̃2 +

(√
−iω

K
− (kz)

2

)2
⎞
⎠ T̃ (ω, r,θ,kz) = 0 (4)

with ∇̃2 =
(

∂2

∂r2 + 1
r

∂
∂r + 1

r2
∂2

∂θ2

)
.

The fundamental solution of this equation is in turn ob-
tained by applying a spatial Fourier transform in the z
direction to the fundamental solution equation for a heat
point source (Eq.(3)),

T̃f (ω, r,θ,kz) =
−i
4k

H0

(√
−iω

K
− (kz)

2 r

)
(5)

where Hn () are Hankel functions of the second kind and
order n. This equation can be interpreted as the re-
sponse to a spatially varying heat line source of the form
p(x,y, z, t) = δ(x)δ(y)ei(ωt−kzz) (see Fig. 1).

The full three-dimensional solution is synthesized apply-
ing an inverse Fourier transform along the kz direction.
The inverse Fourier transformation can be written as a
discrete summation, if one assumes the existence of vir-
tual sources equally spaced, L, along z. The solution can
thus be obtained by solving a limited number of two-
dimensional problems.

T̂ (ω, r,θ, z)=
2π
L

M

∑
m=−M

T̃ (ω, r,θ,kzm)e−ikzmz (6)
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Figure 1 : Spatially harmonic varying line load.

with kzm being the axial wavenumber given by kzm =
2π
L m. The distance L must be large enough to avoid

spatial contamination from the virtual sources [Bouchon
and Aki (1977)]. An analogous technique has been used
by the authors to study wave propagation inside seis-
mic prospecting boreholes [Tadeu, Godinho, and Santos
(2002)] and the outdoor propagation of sound waves in
the presence of obstacles [Godinho, António, and Tadeu
(2001)].

These equations can be written as a continuous superpo-
sition of heat plane sources. Eq. (5) is then rendered by
the expression,

T̃f (ω,x,y,kz) =
−i

4π k

+∞∫
−∞

(
e−iν|y−y0|

ν

)
e−ikx(x−x0)dkx (7)

where ν =
√

−iω
K −k2

z −k2
x with (Im(ν) ≤ 0), and the

integration is performed with respect to the horizontal
wavenumber (kx) along the x direction.

This integral is transformed into a summation by using
an infinite number of sources distributed along the x di-
rection, at equal intervals Lx. The above equation can
then be written as

T̃f (ω,x,y,kz) = E0

n=+∞

∑
n=−∞

(
E
νn

)
Ed (8)

where E0 = −i
2kLx

, E = e−iνn|y−y0|, Ed = e−ikx n(x−x0), νn =√
−iω

K −k2
z −k2

xn with (Im(νn) ≤ 0), kxn = 2π
Lx

n,

which can in turn be approximated by a finite sum of
equations (N).

Notice that kz = 0 corresponds to the two-dimensional
case.

3 Validation of the spatial and time Fourier trans-
formation

The procedure described in the previous section was im-
plemented and validated by applying it to the calculation
of the one, two and three-dimensional fundamental so-
lutions for a unit heat source placed in an unbounded
medium in the time domain. The exact solution of Eq.
(1) in an unbounded medium in the time domain, when
a unit heat source is applied at point (x0,y0, z0) at time
t = t0, is

T (t,x,y, z)=
1

ρc(4πKτ)d/2
e

(
− r2

00
4Kτ

)
if t > t0 (9)

where τ = t − t0, r00 is the distance between the source
point and the field point (x,y, z), and d = 3, d = 2 and
d = 1 when in the presence of a three, two and one-
dimensional problem, respectively [Carslaw and Jaeger
(1959)].

The results obtained with Eq. (9) for a unit heat source,
are compared with those given above: for a plane source
(d = 1), ascribing kz = 0 and kxn = 0 to Eq. (8); for
a cylindrical source (d = 2), using Eq. (5), ascribing
kz = 0 multiplied by Lx, and spherical (d = 3) calcu-
lated using Eq. (3), divided by 2π. The thermal material
properties ascribed to the homogeneous unbounded solid
medium used in this validation are k = 63.9W.m−1.oC−1,
c = 434.0 J.Kg−1.oC−1 and ρ = 7832.0Kg.m−3. At
time t = 2.78h, a unit heat source is excited at (x =
0.0 m,y = 0.0m, z = 0.0 m). Fig. 3 displays the temper-
ature computed along a line of 40 receivers placed from
y = −1.5 m to y = 1.5 m, (see Fig. 2) for a plane, cylin-
drical and spherical unit heat source, at different times.

