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An r-h Adaptive Strategy Based On Material Forces and Error Assessment

R. Gangadharan1, A. Rajagopal1, S.M. Sivakumar1,2

Abstract: A new r-h adaptive scheme is proposed and
formulated. It involves a combination of the configura-
tional force based r-adaption with weighted Laplacian
smoothing and mesh enrichment by h-refinement. A
Zienkiewicz-Zhu best guess stress error estimator is used
in the h-refinement strategy. The best sequence for com-
bining the effectiveness of r- and h- adaption has been
evolved at in this study. A further reduction in the po-
tential energy and the relative error norm of the system
is found to be achieved with combined r-adaption and
mesh enrichment (in the form h-refinement). Numerical
study confirms that the proposed combined r-h adaption
is more efficient than a purely h-adaptive approach and
more flexible than a purely r-adaptive approach with bet-
ter convergence characteristics.

keyword: r-h adaptvity, Material forces, Polak-
Rebiere algorithm, Discretization error.

1 Introduction

Adaptive finite element techniques seek to construct ref-
erence solutions, define error norms and in general, cre-
ate a more accurate and reliable numerical solution, by
using a methodology incorporating these solutions and
error norms. There has been a considerable focus on
theoretical and computational aspects of adaptive anal-
ysis such as those by Babuska and Rheinbold (1978),
Zienkiewicz and Zhu (1987). The computed error could
be based on a-priori or a-posteriori estimators. The later
has gained more popularity because of its robustness,
which is evident in works by Babuska and Rheinbold
(1981), Zienkiewicz and Zhu (1990). In order to ob-
tain the required accuracy with minimum cost, an opti-
mal mesh has to be designed. Such a mesh has minimum
potential energy and minimal degrees of freedom for a
specified accuracy which are distributed in such a man-

1 Departments of Applied Mechanics and Civil Engineering, IIT
Madras, Chennai, INDIA 600 036.

2 Corresponding Author email: mssiva@iitm.ac.in

ner that error distribution is uniform indicating a flexible
discretization.

Several mesh adaptive techniques such as h, p, r and s–
versions that are widely reported [Zienkiewicz and Zhu
(1990) Fish (1992), Fish and Guttal (1995)] are designed
to optimize a spatial discretization. There have been re-
ports on use of a combination of these methods for better
performance [Madan G K and Huston (1990), Patra and
Oden (1997) and Askes and Rodriguez-Farran (2000)].
Recently mesh free methods have become popular and
have advantages over traditional finite element method
(FEM), especially in dealing with structural problem
with high stress gradient [Atluri (2004)], as they are free
of post-processing in error control and adaptive analy-
sis. True mesh free techniques such as Meshless Local
Petrov-Galerkin Method (MLPG), given by Atluri and
Zhu (2000) are completely devoid of background grids,
and may result in more flexible adaptive grids. However,
the mesh less technique is yet to make a significant in-
road into commercial packages unlike the finite element
methods. The focus of this paper is on refinement strate-
gies of finite element meshes.

In the r-version of refinement strategy, henceforth called
r-adaption technique, the nodes of the discretized do-
main are relocated iteratively in order to minimize the
discretization error, while preserving the number of un-
knowns and order of approximation of the field vari-
able. Typically, the mesh density increases near the re-
gions of steeper gradients of the field variable as a result.
The adaptation criteria for r-adaption as per Pierre Beal,
Kokko and Touzani (2002) may be classified according to
the procedure used for node relocation. Procedures based
on hierarchical error estimators and based on configura-
tional equilibrium concepts form the two broad classifi-
cations of r-adaptive procedures.

