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A Refined Asymptotic Theory for the Nonlinear Analysis of Laminated
Cylindrical Shells

Chih-Ping Wu' and Yen-Wei Chi!

Abstract: Within the framework of the three-
dimensional (3D) nonlinear elasticity, a refined asymp-
totic theory is developed for the nonlinear analysis of
laminated circular cylindrical shells. In the present
formulation, the basic equations including the nonlinear
relations between the finite strains (Green strains) and
displacements, the nonlinear equilibrium equations in
terms of the Kirchhoff stress components and the gener-
alized Hooke’s law for a monoclinic elastic material are
considered. After using proper nondimensionalization,
asymptotic expansion, successive integration and then
bringing the effects of transverse shear deformation
into the leading-order level, we obtain recursive sets of
the governing equations for various orders. It is shown
that the von Karman-type first-order shear deformation
theory (FSDT) is derived as a first-order approximation
to the 3D nonlinear theory. The differential operators in
the linear terms of governing equations for the leading
order problem remain identical to those for the higher-
order problems. The nonlinear terms related to the
unknowns of the current order appear in a regular pattern
and the other nonhomogeneous terms can be calculated
by the lower-order solutions. It is also illustrated that
the nonlinear analysis of laminated circular cylindrical
shells can be made in a hierarchic and consistent way.

keyword: Asymptotic theory, FSDT, nonlinear analy-
sis, cylindrical shells, 3D elasticity, perturbation

1 Introduction

The research topics on the nonlinear analysis of lam-
inated composite shells have received considerable at-
tention by the researchers due to the increasing use of
composite materials in structures in the industrial appli-
cations. Most of the articles related to the present subject
in the literature are based on the von Karman nonlinear
theory [Chia (1980)]. With the assumed two-dimensional
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(2D) displacement models, such as the Kirchhoff’s dis-
placement model and several refined displacement mod-
els, various 2D nonlinear analyses of laminated plates
and shells were presented.

By application of the dynamic virtual work principle,
Xu, Xia and Chia (1996) derived a set of 2D nonlin-
ear equations of transverse motion for the nonlinear dy-
namic analysis of laminated shells. Numerical results
in nonlinear vibration of symmetric cross-ply laminated
conical shells were presented and compared with the re-
sults available in the literature. The nonlinear vibra-
tion of unsymmetrically laminated moderately thick shal-
low shells was studied by Xu and Chia (1994). In
their paper, Fourier-Bessel series solution was formu-
lated for the nonlinear analysis and the effects of trans-
verse shear deformation and rotatory inertia were consid-
ered. In conjunction with a modified variational princi-
ple of 3D nonlinear theory and a higher-order displace-
ment model, Librescu (1987) proposed a refined geomet-
rically nonlinear theory of anisotropic laminated shells
of arbitrary shape. By using an improved von Karman’s
nonlinear deformation-strain relation and accounting for
the effects of normal stress and strain, Tan, Tian and
Du (2000) proposed a six-variable geometrical nonlin-
ear shear deformation theory. Comprehensive reviews on
the static and dynamic nonlinear analyses of laminated
plates and shells have been made in the literature [Chia
(1988), Sathyamoorthy (1987), Moussaoui and Benamar
(2002)].

The 3D nonlinear analysis of circular cylindrical shells
under transverse pressure on the lateral surfaces is an im-
portant class of structural problems. After a close litera-
ture survey, it is found that most of the articles are stud-
ied for the 3D linear analysis using the Frobenius method
or other classical methods [Bhaskar and Varadan (1993),
Yuan and Kim (2000)]. The literature on applying clas-
sic methods to the 3D nonlinear analysis of axisymmetric
laminated cylindrical shells is scarce.
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In recent papers, Wu, Tarn and Chi (1996a, b) pre-
sented the asymptotic theories of doubly curved lami-
nated shells. The linear classical shell theory (CST) was
derived as a first-order approximation to the 3D linear
theory. The 3D linear elasticity solutions for the static
and dynamic problems of laminated shells were pre-
sented. To accelerate the convergent speed, Wu, Tarn
and Chen (1997) and Wu, Tarn and Tang (1998) fur-
ther developed a refined asymptotic theory by consider-
ing the effect of transverse shear strains at the leading
order level. The linear first-order shear deformation the-
ory (FSDT) was derived as a first-order approximation
to the 3D linear theory in the refined asymptotic theory.
The refined asymptotic theory was applied to the static
and dynamic analyses of doubly curved laminated shells
and the satisfactory results were obtained.