Computations are performed in the frequency range
[0,1024x10−5 Hz] with a frequency increment of ∆ω =
10−5 Hz, which defines a time window of T = 27.78h.

Complex frequencies of the form ωc = ω−0.7i∆ω have
been used to avoid the aliasing phenomenon. In Fig. 3
the marks represent the response computed using the pro-
posed Green’s functions, and the solid line displays the
solution given by Eq. (9). The agreement between these
two solutions is excellent.
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Figure 2 : Geometry of the problem.

4 Analytical solution

4.1 Solid inclusion

Consider first a spatially uniform solid medium (1) of
infinite extent (with a thermal conductivity k1, a den-
sity ρ1 and a specific heat c1), having buried within it
a cylindrical inclusion (2) (with a thermal conductivity
k2, a density ρ2 and a specific heat c2), with radius a.
This is subjected to a harmonic monopole heat source at
an off-center position (x0, 0, 0), placed in the exterior
medium, oscillating with a frequency ω as illustrated in
Fig. 1. The heat diffusion generated by this source prop-
agates and hits the surface of the buried inclusion. After
reaching the outer surface of the inclusion, part of the in-
cident heat energy is reflected back to the exterior solid
medium, and the remaining energy is transmitted into the
solid material inclusion.

Incident heat field (or free-field)

The three dimensional incident field generated by a
monopole heat source, placed at (x0,0,0), outside the in-
clusion, satisfies Eq. (2), and can be expressed as

T̂inc(ω, r′) =
A

2k1 r′
e
−
√

iω
K1

r′
with

r′ =
√

(x−x0)
2 +y2 + z2 (10)

where the subscript inc denotes the incident field, A is the
heat amplitude, K1 = k1

ρ1 c1
and r′ defines the distance be-

tween the source and the receiver. When a Fourier trans-
formation is applied along the z direction, the incident
field can be expressed as a summation of 2D sources,
with different spatial wavenumbers,

T̂inc(ω, r′) =
2π
L

M

∑
m=−M

T̃inc(ω, r,kzm)e−ikzmz (11)

with T̃inc(ω, r,kzm) = −iA
4k1

H0

(
kα1 r

′′
)

, r′′ =√
(x−x0)

2 +y2 and kα1 =
√

−iω
K1

− (kzm)2.

Eq. (11) poses a difficulty, however, because it expresses
the incident field in terms of heat terms centered at the
source point (x0, 0, 0), and not at the axis of the cylindri-
cal inclusion. This problem can be overcome by express-
ing the incident heat field in terms of heat terms centered
at the origin, which can be achieved by using Graf’s ad-
dition theorem [Watson (1980)], to give the expressions
(in cylindrical coordinates):

T̃inc(ω, r,θ,kzm)

= − iA
4k1

∞

∑
n=0

(−1)n εnHn(kα1r0)Jn(kα1r)cos(nθ)

when r < r0 (12)

T̃inc(ω, r,θ,kzm)

= − iA
4k1

∞

∑
n=0

(−1)n εnJn(kα1 r0)Hn(kα1r)cos(nθ)

when r > r0 (13)

in which r0 is the distance from the source to the axis of
the inclusion, Jn(. . . ) are Bessel functions of order n and

εn =
{

1 i f n = 0
2 i f n �= 0

.

Reflected heat field in the exterior region

In the frequency-axial-wavenumber domain, the re-
flected heat field in the exterior region can be expressed
in a form similar to that of the incident field, namely

T̃re f (ω, r,θ,kzm) =
∞

∑
n=0

AnHn(kα1 r)cos(nθ) (14)

in which the subscript ref denotes the reflected heat field,
and An is an as yet unknown coefficient to be determined
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Figure 3 : Temperature along a line of 40 receivers, at
different times (4.5 h, 5.5 h and 6.5 h): a) for a plane
(d = 1) unit heat source; b) for a cylindrical (d = 2) unit
heat source; c) for a spherical (d = 3) unit heat source.

from appropriate boundary conditions. Together with an
implicit factor ei(ωt−kzz), the Hankel functions in Eq. (14)
represent diverging or outgoing cylindrical heat field.