The preeminence of r-adaption procedure based on con-
figurational equilibrium has been well established by
Rajagopal, Gangadharan, Sivakumar and Thoutireddy
(2004). This allows in the use of this method with suffi-
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cient poise as a whole or part of an adaptive refinement
strategy. Here the mesh optimality is accomplished by
minimizing the potential energy in the static case and
stationarity of discrete action sum in the dynamic case
Thoutireddy (2002), Thoutireddy and Ortiz (2002). The
potential energy of the system is dependent on nodal co-
ordinates in addition to the displacement field [Braun M
(1997)]. Configurational or material driving forces are
defined as the conjugate forces to the nodal motion with
respect to the potential energy [Eshelby (1975), Mau-
gin (1995), Gurtin and PodioGuidugli (1996)] and these
forces vanish when the potential energy is a minimum.
Further, the minimization of the potential energy reduces
error norm due to the orthogonality of error with re-
spect to solution space for linear problems [Thoutireddy
(2002), Thoutireddy et al (2004)]. There has been con-
siderable work on the use of material forces and their
equilibrium in a computational setting such as the finite
element method with notable ones are Gurtin and Podi-
oGuidugli (1996), Shewchuk (1994), and Thoutireddy
(2002). The material force imbalance is due to pres-
ence of nodes (nodes can be argued to be discrete de-
fects as they breaks the translational symmetry of poten-
tial energy with respect to translations in reference co-
ordinates). For a homogeneous body in continuous case
linear momentum balance implies material force balance.
However, introducing discretization causes non-zero ma-
terial forces at the inter-element boundaries. The en-
ergy momentum tensor is computed based on strain en-
ergy though the use of energy momentum tensor based
on complementary strain energy is more meaningful, es-
pecially, for nonlinear bodies. [Atluri (1982) and Atluri
(1986)]. In this work, a formulation of nodal errors that
is consistent with material force equilibrium has been de-
rived. The node relocation procedure forms a vital part
of r- adaption. The use of simple relaxation type itera-
tive procedures has been reported by Muller and Maugin
(2002), and Thompson et al (1999). An improved pro-
cedure by using a standard Polak-Rebiere conjugate gra-
dient algorithm was proposed by Thoutireddy and Ortiz
(2002).A modification was introduced to this algorithm
for faster convergence by Rajagopal et al. (2004).

Although only an improvement of existing solution is
possible through r adaption the ultimate aim of achieving
a specified accuracy can be realized by successive mesh
enrichment or h -refinement. Here the estimated error
from the current solution is used to predict the desired el-

ement size, which may be used to subdivide the existing
discretization (progressive halving) or reconstruct an en-
tirely new discretization (remeshing). [Zienkiewicz and
Zhu (1987)]. In this paper we focus on different adaptive
refinement strategies. More specifically the emphasis is
on global h-adaptvity and on r-adaptvity. The properties
of these two schemes are complimentary, namely, expen-
sive and sophisticated of h-adaption versus inexpensive
and limited in applicability of r-adaption. This has led
to the idea that the advantageous properties of the two
schemes could be combined. Earlier works on r-h adap-
tive strategy like those of Askes and Rodriguez (2000)
are based on r- or h-adaption on the parts of a domain
with no refinement on the interface of these sub-domains.
Although the sub-domain division is based on desired el-
ement size, these are not based on error estimators and
there seems to be less mathematical vigor for refinement
strategies adopted. The interfaces between domains pose
topological constraints on h-adaptive remeshing as well
as on the r-adaptive remeshing. There has been report on
use of r-h-p refinement strategies as reported by Madan
Kittur and Huston (1990), but the adaption procedure
lacks physical basis and mathematical vigor.