In the present paper we aim at developing a refined
asymptotic theories for the 3D nonlinear analysis of lam-
inated cylindrical shells. It is an extension of the ear-
lier papers [Wu, Tarn and Chen (1997)] by considering
the geometrically nonlinear effect in the asymptotic for-
mulation. In the Lagrangian description, the nonlinear
relations between finite strains and displacements, the
nonlinear equilibrium equations in terms of Kirchhoff
stresses, and the generalized Hooke’s law for a mon-
oclinic elastic material are regarded as the basic equa-
tions of the 3D nonlinear theory. After applying a stan-
dard perturbation approach and considering the effect of
transverse shear deformations at the leading order level
in advance, we obtain a series of nonlinear governing
equations leading with the von Karman-type FSDT the-
ory. The von Karman-type FSDT theory is derived as a
first-order approximation to the 3D nonlinear theory. The
3D nonlinear solutions of the simply supported cross-ply
laminated cylindrical strips under cylindrical bending are
presented. Convergence of the present asymptotic solu-
tions is examined. The deviations between the present
3D nonlinear solutions and the accurate 3D linear solu-
tions available in the literature are evaluated.

2 Basic equations of nonlinear elasticity

A laminated circular cylindrical shell of uniform thick-
ness 24 subject to the transverse loads q;t on the lateral
surfaces is considered in the present formulation. A set
of the cylindrical coordinates (x, 6, r) is adopted for the
derivation. R and L denote the radius and length of the
cylindrical shell, respectively.
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The Green strains in the Lagrangian description are re-
lated to the displacements in the circular cylindrical co-
ordinates as [Saada (1974)]

& =ex+ |:(uxax)2+(”67x)2+(urax)2} /2 (1)
0 = o+ { (1x0 /1)’ + [(o.0/r) + (1, /)’
/)~ o/} 2 @)
& =e+ |:(ux7r)2+(u67r)2+(urar)2} /2 (3)
Yor = €xr + [(”xax)(uxar) + (Me,x)(ue,r)
+ (s ) (Urr)] “4)
Yor = eor + [(ux0 /1) (ursr) + (uo.0 /1 +uy/T)
(uevr) + (”rve /r_ ue/r) (”rvr)] )
Yoo = exo + [(tx,0 /7) (rx )+ (ug,0 /7 +ur /1)
(Me,x)-l-(ur,e /V—Me/r) (”rax)] (6)

where the commas denote differentiation with respect to
the suffix variables; u,, ug and u, are the displacement
components; ey, eg, €, €y, egr and e,g are the infinitesi-
mal (or linear) strain components used in the linear elas-
ticity and expressed in terms of displacements as

ex =Uy,, ep= (Ug,0+Ur)/T, € =1y,,

egr = ug,—(ug/r) + (ttr0 /1),

€xp = (Mx,e /l") + Ug,x

€xr = Ux,r HUpox,

The stress-strain relations for a monoclinic material are
considered as linear and are given by
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where oy, Gg, G, Ty, Tor, Txrg are the Kirchhoff stress
components.

Under the consideration of finite deformations, the stress
equilibrium equations in the absence of the body forces
[Washizu (1974), Novozhilov (1953)] are

r6x7x+%exae+(’”%rx),r:() (8)
ric0,x+60,0 +(rTr0),r +T0, =0 9)
Firsx+R0r,0+(r6r),r — 866 =0 (10)

where 6; (i =x, 0, r) and %;; (i, j = x, 0, r) are the Piola
stress components.

It is noted that the Piola stress tensors are unsymmetric
and Kirchhoff stress tensors are symmetric. The rela-
tions between them are in the form of [Washizu (1974),
Novozhilov (1953)] are

6 T Tw Cx Txo Tar

Tox Go Tor | = | Txo Oo Tor

Tx Te Of Txr Tor Or
(1+ex) (ex6/2+0)r) (exr/z_we)

(exe/z_(or) (1+ee) (eer/2+0)x)

(exr/2+0)9) (eer/z_wx) (1 +er)

an

where ®; are rotations of an element about the i axis (i =
x, 0, r) and are related to the displacements as

O = [~ug,r+(ur0 /1) = (uo/r)] /2

Wy = (”xar_urax) /2

@ = [—(ug,0/7) +o,] /2

In the present formulation the displacements and trans-
verse stresses are taken as the primary field vari-
ables. After a straightforward derivation where the in-
surface stresses and strains are eliminated directly using
Eqgs.(1)-(10), the basic nonlinear equations can be rear-
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ranged in the form of

Upr= —[(€130x +E3609/7)  (C360x +E2309/7)]
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— [ @) + (0. + ()] /2
(12)

(Uox ) (theyr ) + (ug,x ) (10,1 )
+(ur7x)(ur7r)
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(13)
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B [ Urx Uro /1 } The associated boundary conditions on the lateral sur-
faces are given by
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Txr

Tor

r=R+h
r=R—h

Gr+[ Uryx Mr,e/r—ue/r ] {

(17b)
on
on

q;

+uy, Or = { —
_qz

The admissible boundary conditions on the edge bound-
ary surfaces are given as follows:

Along the edges x=constants,

Oy + OxlUy,x +Tx0Ux,0 /l" + Txrlhxyr = Dx

i€ (18a)
or Uy = Uy
oo+ Oull,x +Txollo,0 /7 + Txolty /1 (18b)
+Tyrlg,r = ﬁxe or Up = Uo
Tyr + OxUr,x +TxoUr,0 /F—Txeue/r (18C)
FTxrlrsr = Dyr or Ur =ty
Along the edges 6 = constants,
Ty + Tx0Ux,x TOgUy,0 /V+Terux7r:ﬁ6x (19a)
or Uy, = ﬁx
G + Trolo.x +Oolt.o /7 + Colty /1 (19b)
+Tortto:r=Pog ~ OF  Up=1lp
Tor + Txolr,0 /7 + Coliy,0 /7 — Golto/ r (19¢)

+TorUr,r = Doy or Uy = Uy

where p,., D, D, are the traction components pre-
scribed along the edges x=constants, and p,,, D.g, Pyr
along the edges at O=constants; u,, ug, u, are the dis-
placement components prescribed along the edges.

3 Nondimensionalization

A set of dimensionless field variables is used in the
present work and defined as follows:

x; =x/Re, x=0,e x3=(r—R)/Re*; (20a)

up =uy/Re, uy = ug/Re*, uz = u,/Re*;  (20b)

o1 =0,/0¢%, ©y=0p/0€%, Tio="1.0/Q% (20c)
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T3 ="T:,/0€, T3 =710,/0, ©3=0,/Q" (20d)

where €2 = h/R is a perturbation parameter, usually
much less than 1. Q stands for a reference elastic modu-
lus.

After introducing the set of dimensionless variables
given in Eq.(20) into the formulation, we rewrite the ba-
sic equations of 3D nonlinear elasticity Eqs.(12)-(16) in
the dimensionless form of

uz,3= —% (u3,3)2— &Ly u — &%(8s /Fuz

(M3,])2/2
—&’Ly (M3,2)2/2
(u3,1) (u3,2)
& [(11.3)" + (100)?] /2+ & (Q/ex3) 0
(21
[(”171)2‘1'(”2,1)2} /2 )
. (1,2)7 )2+ (w22 +u3)* /2
—€'Ly —(u3,0 )uz +h (u2)* /2R
(i) (ur2)+ (u2,1)
(w22 Fu3) — (uz,1)un
usz = —Du3 — (Du3)u3,3 —82L3u
— &’Lus +€°So;
F(ulvl )(”“73 ) +?(M2,] )(u273)
+x3(u3,1) (u3,3)
(u2,3) (U2, +u3) —ur(u3,3)
+(u1,2)(u1,3)
+e*x;380;, (22)
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rup,11 M2722/f” Uz,12
up,1 Uy /F
—82 L(,()'s—i—l2 ’ ’ /~ Ls6,
Uz,1 u272/r
u u 7
—82 151 172/~ o, |3
Uz, u272/r

)
03) 5 [ (T2 53/7)73 ]

0

(12,1 )uz +2%12(u3,1) + (02,2 )uz /7
+262(u3,2) /7 +T23(u3,3)

! U /7
€ (1—|—X3a3) [ M2,2/7 ]O‘s

Jo

x3(T13u2,3 )51 +(14x303)(T23u3/7)
—(52142/7

Ui,1
Uz,

up,3

—&*(14x303) [
Uz,3

x3(‘513M1,3),1

—84

(23)

633=0,— Do, — (Du3)T(Lso,,)

— (L7u3)6,, — DT (u3,36y)

—([uzs1 w32 /7l0y),3

—(u3,3(53),3+82(u21712)71+82(M2(52),2/7

+ €2 (upTa3/7),3 —€2(1 +x303)

([uz,1 w30 /FlOs+u3,3063+03)

—&2x3 [(u3,3 T13),1 +T13,1]

+€% [ug,1 T2+ 2,2 02/ F+ U302/ F
+U2,3T23+X3U3,0 O2,2 /7
+X3U3,2 T12,1]

—1—84(1—1—)6383)(1421723/7) (24)
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(u3,1)°/2
Gm:Lgu—l—L9u3—|—L11 (u3,2)2/2
(u3,1)(u3,2)
+82L10(53
[(ur,1)* + (u2,1)%] /2 )

(u04u3)%/2 — (u3,2 )ur
+(u2)?(h/2R) + (u1,2)*/2

(ur,1)(u1,2)
\ +(u271 )(”272 ‘|‘M3) - (”371 )u2

+e’ Ly, (25)