Transmitted heat field in the interior region

The transmitted heat field in the inclusion can be ex-
pressed as:

T̃trans(ω, r,θ,kzm) =
∞

∑
n=0

BnJn(kα2 r)cos(nθ) (15)

in which the subscript trans denotes the transmitted heat

field, kα2 =
√

−iω
K2

− (kzm)2, K2 = k2
ρ2 c2

, Bn is again an
unknown coefficient to be determined by imposing the
appropriate boundary conditions

Definition of An and Bn

Next, appropriate boundary conditions are established to
obtain the reflected and transmitted heat fields within the
solid inclusion; that is, the continuity of temperatures and
normal heat fluxes at the solid-solid interface,

T̃inc(ω,a,θ,kzm)+ T̃re f (ω,a,θ,kzm) = T̃trans(ω,a,θ,kzm)

k1
∂
[
T̃inc(ω,a,θ,kzm)

]
∂r

+k1
∂
[
T̃re f (ω,a,θ,kzm)

]
∂r

= k2
∂
[
T̃trans(ω,a,θ,kzm)

]
∂r

(16)

Combining Eqs. (12), (13), (14) and (15) one obtains a
system of equations which is then used to find the coeffi-
cients An and Bn,

[
a11 a12

a21 a22

][
An

Bn

]
=

iA
4k1

(−1)n εnHn(kα1r0)
[

b1

b2

]
(17)

with

a11 = Hn(kα1a)

a21 = nHn(kα1 a)− (kα1a)Hn+1(kα1a)

a12 = −Jn(kα2 a)

a22 =
k2

k1
[−nJn(kα2a)+(kα2 a)Jn+1(kα2a)]

b1 = Jn(kα1 a)

b2 = nJn(kα1 a)− (kα1a)Jn+1(kα1a)
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Figure 4 : a) Temporal evolution of the heat source; b) Geometry of the problem.

The coefficients An and Bn with the series solutions (Eqs.
(14) and (15)) can now be used to determine the reflected
and the transmitted heat of the system.

The solution for heat source excited in the interior can be
obtained in a similar way by changing the incident field
and again ascribing the continuity of temperatures and
normal heat fluxes at the solid-solid interface.

4.2 Cavity with null fluxes along its boundary

The incident heat field is all reflected back into the un-
bounded medium, verifying the condition at r = a,

k1
∂
[
T̃inc(ω,a,θ,kzm)

]
∂r

+k1
∂
[
T̃re f (ω,a,θ,kzm)

]
∂r

= 0 (18)

Under this condition the transmitted heat field is null.
Therefore the solution is found combining Eqs. (12) and
(14), so as to satisfy Eq. (18). When this is done, one
obtains,

An =
−i
4k1

(−1)n εnHn(kα1r0) [−nJn(kα1 a)+(kα1a)Jn+1(kα1a)]
nHn(kα1a)− (kα1 a)Hn+1(kα1 a)

(19)

4.3 Cavity with null temperatures along its boundary

At the surface of the cavity (r = a) the boundary condi-
tion is given by,

T̃inc(ω,a,θ,kzm)+ T̃re f (ω,a,θ,kzm) = 0 (20)

Substituting Eqs. (12), (13) and (14) into the above con-
dition gives the following,

An=

i
4k1

(−1)n εnHn(kα1r0)Jn(kα1a)

Hn(kα1 a)
(21)

5 Applications

The analytical expressions were used to compute the heat
field generated by a point heat source placed in an un-
bounded solid medium (concrete) where a cylindrical
circular cavity or a cylindrical circular inclusion (steel)
is buried. The source, at point O (z = 0.0 m), gener-
ates a spherical heat pulse at time t = 1.46h. Fig. 4a
gives the plot of the spherical heat pulse as it prop-
agates away from O with a power that increases lin-
early from 0W to 1000.0W. In all the analyses, the
thermal conductivity (k1 = 1.4W.m−1.oC−1), the den-
sity (ρ1 = 2300Kg.m−3) and the specific heat (c1 =
880.0 J.Kg−1.oC−1) of the concrete host medium remain
the same. The steel inclusion has the following prop-
erties: thermal conductivity (k2) of 63.9W.m−1.oC−1;
density (ρ2) of 7832Kg.m−3, and specific heat (c2) of
434.0 J.Kg−1.oC−1. The frequency range for the analyses
was (0,128×10−5 Hz), with increments of 1×10−5 Hz,
to give a time of (T = 27.78h) for the time domain anal-

ysis, while L = 2
√

k2
/
(ρ2 c2∆ f ) = 28 m represents the

spatial period.