In present work a combined r-h adaptive refinement strat-
egy has been implemented for one-dimensional and two
dimensional linear elastic plane stress and plane strain
problems. The r-adaption is based on configurational
force method together with modified algorithms for node
relocation. The h-refinement is based on Zienkiewicz-
Zhu (1987) error estimator. The present work is an ex-
tension of the earlier work by authors Rajagopal, Gan-
gadharan, Sivakumar and Thoutireddy (2004) where pre-
eminence of the configurational force method has been
established based on qualitative and quantitative analy-
sis in comparison to conventional techniques based on
heuristic error estimators. The earlier work by Rajagopal,
Gangadharan, Sivakumar and Thoutireddy (2004) differs
from work by Muller and Maugin (2002) in the com-
putation of driving force terms in the absence of body
force and also in the modified node displacement proce-
dures that have better convergence characteristics. The
study indicates that combined h- and r- refinement yields
useful results only if the adaption is performed in cycles
of succession for every new mesh. The combined r-h
strategy resolves the unhealthy mesh distortions and pro-
vides better convergence of the solution. After a brief
outline of r-adaption based on configurational force ap-
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proach with appropriate algorithms for node relocation
and the h-refinement strategy based on best guess stress
type estimator, the refinement strategy that combines the
two techniques effectively is described. The last section
describes and discusses on the numerical implementation
of combined r-h strategy for linear elastic one and two-
dimensional problems in structural mechanics.

2 r- adaption – Configurational force method

The essence of performing the r-adaption is to predict the
characteristics of the optimal mesh where the number of
degrees of freedom is distributed in such a manner that
accuracy of solution obtained is highest possible Braun
(1997), Pierre Beal, Kokko, and Touzani (2002). The er-
rors due to discretization or approximation occurring at
the nodes are typically equally distributed for better solu-
tion over the entire domain. The r adaption is based on a
method of achieving material force equilibrium with the
imbalance in material equilibrium being considered as a
measure of error. This departure from material equilib-
rium is reduced by minimization of the potential with re-
spect to nodal coordinates. This is accomplished by relo-
cating nodes in a finite element mesh. Considering mate-
rial force equilibrium results in defining energy momen-
tum tensor in material space as given by Eshelby (1975),
Maugin (1995). The components of the energy momen-
tum tensor represent the change of total potential energy
of a deformed body produced by unit material transla-
tion.

For a homogeneous body, in the continuous case, force
balance implies material force balance. However, in the
discrete case nodal force balance does not imply nodal
material force balance due to the presence of nodes and
hence element interface. Thus in a discretized form con-
sidering the material force equilibrium the non-vanishing
of the divergence of energy momentum tensor at the
inter element boundaries is taken as an error indicator
Thoutireddy (2002), Rajagopal et al (2004). In this sec-
tion the error indicator is derived by considering the ma-
terial force equilibrium in a similar manner as is done in
physical equilibrium. The displacement vector for a solid
in the region Ω0 ∈ ℜ3 (See Fig. 1) in referential descrip-
tion is given as ui = xi−Xi .The deformation mapping for
a lagrangian description is defined as

xi = xi(X1,X2,X3, t) (1a)

xi = xi(XI) or ⇒ Ψ(ui,XA) (1b)

Deformation Mapping
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Figure 1 : Body in reference and deformed configuration

With the displacement gradient in Ω0 given by FiA =
δiA +ui,A . The deformation mapping takes on prescribed
values Ψ over the displacement part of Γ(Γ = ΓD∪ΓN) of
the undeformed boundary. The strain energy density per
unit volume of the undeformed elastic material is given
by

W = W (x i
,I,XK) or W = W(ui, j,xk) (2)

For a linear elastic material, W = 1
2 σi jεi j, where σi j is

the stress tensor and εi j is the strain tensor. The physi-
cal equilibrium equation is given by σi j, j + fi = 0, where
fi is the body force. The material gradient of strain en-
ergy results in the configurational force equilibrium and
is given by

Ck j, j +gk = 0 (3)

Where the configurational stress tensor is given by Ck j =
Wδk j −σi jui,k and the Configurational force arising due
to body forces are given by gk = − fiui,k. It is required to
compute the discrete configurational forces arising out of
discretization. In the absence of body forces the weighted
residual form of the balance law equation using a vecto-
rial test function η and integrating over the domain Ω0 is
given by
∫

Ω0

Ci j, jηi dΩ0 = 0 (4)
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Figure 2 : Non-satisfaction of Divergence of Energy mo-
mentum tensor resulting in a jump in driving force at In-
ter element Boundaries