Caa
L, =[C1301 + (36/F)02 3601 + (€23/7)02],

Ly=[ &3 &3/ &6fF |,

o X3a3 0 . x381
L3—[o (x383—1)]’ L‘*—[o ]
[ 7oy 0 02
Ls = [ 0 % o ] :
. 1+x303 0
Lﬁ_[ 0 2+4x0s ]
Fon 17
Ly=| (1/F)dxn ,
2012
Ql 101 +(Q:16/7”)32 Qlﬁal +(Q:12/7”)32
Lg = Q1231+(Q26/7)32 Q2631+(Q22/7)32 ,
Q1601+ (Q66/7)02 Q6691 + (Q26/7)02
Q:12/7 C13
Lo = | On/F |, Lio=| &3 |,
Q26/7 C36
Qll Q:12/72 Qlﬁ/7
L = | Qi Q~22/72 Q26/7 ;
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0ij=0i;/0,

After introduction of Eq.(20) into (17), the associated
boundary conditions on the lateral surfaces are rewritten
in the dimensionless form of

F=r/R

2 B
T13+€° [ur,1 T13 +u1,2T3/F+u1,303] =0

(26a)
2 ~
T3 +¢€ [M2,1‘513:|-M272T23/V (26b)
—|—u31723/r—|—u2,3 (53] =0
03 +u3,1T13 +U3,0T3/F+ 13,303
—+
) o gz on x3=1 (26¢)

where g5 = g /Q¢*.
Similarly, the dimensionless boundary conditions on the
edge surfaces are obtained and are rewritten as follows:

Along the edges at x;=constants,

2 - —
o1 +€°[O1ur,1 +Tiour .0 [T+ Ti13u1,3] = P

1 27a
or u; =uj (272)
T2+ €2 [01un,1 +T12ua,2 [F+T1ous /F (27b)
+Ti3u2 3] =Py or ux=1ip
T13+01U3,1 +T12U3,2 /7 +T13u3,3 7
) o . (27¢)
—& [‘C]zuz/r] =pi3 Or uz=u3
Along the edges at xp=constants,
Tio+€% [Tiour,1 +0au1 2 /F+Tosur,3] = Doy (28a)
or ujp=u
02 +€2 [T1aua,1 +Couz 0 [F+ Cruz /F (28b)
+T3uz 3] =Pyy  OF Uy =1ia
To3 +T12u3,1 +02u3,0 [T+ To3U3,3 )3
) a2 - (28c)
—e*[Ooup [T] =Pp3 OF uz =13

where py| =p,,/0€%, D, =Pro/08% P13 =D, /08
P21 = Pox/Q€*, D2 = DPoe/Q€*, Pz = Po,/Q€’; and
u =u,/Re, W =1p/Re’, U3 =1u,/Re>.

4 Asymptotic expansion

Following the similar derivation process in an early pa-
per [Wu, Tarn and Chen (1997)], we bring the effect of
transverse shear deformations in Eq.(22) to the stage at
the leading order and introduce two auxiliary variables
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(v and ) associated with the transverse shear defor-
mations. The transverse shear strains are therefore given
as

e’Sc, = y+e’S6; (29)

where v = { yi(x;, x2) ya(xi, x2) }T, 6, =
A N T

{ Ti3(x1, x2)  To3(x1, x2) } ; yp and W, denote

the shear rotations at middle surface. 1;3 and 1,3 are
the differences between the actual stresses and assumed
stresses.

In the formulation, the dimensionless displacements and
stresses are expanded as a series of even order powers
[Nayfeh (1981)] and given as

f(xr, x2, x5, €) = fO(x1, x2, x3) + €2 (x1, x2, x3)
+ et fP(x, x, x3) + o (30)

Substituting Eq.(29) into Eq.(22), applying Eq.(30) to
Eqs.(21)-(28) and then collecting coefficients of equal
powers of €, we obtain the following sets of equations
at various levels.

Order €Y :

0 L/ 0 \?
i a= =35 () (31)
U(O),3 =-D ugo) — (D ug0)> ugo),g 4o (32)
o\” 3=~ Lsoy (33)

o 3= o -p7a" — (D) (Lsol?)
_ <L7 ug0)> O‘Sr?) _pT (ugo),g 0.50))

_ ([ugt))’l ugt»’ 2/;} Ggp)) e <u§°>,3 th») L

(34)
GS,?):Lgu(O)
2
(ugo),1> /2
Lo u? +L UR% 35
+Louy” + Ly uy ') /2 (35)