The first examples assumed null fluxes (Fig. 5) or null
temperatures (Fig. 6) along the boundary of the circu-
lar cavity. In each case the responses are registered at
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Figure 5 : Homogeneous concrete medium with a circular inclusion with null fluxes along its boundary: a) Heat
curves registered at Rec. 1 and Rec. 2 for different z coordinates b) Temperature fields registered at the two grids of
receivers for t = 15h.

receivers Rec. 1 and Rec. 2 for different z positions
(z = 0.0 m and z = 0.3 m). When t = 15h snapshots
displaying the temperature field along a transversal grid
of receivers placed at z = 0.0 m and a longitudinal grid
of receivers placed at x = 0.0 m are also presented. In all
cases, the temperature is held to be null at the beginning
of the time response, and once the source is activated, at
(t = 1.46h), responses recorded by the receivers show a
steady increase in temperature.

The first receivers to record a temperature change are
those at z = 0.0m (Fig. 5a), and Receiver 1, nearest to
the heat source, is the first of these to register temper-
ature changes. The energy emitted by the point source
increases from 0W to 1000.0W, causing the temperature

to rise at an even rate until it reached a maximum power
output of almost 700◦C (at t = 6.94h). When the power
emitted by the source is kept at 1000.0W, the rise in tem-
perature continues, but more slowly, with a maximum of
880◦C being attained at t = 12.48h. The power is then
allowed to fall until energy emission ceases altogether,
and a state of equilibrium is eventually established as the
energy continues to propagate from warmer to cooler re-
gions.

Comparing the response at this receiver with that com-
puted at receiver Rec. 2, placed in the other side of the
cavity, it is clear that the latter reaches much lower tem-
peratures, not only because it is placed further away from
the source but also because of the condition of null fluxes
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Figure 6 : Homogeneous concrete medium with a circular inclusion with null temperatures along its boundary: a)
Heat curves registered at Rec. 1 and Rec. 2 for different z coordinates. b) Temperature fields registered at the two
grids of receivers for t = 15h.

along the boundary of the inclusion.

The null flux condition assumed for the boundary means
that the cavity is now acting as a thermal insulator, and
the heat energy is being concentrated between the source
and the cavity, with the result that the temperature rises
significantly in that region. But the cavity prevents much
energy from reaching the zone behind the cavity, so
scarcely any rise in temperature occurs there. These re-
sults are confirmed by those registered in the transversal
grid of receivers at t = 15 h (see Fig. 5b).

When the receivers are placed at z = 0.3 m the temper-
ature values registered at receivers Rec. 1 and Rec. 2
decrease in relation to the ones registered at z = 0.0 m.

In addition, when z = 0.3 m the responses at the two
receivers tend to aproximate. The 3D geometry of the
problem means that further along z, the concentration of
energy is not so high, and the solution becomes similar
to that for an infinite homogeneous medium. The results
registered at the longitudinal grid of receivers (see Fig.
5b) corroborate these findings. Moreover, as null fluxes
are prescribed at the boundary, the isothermal lines are
perpendicular to the boundary of the cavity.

When null temperature is assumed for the cavity’s
boundary, the results are very different (Figs. 6a and
6b). Temperature values at Rec. 1 are still higher than
those at Rec. 2, but they do not reach anything like the
values seen in the previous situation, because receiver
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Figure 7 : Heat curves registered at Rec. 1, Rec. 2 and Rec. 3 for different z coordinates: a) homogeneous Concrete
medium with a Steel circular inclusion; b) infinite homogeneous concrete medium.

Rec. 1 is now placed next to a surface with null temper-
ature. Looking at more distant positions in z, the values
recorded at Rec. 1 fall sharply, to a point below 1.8◦, at
a distance of only z = 0.3 m. Receiver Rec. 2, however,
is both near a null temperature boundary and behind the
inclusion, relative to the source, and so the temperatures
recorded at this receiver are very low. The results agree
with those shown in the longitudinal grid with the low-
est temperatures being recorded at the receivers furthest
away in z.

Fig. 7a illustrates the results registered at receivers Rec.
1, Rec. 2 and Rec. 3 (placed at z = 0.0 m and z = 0.3 m)
when the cylindrical inclusion is made of steel. These
results are compared with those computed for an infi-
nite homogeneous medium (concrete), at the same re-
ceivers (Fig. 7b), to show the physics of the problem
more clearly.