The weak form in the absence of body forces obtained by
integrating by parts can be written as

−
∫

Ω0

Ci j ηi, j dΩ0 +
∫

Γ

Ci j n j ηi dΓ

+
∫

Γe �⊂Γ

Ci j n j ηi dΓ = 0 (5)

As a consequence of considering stationary boundaries
the test function η vanishes on the boundaries of the do-
main Γ and hence the second term becomes zero. The
divergence of the energy momentum tensor is zero for
a homogeneous body without body forces. This is used
to check the discrete solution obtained through finite el-
ement analysis. As finite element solutions approximate
solutions the non-vanishing divergence of the energy mo-
mentum tensor provides an error indicator. The discrete
jump in the energy momentum tensor (See Fig. 2) oc-
curring at the element boundaries Γe (third term of the
weak form equation) is the driving force used as an er-
ror measure in the node relocation process. The balance
law in its weak form is analogous to the bilinear form of
the governing differential equation with jump in the en-
ergy momentum tensor being similar to the traction jump

occurring at the inter element boundaries [Krishnamoor-
thy and Mukherjee (1996)]. The discretized form of the
above weak form can be written by inserting an element
wise interpolation of the test function η and its gradient.
Thus we can write

ηi = ∑
I

NIηI
i and ηi, j = ∑

I

NI
, j ηI

i (6)

Thus Eq. (5) reduces to the form

∑
I

⎡
⎣−

∫

Ω e

Ci j NI
, j dΩ0 +

∫

Γe �⊂Γ

Ci j n j NI
i dΓ

⎤
⎦ηI

i = 0 (7)

The second term which is a traction related to the discon-
tinuity is the configuration force of the element that needs
to be numerically evaluated. Since ηI are arbitrary, each
of the above in the summation over I should go to zero.
Thus, the first term is equal to the negative of the second
that is evaluated as the discrete configuration force, GI

e

given by

∫

Γe �⊂Γ

Ci j n j NI
i dΓ =

∫

Ωe

Ci j NI
, j dΩ0 =

⎧⎨
⎩

G I
e 1

G I
e 2

G I
e 3

⎫⎬
⎭ = GI

e

(8)

These configurational forces on assemblage should go to
zero in the domain. This also means that the configu-
rational forces of the elements are equidistributed for an
optimal mesh. The assembled total configurational force
is given by

GK =
ne⋃

e=1

GI
e (8a)

Where ne spans over the number of elements connected
to a particular node.

2.1 Node relocation procedure

The interior nodes are updated by an iterative rule such
as XK = XK − cGk [Muller and Maugin (2002)]. The
constant c is chosen sufficiently small to achieve con-
vergence (to avoid unhealthy mesh distortions). For bet-
ter convergence a nonlinear conjugate gradient method,
known as Polak-Rebiere method [Thoutireddy and Ortiz
(2002), Rajagopal et al (2004)] for minimization of en-
ergy function has been incorporated. The algorithm has
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Figure 3 : Steps in Node displacement Procedure - Polak Rebrie Algorithm

been explained in Fig. 3. The method has two levels of
iteration. The outer loop is the undeformed coordinate
iterative update or nodal coordinate update. Nodal coor-
dinate iterative loop contains solution for equilibrium so-
lution for deformed coordinate for a fixed mesh. This en-
sures that the configurational forces for undeformed co-
ordinate update correspond to equilibrium solution. A
linear projection method, which is similar to the suc-

cessive over relaxation iterative technique, shows better
convergence [Rajagopal, Gangadharan, Sivakumar and
Thoutireddy (2004)].

3 h-adaptive strategies

The h adaptive strategy is based on best guess type or
Zienkiewicz-zhu (1987) error estimator. The general
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form the estimator is as given below

‖e‖ =

⎛
⎝∫

Ω

{eσ}T |C|−1{eσ}dΩ

⎞
⎠

1/2

(9)

Where {eσ}= {σ∗}−{σh}.