(171) (15”2

With shear rotations as auxiliary variables, two additional
equations related to the moment equilibrium across the
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thickness are needed together with Egs.(33) in formulat- ;) (k) . (k—i)\ (i)
ing the refined theory. The equations are obtained by © 3~ —Duz” v _Z(')(D uy )iz
multiplying Eq§.(33) b}/ x3, integrating over the thick- L u L, WD g gD “ Solk2
ness, using the integration by parts and lateral boundary - 3
conditions. These two additional equations at €°-order 7 (ugk_l_l)’l) (ug ),3> +7 (ugk = 1)71)
level are derived as (i) (k—1-1) (i)
-1 (”2 ,3> +Xx3 <M3 ,1> <M3 ,3>
- (38)
i=0 ugk_]_l),g,) (Mgl)72 ‘H/lgl)) —ugk_l_l)
1 1 (i) (k=1-i) (i)
/ Cs\|l()dX3—/ X3L5()'Sy(l))dX3 =0 (36) L U3 73) +(u 72)(”1 73) i
~1 ~1
where C; = (R/h)S™!.
Proceeding to the higher-order problems, we obtain the
differential equations as follows.
Order e (k=1, 2, 3,... ):
1¢ - i _
”gk)ﬁ: ) Z (”gk )a3> (”g)a3> - Ly ul=1) ng),a = —Ls GSn) Le ng b
i=0 k=1 ~ (k—1-i) (k 1—i) ~ (k—1—=i) )
(k—1—i) (i) ) -3y iy ol U 22 [F 2u 1 12|l
u?k | .>’] uf)’] / e T SN TR T RSV I N
— (C23/F) uy ZLQ s Y, u; 2] /2 k-1 ugk—l—z) 1 ugk—l—z) )7 0
k—1-0) 0 - Y Y L5G,
ug 51 Uz 52 1:2(‘) ugk ! ),1 ugk ! ),2/? :
. . . k—1 (k—1—10) (k—1—10) -
(k—1—10) i k—1—i i , , i
-3 () () + () ()] 2 S ([ e
i=0 Uy ) U 2 /l" 3
+ (Q/C33)53 = k—1 o 1" '
0 i \ (k—1—1i) U, ,3
) () 2]
k—2—i i = 27
+ (ug >’1> (uy’])} /2 T e
uj )3 ()
. . . =10 O3
Msk_z_l),z u$1)72 /2 i=0 \ 2 33 3
k—2—i k—2—i k=1
k—2 +<”g 2t g ) - (o 1—3 0 /7 ]
— i i= T u 9
210 () ool O S LI :
h (ug«—z—») W9 2R
k—1 k—1—i (k—1—i) (i)
(k—2—i) (i) -y ng ¥ ()‘1’2’512 (”3 vl>
(ul 51 )(ul 72) —r (k—1—i)
(k=2-0) o) (0 = (02 2 ) /7
et (k=1-0) ( (i (k=1-0) (, ()
[l ol () e ()
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where the superscript j of the displacement and stress
components f (/) must be a zero or positive integer; oth-
erwise the terms will vanish.

The associated dimensionless boundary conditions for
various orders are described as follows.

On the inner and outer surfaces the following traction
conditions must be satisfied,

At the €%-order level:

0 0
[T§3)7 153)7
(00 40l 179 7 00l )]
=[0, 0, 35| on x3==I, (43)
At the e**-order (k=1, 2, ...) level:
(k—1—10) i (k—1-i) (i
1713 + Z [713 1 (1/r)1723 ),2
+ng - ”uﬁ%} —0  on x3—+1 (44a)
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(k=1—i) (i) (k=1—i) (i
1723 "’Z ["713 B l (1/r)1723 l)”g)az

(k=1=i) () | S(k=1=0), (1)

(l/r)‘lt23 3 +0; uy’ 3 =0 on x3 ==+l
(44b)
K o o o
o+ 5 [ D )
. Z (rz’; 0,0 ) —0 onx;—+l (44c)

Along the edges one member of each pair of the follow-
ing quantities must be satisfied.

At the €%-order level:

Along x;= constants,

O, =D11 Or u =uj (45a)
19 =5, o u¥=m, (45b)
0400l 40 7

—I—‘ng) ugo),3 =pi3 Or ugo) =u3 (45¢)
Along x,=constants,
‘Cg;) =Py Or ugo) =1y, (46a)
o)) =Py or u)) =i, (46b)
A0l o

+ ‘ng) ugo),3 =Dy3 Or ugo) =u (46¢)
At thee*-order (k=1, 2, ...) level:
Along x;= constants,

(k—1—10) i (k—1-i) (i) ~
"’Z [(51 vl +T, Uy o /F

(k 1-i) (i)

+T13 u ,3} =0 or ugk) =0 (47a)

k—1
k k—1—i) (i k—1-i) (i ~
S [l o

(k—1—10)

ok (k—1—i) (i)

Uy ,3} =0 or ugk):O

(47b)

u3 / —I—‘Cl
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1713 "’Z( ”3 ,1+‘C$2 )”3 72/V+T§3 )”gi)v3>
—Z @ =0 or WP =0 @70
Along x,=constants,
(k—1—i) (i) k—1—i) (i ~
1712 "’Z [le ”1 1 +Gg )Mg),z/r
il s =0 o W=0 @s)
02 "’Z[ (k—1—1i) 21" _|_ng 1- l)ug),z/?
—|—ng - lu3 /F +r§’§ - l)ug)g} =0 or ugk):O
(48b)
k N N N
843 (D s ol 74 5)
i=0
S ki) k
G R
i=0
(48¢)