Once again the first receivers to register a temperature
change are those placed at z = 0.0m. As expected the

temperature curve registered at Rec. 1 exhibits a ten-
dency similar to that registered in Fig. 5a, but with lower
amplitudes since part of the energy is now transmitted
to the steel inclusion. Receiver Rec. 3, which is inside
the steel inclusion, records much lower temperatures than
Receiver Rec. 1, for two reasons. First, Rec. 3 is fur-
ther from the heat source, and second, steel has a much
higher diffusivity, so that whatever energy reaches the
steel disperses throughout the cylinder more quickly than
it does in the host medium, with the result that the tem-
peratures recorded are lower, but more even. Receiver
Rec. 2 shows temperature increases that are similar to
those recorded within the steel inclusion, indicating the
influence of the steel cylinder.

Comparison with the responses for an infinite concrete
medium corroborates the results observed. The Rec. 1
temperature curve for the infinite medium is similar to
that plotted for the case of the steel inclusion, but the
maximum temperature recorded is 3.0 times higher. This
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Figure 8 : Homogeneous Concrete medium with a Steel circular inclusion. Temperature fields registered at the two
grids of receivers t = 15h.

is because there is only one set of physical properties
to consider: those of the concrete, which is the host
medium. The heat thus tends to build up in the zones
nearest the source since it propagates much more slowly
in this medium. Receiver Rec. 3 registers the same phe-
nomenon, with the highest temperatures recorded being
1.3 higher than those of the case that assumes the exis-
tence of the steel inclusion. The difference between the
maximum temperature registered at receivers Rec. 1 and
Rec. 3 is more evident in the infinite homogeneous con-
crete medium since the presence of the steel inclusion
enables more energy to pass more quickly to the zone
behind it.

In the case of a cylindrical steel inclusion, the tempera-
ture evolution for all three receivers located at z = 3.0m
differs only slightly, since the heat largely propagates
via the most conductive material, i.e. the steel. For
the case of the infinite homogeneous medium, and at the
same receivers, there was a distinct temperature evolu-
tion which was strongly dependent on the distance be-
tween the source and the receiver. Since concrete has
lower diffusivity than steel, it took longer for the maxi-
mum temperatures to be reached.

Fig. 8 shows the contour snapshots, at t = 15h of the
temperature values registered by a transversal grid of re-
ceivers along z = 0.0 m and a longitudinal grid of re-
ceivers located at x = 0.0 m.

The energy propagating from the source disperses
through the medium. It travels less quickly outside the
steel cylinder than it does longitudinally, and so the zones
separated from the source by the inclusion record higher
temperatures at the transverse line of receivers than other
zones, even though they are the same distance from the
source. At t = 15h, the power of the source is declin-
ing. In the plane of the source (z = 0.0 m) the receivers
placed near it show a fall in temperature, whereas re-
ceivers further from the source register temperatures that
are increasing or reaching a maximum. The steel cylin-
der has permitted a considerable amount of energy to
reach receivers that are quite a long way from the emit-
ting source, even ones placed at z = 0.6 m as can be
seen from the values registered by the longitudinal grid.
When the source ceases to emit energy (0W), the en-
ergy within the media continues to propagate, and the
receivers placed further from the source record a rise in
temperature, while those nearer to it register a decline
(not illustrated).

6 Conclusions

The work described here concerns the use of a dis-
crete integration over wavenumbers and frequencies to
compute the 3D heat field originated when heat point
sources are placed in the vicinity of a cylindrical circu-
lar inclusion in an unbounded solid medium. The dis-
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cretization of the wavenumber-frequency integral trans-
form presented is the mathematical equivalent of a peri-
odic sequence of sources, parallel to the axis of the cylin-
der, that are also periodic in time.

Complex frequencies were used to counteract the effects
of the periodicities.

This method was then applied to the problem of heat con-
duction within unbounded solid media, in the presence of
a cylindrical circular cavity or a cylindrical circular solid
inclusion. The results indicate that the method could
usefully be adopted to analyse 3D thermal propagation
where the geometry is 2D. Considerable differences in
behaviour were found for the cases of a solid inclusion,
a cavity with the imposition of null surface temperature,
and a cavity assumed to have null normal surface fluxes.
The imposition of boundary conditions showed that the
temperature field was strongly influenced by such condi-
tions.
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