{σ}∗ and {σh} are the best guess stress and finite el-
ement stress respectively. The best guess stress is ob-
tained through a simple projection technique as given by
Zienkiewicz-zhu (1990). The absolute value of the error
over domain is calculated. The global percentage error η
is given by

η =
‖e‖
‖u‖ ∗100 (10)

Where, ‖e‖ is a suitable error norm and ‖u‖ is the dis-
placement norm. Since the exact displacement norm is
not known, we use an approximate norm ‖u∗‖. Speci-
fying the global error in the energy norm η in the form
of a percentage of total energy norm one can compute
the permissible error in the energy norm. Thus for a uni-
form distribution of error one can compute the permis-
sible error and refinement index for each element. The
mesh density can thus be computed based on present size
of the element, order of approximation and refinement
index. A subdivision technique for h- refinement has
been incorporated making sure that the initial topology
is maintained to an extent.

4 Combined r-h adaptive strategy

It is observed that there is no change in the topology
of the domain when corrections are made for configura-
tional forces. There is only an increase or decrease in the
element size hi . The aim of adaptive post processing
technique is to obtain softer discretization, along with
stationary value of potential and to get better displace-
ment or stress solution across element boundaries with a
good mesh. The criteria for goodness of mesh are based
upon strain energy, displacement and stress values at se-
lected critical points of a structure. An adaption based on
Material forces tends to result in bad shape elements and
approximation. This is from the understanding that the
displacement polynomial approximation made within the
element assumes extreme values at the nodes. To get bet-
ter Finite element solution we need to change the topol-

ogy of the domain once the stationary value of the poten-
tial is reached after completion of mesh adaption itera-
tions. Furthermore an optimal mesh is one in which the
number of degrees of freedom is minimal for a specified
accuracy. This can be achieved only through mesh en-
richment. The process of adaption and enrichment may
follow one another as one single cycle or may be repeated
in cycles.

4.1 Convergence characteristics

The criterion for convergence criterion decides the num-
ber of iterations and reflects the quality of estimated driv-
ing force during iteration of node relocation process. A
modified criterion is required for the following reasons.
A tolerance criterion based on configurational forces or
potential energy is stringent and results in large number
of iterations. Further smoothing or any such procedure
during node relocation is likely to affect the potential en-
ergy and the configurational forces. A measure to ac-
count for variability in initial meshes for a given prob-
lem is thus required. A possible efficient way is to pre-
scribe the relative percentage change in configurational
force given by

RelativeGnorm (%age)ηG =
‖∆Gi‖

‖Gi +∆Gi‖ ×100% (11)

‖Gi‖ is the elemental value of the configurational force
at every iteration. Similarly we can find the global value
by adding up all the elemental values and can be de-
noted as ‖Gi‖g. The variation of ηG reduces with it-
erations, indicating that the system reaches a stationary
value of the potential. If ηG = speci f ied value o f ηG,
we get a measure of tolerance in considering the sta-
tionary value of the potential. We can thus define ηG =
speci f ied value o f ηG for specifying the shift in equi-
librium from view point of configurational force mesh
adaption.

The variation of relative error norm percentage and
global G norm percentage (Eq. 10 and Eq. 11) over
the mesh adaption iterations for the structured mesh are
of importance. The relative error norm percentage de-
creases initially with adaption owing to the increase in
the flexibility of the system. With adaption there is pro-
gressive distortion of the element and with topology be-
ing preserved, the approximations of the field variable
and hence the recovery based error estimator tend to be
bad. This is reflected through the increase in the value of
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Figure 4 : (a) Initial Mesh of Linear elements. (b) Op-
timal uniform adapted Mesh of Linear elements (c) Vari-
ation of Potential energy during Node relocation process
(d) Normalized Driving force variation for Various Node
displacement procedures.

the error norm percentage at later iterations. The effect
of smoothing mesh is reflected in the plots of potential
and relative error norm percentage. The smoothing tends
to reduce the error norm percentage and potential. It is
thus expected that η would increase with the iterations
made for iteration. This is likely only in many elements
of the initial mesh. It is also likely that in some elements
the relative error norm percentage reduces.