5 Successive integration and the von Karman the-
ory

The asymptotic equations Eq.(31)-(35) can be integrated
with respect to x3 in succession. The associated lateral
boundary conditions (43) at the inner surfaces (x3=-1)
will be satisfied in process of the integration. As a re-
sult, we obtain at the leading order

ugo) = ug (x1, x2) (49)
u® = u®(x;, x2) — x300 (50)
GS,?) =1Lg (uo —|—X3¢o) —|—L9u(3)
(”371) /2
+Lin | ()2 (D
(u5.1) (5.2)
o) = —/_x: [LsLg (u’ — néo) +LsLouj ]| dn
X3 (Mg,] )2/2
— [ ALsLu| (a)P2 | pdn G2
(1) (13.2)
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(0) —[ ”(3)71 g, JF | o\

R
+/_] {(x3—m)

+93

where ug(xl, x), u’ =

—Dud + yo.

After imposing lateral boundary conditions Eq.(43) at
outer surface (x3=1) on Eqs.(52)-(53) and then making a
simple manipulation, we obtain the governing equations

at the leading order

Ky +Kipud + Kizul + K14 09 + K509

= —u,1 (K1 Mg) —ud (Klzug)

Ko + Kop 1 + Koz u3 + Kp4 69 4 Kas 09

= —”(3)71 (K12 M(a)) - ”(3)72 (1222 u?)

Ki3u§ + Koz ud + K33 ud 4+ K34 09 + K35 09

—(gy —3)+ [ud w3 ] Myl

0 0 0
— U1 U322 2u312] My | uf

Kiqu + Kpqu + K3qu§ + K447 + Ka509

= —M(a)al (K14M(3)) — M(3)72 (1224M(3))

Kysu + Kasud + Kssu3 + Ka507 + Kss5¢9

= —u3,1 (Kisu3) — u,> (Kasuf)

where

K1 = _(Anan +2A,6012 +Z66822)7

— (0u§)" (Lsol ) — (Lyu)

T
ug (xl ) x2)}
represent the displacements on the middle surface; ¢y =

Kip =

K3 =

DT [LSLS (uo +n ¢0) _|_L5L9 ug] }dn K14 =

X3 (ug’])z/z
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_ 0

(”371) (”372)
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gxs[ Fo1 1/F 1/ ] dxs,

Il
|\_
)

1
[ Dij Dij D;; ] :/1 Qij(x3)2[ Folol/F ] dxs.
After a close examination of the governing equations
of the von Karman-type FSDT in terms of displace-
ments, we find that those equations are reproduced from
Eqs.(54)-(58) by imposing a geometry assumption of the
circular cylindrical shell: {/R << 1. In the present
notations, this implies 72 1, A;; = A;; = A;; = ;\l-j
Aij  =Aij/Qh, Bij=Bij=Bj;=Bi; = Bi;/ Qijh*, Di; =
D;; :pij =D;;/Ol°, Ki» = Kip, Koo =K, Ko=
K>4, Kps5 = Kps, where Aija Bija Dij denote the exten-
sion, extension-bending and bending stiffness, respec-
tively. Thus, it can be observed that the von Karman-
type FSDT becomes a first-order approximation to the
3D nonlinear elasticity theory.

The governing equations of €’-order Eqs.(54)-(58) and
the edge boundary conditions Eq.(43) compose a well-
posed boundary-valued problem. The modified Newton-
Raphson method [Zienkiewicz (1976)] has been widely
used for solving this type of problems. After the nonlin-
ear problem at the %-order level is solved, the associated
€%-order solution can be obtained by using Eqs.(49)-(53)
and Eq.(35).

Carrying on the analysis to order € by integrating
Eqs.(37)-(42) in succession with k=1, we obtain

(1)

uy) =u3(x1,02) + Q31 (x1,x2,%3), (59)
ull) = u (x1, x2) + 1301 + @1 (x1, x2, x3) (60)
GSr}) = Lg(u] +x301) —|—L9u§
(#9:1) (u3,1)
+Li (19,2) (ud.2) +p1 (61)
(u31) (u3,2) + (u3:2) (u31)
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(u5:2) (u3.2)
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X3
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X3
—/1 LsLy;
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1 . . .
— Z [Mgl_l),l Mgl_l),z /7} ol

(53 =
i=0
_ i (ugl—i)’3 ) ol 4 <u§o>rgg>/?>
i=0
X3

1 . 1 L
+ (o) =3 (Dul )T (LsoP) —Z(Lm;—l)o,(n)] an

i=0 i=0
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X3
+/_] {(x3—m)D" [LsLg(u' +1¢1) +LsLous] } dn
X3

+ {(x3—ﬂ)DTL5L11

— f31(x1,x2,x3) (63)

where u} and u' = {u}(x, x2) wl(x, xz)}T repre-
sent the €2-order modifications to the displacements
on the middle surface, and the relevant functions
g1, f31, f1, 031, 01 are given in Appendix L.