The efficiency of any r-adaption technique is measured in
terms of the extent of element distortion that occurs in the
relocation procedure. Since r-adaption is used as a part of
the combined r-h refinement strategy, which incorporates
mesh enrichment through h-refinement, the estimation of
distortion metric for elements is not considered impor-
tant. An accurate analysis would incorporate the error in
the energy norm arising due to element distortion. This
forms the scope of future work.

5 Results and Discussions

In this section we report the results of numerical tests that
establish effectiveness of combined r-h adaptive strategy.
Numerical studies have been made on implementing in
the first case node relocation followed by mesh enrich-
ment as one single cycle and in the second case node
relocation followed by enrichment in succession.

5.1 One Dimensional example:

A linear elastic axial rod fixed at one end and free at other
end which is under a uniform body force b as shown in
Fig.4 (a). was considered for the implementation and
comparison of the configurational force and the spring
analogy method in one dimension. The displacement so-

lution for this axial rod is given by u(x) = b
E

(
x− x2

2

)
.

Where E = Young’s modulus of material, here we chose
E=1N/mm2, b=1N/m. Corresponding to this displace-
ment the strain and stress are linear inx. This suggests
that uniform mesh is the optimal mesh corresponding to
this solution. To authenticate this by mesh adaption, the
elastic rod is discretized using linear elements as shown
in Fig. 4(b). A set of six nodes were considered with one
node at free end to define geometry and other nodes clus-
tered near to fixed end. Mesh adaption based on config-
urational forces was performed with appropriate choice
of correction factor. Fig. 4(c) shows the final adapted
optimal uniform mesh. Convergence characteristics of
various node relocation techniques were studied during



236 Copyright c© 2004 Tech Science Press CMC, vol.1, no.3, pp.229-243, 2004

0.5      1.0    0.5 

         (b) 

(c)

210 . ' 0.3

22 24 0.5

23 1 .

Youngs Modulus E Gpa Poisson s Ratio

Symmetric loading at nodes and N

at node N

13   14   15  16 

9   10   11  12 

5   6   7   8 

1  2   3  4 

(a)

23.957

50NDOF

Figure 5 : (a) Block under pressure Initial Mesh (b)
Mesh adaption using Polak rebrie algorithm with bound-
ary nodes Fixed (c) Mesh adaption using Polak Rebrie
algorithm –boundary nodes Moving.

Figure 6 : Plot of Potential Energy for Various Iterations
for Mesh with boundary nodes fixed and moving

the adaption process. Fig. 4(d) shows a plot of the nor-
malized driving force versus number of iterations. It is
seen that the conjugate gradient algorithm together with
a linear step projection considerably improves the con-
vergence rates.

5.2 Two Dimensional examples:

5.2.1 Block under pressure:

A homogeneous square block of linear elastic isotropic
material with nondimensionalized length of four units
with a symmetric loading is considered. The vertical dis-
placements on the bottom edge are fixed. The block is
discretized using four noded bilinear elements.

The initial mesh is shown in Fig. 5(a). A plane strain
state is assumed. For the given loading and bound-
ary conditions mesh adaption is performed by Polak-
Rebiere conjugate gradient node relocation algorithm to
get adapted mesh as shown in Fig. 5(b). The bound-
ary nodes are generally fixed during the adaption process
Fig. 5(b). Some times the boundary nodes can also be
made to move in one direction Fig. 5(c). This process
causes a further reduction in the potential of the system
as shown in Fig. 6. The gradient of the strain energy gets
reduced with adaption this is evident from Fig. 7(a) and
Fig. 7(b).