Upon imposing the associated lateral boundary condi-
tions (44) on Egs.(62) and (63), we obtain the governing
equations for €2-order as follows:

Kiyuj +Kipuy + Kizuy + Kia 01 + Kis 03
= —Mgn (Knu%) —ué,l (Knug)
— 12 (Ki2u3) —u3 o (Kipul)

+ fit(xz=1) (64)
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KIZM{ + K> u; + Kp3 ué —I—K24¢} +K>s q);
= —u3,1 (Kipus) —u3,1 (Kipul)

- ué’,z (1222 M;) - Mé 2 (1222 u(g))

+ far(x3 =1) (65)
Kizu; + Koz uy + Kz uz + K34 01 + K3s 95
= [ug,l ug,z] M, ué—l— [u%,l ué,z] M, ug
— [l Wl 2u810]
ol
”% (”(3)71 )(”évl)
M, | u | +M; (3:2) (u3,2)
i (1) (u3,2) + (1) (5,2)
L L o7
- [Mé,n U320 2M§,12]
R
”g (”(3)71 )2/2
M, ug +M; (ug,z)z/Z + fa1(x3=1)
¢z (”(3)71 )(”(3)72)
(L6
(66)
Kiauy + Koauy + Kzqul + Kas01 + Kas0)
= —ug,l (K14u§) — ué,l (K14u(3))
—u3,2 (Koauz) —ul 2 (Kpqutd)
+fii(=1)—gn(xs=1) (67)
Kisuj + Kosuy + Kssus + Kys01 + Kss0;
= —ug,l (K15u§) —ué,l (K15u(3))
—u3 2 (Kosuz) —ulo (Kosud)
+fr(=1)—gi(x3=1) (68)

After a close examination between Eqs.(54)-(58) and
Eqs.(64)-(68), it can be found that the differential oper-
ators of the linear terms (K}, i, j=1-5) remain identical,
the nonlinear terms related to the unknowns of the current
order appear in a regular pattern, and the other nonho-
mogeneous terms can be calculated from the lower-order
solutions.

The solution procedure used in the £°-order problem can
be repeatedly applied to the €!-order problem. Again, af-
ter the £'-order problem is solved the associated €!-order
modifications can be obtained by using Eqs.(59)-(63). In
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view of the recurrence among the problems of various or-
ders, the 3D nonlinear solutions can be determined in a
hierarchic and consistent way.

6 Illustrative examples

To make the relevant computation simple, we demon-
strate the present 3D nonlinear analysis of the sim-
ply supported cross-ply laminated cylindrical strips sub-
jected to cylindrical bending (Figure 1). In these cases,
the field variables are naturally dependent on the cir-
cumferential and thickness coordinates only and inde-
pendent on the axial coordinate. The present formu-
lation is then reduced by letting the derivatives of the
field variables with respect to the axial coordinate zero.
With the conjunction of the differential quadrature and
modified Newton-Raphson methods, the present asymp-
totic solutions for various orders are computed. Since
the DQ method is well developed and has been used to
yield satisfactory results for 3D elasticity analysis in the
early papers [Wu and Hung (1999); Wu and Wu (2000)],
it is omitted here for brevity. The ratio of radius-to-
thickness of the cylindrical strip is taken as R/2h=10,
20. The material properties are E;/Er=40, Gyr /Er=0.5,
GTT/ET=0.2, Vir = VTT=O.25.

Figure 1 : A cylindrical strip under the sinusoidal load

The lateral load applied on the upper surface is given
as g; = qosin(m0/®) where the maximum angle ® is
taken as m/3. The normalized parameters are defined
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as u, = u,/2h, (G, Gg) = (0, ©¢)/S?qoand S = R/2h.
The dimensionless forms of load magnitude and its incre-
ment are defined as (g A7 ) = ( q0 Aqo ) S*/Er.
Table 1 shows the convergence study of the dimension-
less central deflection of [90/0] cylindrical strips where
R/2h=20. It is observed from Table 1 that the present
asymptotic solutions yield convergence at the £*—order
level in the cases of moderately load magnitude (g=10
and ,=0.3044) and at the €®—order level in the cases of
large load magnitude (g=40 and u,=1.3555) with Ag=1.
The 3D nonlinear solutions are shown to be about 6%
larger than 3D linear solutions in the cases of g=20 and
about 13% in the cases of g=40. The results of in-surface
stresses are presented in Tables 2-3 and compared with
the accurate linear solutions available in the literature
[Jingt and Tzeng (1995)]. It is shown that the present
convergent solutions are in excellent agreement with the
accurate linear solutions in the cases of small load magni-
tude (g=0.1). The deviations between the present conver-
gent solutions and the accurate linear solutions become
larger as the load magnitude is large. The present con-
vergent results of in-surface stresses are larger than those
of accurate linear solutions about 13% in the cases of
moderately thick shells (R/2h=10) and about 5% in the
cases of thin shells (R/2h=20) with g=20.

Table 1 : Convergence study of dimensionless central
deflection of [90/0] cylindrical strips (R/2h=20)

Present3D Present 3D nonlinear sols.
q linearsoks. A7 ° &g? gt gt
10 029%1 5 023380 029123 030240 030439
2 023380 029123 030240 030439
1 023380 029123 030240 030439
20 05922 5 047362 059602 062259 062815
2 047362 05902 062259 062815
1 047362 059602 062259 062814
30 08833 5 071991 091649 096439 097620
2 07191 091649 096439 097619
1 071990 091647 096438 097617
40 1184 5 097316 125519 133286 1.35551
2 097316 125519 133286 1.35551
1 097315 125518 1.33284 1.35546
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Table 2 : Dimensionless in-surface stresses of [90/0]
cylindrical strips at the mid-span (R/2h=10)
Accurate linear
sol. [Jingt and Present 3D nonlinear sols.
7 Tzeng(1995)] &° g’ gt gt
01 G(R+h) 00466 00352 00456 00465 00466

X

G(R-h) 00162 00136 00159 00162 -00162
GR+H) 01763 01408 01723 01760 01763
G(R—h) 25947 21808 25433 25898 25954
1 G(R+h) 00466 00353 00457 00467 00468
G(R-H) 00162 00137 00159 00163 00163
G(R+H) 01763 01411 01729 01767 01773
G(R—h) 2507 21853 25519 26011 26069
20 G(R+h) 00466 00370 00497 00524 00534
G(R-h) 00162 00143 00174 00184 00187
GR+H) 01763 01479 01889 01994 02033
G(R—H) 25947 2.2908 27876 29407 29979

7 Concluding remarks

By means of the method of perturbation, a refined asymp-
totic theory is presented for the 3D nonlinear analysis
of laminated composite cylindrical shells. Without mak-
ing any static or kinematic assumptions in advance, we
decompose the 3D nonlinear theory into a series of 2D
nonlinear theories for various orders. The von Karman-
type FSDT theory is derived as a first-order approxima-
tion to the 3D nonlinear theory. The present asymptotic
formulation reveals that the 3D nonlinear solutions can
be obtained by solving the von Karman-type FSDT equa-
tions in a hierarchic and consistent manner. Application
of the present asymptotic theory to the nonlinear analysis
of the laminated cylindrical strips under cylindrical bend-
ing is made. It is shown that convergence of the present
asymptotic formulation is fast. In the cases of thin shells
(R/2h=20), the deviations between the 3D nonlinear so-
lutions and 3D linear solutions are up to about 13% as
the maximum transverse deflection is in the same order
as the thickness. These deviations become larger as the
shell is thick.
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Table 3 : Dimensionless in-surface stresses of [90/0]
cylindrical strips at the mid-span (R/2h=20)

Accurate fincar
sol. Jingtand Present 3D nonlinear soks
q Tzeng(1995)]  &° g’ &t &g°
01 G(R+h) 00427 00362 00421 00427 00427
G(R-h) 00155 00134 00153 -00155 -00155
GR+H) 01684 01450 01657 01681 01684
G(R—h) 24774 21512 24407 24738 24775
1 G(R+H) 00427 00363 00421 00427 00428
G.(R-h) 00155 00135 00153 00155 -00155
GR+H) 01634 01451 01660 01685 0.1687
G(R-H) 24774 21532 24448 24789 24829
20 G(R+h) 00427 00370 00438 00449 00451
G.(R=h) 00155 00137 00159 00163 -00164
GR+H) 01684 01480 01727 01771 01779
G(R—h) 24774 2.1969 25423 26045 26180
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Appendix: The Expressions of f;, f3; and the Rele-
vant Terms

The expressions of f;, f3; and the relevant terms for the
g2-order corrections are

pii(x1, x2, X3)
P21 (xlv X2, X3)
(

} = L@ +Lo@s; +L10<5§0)
p31\X1, X2, X3)

[ (u9,1) (931,1)
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L (1) (@31,2) + (u3:2) (@31,1)
[ ), 2—I—uz,)}/Z )
(s 2 +ud)? /2~ <u3,2>u§°>
FLat ) (@) (h/2R) + () 2)/2 (69)
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(5 +ud) — (1 )l

fi(x1,x2,x3)
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— (1+2393) (s 1 1%+ 1) f7 4 6y))
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