Once the convergence criterion based on potential en-
ergy is reached, the mesh is enriched by h- refinement.
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Figure 7a : Contours of Strain energy Distribution
(Isoenenergetics) Before Adaption

Figure 7b : Contours of Strain energy Distribution
(Isoenenergetics) after Adaption
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Figure 8a : Mesh enrichment by h refinement without r-
Adaption

The topology of the mesh is thus changed. The current
mesh is not optimal. Thus r-adaption iterations are con-
tinued for this enriched mesh. This process of successive
adaption followed by enrichment is continued till a spec-
ified degree of accuracy is achieved. Fig. 8(a) shows the
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Figure 8b : Combined r-adaption and mesh enrichment
by h refinement

meshes obtained by adaptive mesh enrichment (h refine-
ment) alone. Fig. 8(b) shows combined r and h refine-
ment.

A comparison of the convergence characteristics of uni-

                                             (a) 

                                              (b) 

Figure 9 : (a) Relative Error norm percentage versus
Number of Degrees of freedom. (b) Plot of Potential en-
ergy versus the number r- adaption iterations at various
refinement levels.

form h refinement, adaptive h refinement and combined
r-h adaptive refinement is made. It is seen that for the
same number of elements a combined r-h strategy results
in an optimal mesh with reduced errors and the method
shows faster convergence. This is evident from the plot
of relative error norm percentage for various refinements
as shown in Fig. 9 (a). The reduction in potential energy
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Figure 10 : (a) L shaped Domain –Initial Mesh (b) Final
Adapted mesh

of the system with progressive refinement is very evident
as shown in Fig. 9(b).

5.2.2 L shaped Domain:

A homogeneous L-shaped domain of linear elastic,
isotropic material (Young’s modulus=70 Gpa and Pois-
son ratio=0.33), is considered with specified dimensions
and loading. A plane stress state is assumed. The domain
is discretized using four noded bilinear elements. For
the given loading and boundary conditions mesh adap-
tion based on configurational force is performed using
Polak-Rebiere conjugate gradient algorithm The initial
structured discretization is as shown in Fig. 10(a). The
adapted mesh after certain number of iterations is shown
Fig. 10 (b). It is reported in literature and observed here
that the mesh adaption results in distorted and degener-
ate elements. It is required to continue the adaption pro-
cedure for further minimization of potential at the same
time it is required to avoid degeneracy. In this context
a weighted laplacian smoothing is performed to smooth
the elements. The error norm percentage initially reduces
and owing to distortion increases and reaches a constant
value during the mesh adaption process. The variation of
the potential energy with iterations with an intermediate
smoothing is shown in Fig. 11(a). The variation of the
relative G norm percentage during node relocation is as
shown in Fig. 11(b).

Mesh enrichment is carried out after adaption. In the
present case the combined procedure is not successive. In
the sense r adaption is performed only once at the begin-
ning followed by h refinement. Fig. 12 and Fig. 13 shows
the meshes obtained by h refinement alone and by com-
bined r-h refinement respectively. The convergence rates
are improved (See Fig. 14) but are not that pronounced
as in successive r followed by h refinement made for pre-
vious example.

6 Conclusions

In this study a new r-h adaptive scheme has been pro-
posed and formulated. The r-adaption is based on a
modified configurational force methods together with a
weighted Laplacian smoothing...Mesh enrichment by h -
refinement is based on Zienkiewicz-Zhu best guess stress
error estimator. The present scheme results in an optimal
initial mesh because the numbers of degrees of freedom
are distributed in such a manner that error distribution
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Figure 11 : (a) Variation of Potential Energy during relo-
cation (b) Relative G norm percentage during Iterations

is uniform and potential energy of the system is a mini-
mum indicating a flexible discretization. Furthermore the
present method also results in an optimal adapted mesh in
which the number of degrees of freedom is minimal for a
specified accuracy .The best sequence for combining the
effectiveness of r- and h- adaption has been evolved at in
this study.

It is seen that a combined r-h strategy with r-adaption
followed by h-adaption in cyclic sequence performs well
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2032
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Figure 12 : L shape domain –h refinement without adap-
tion
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Figure 13 : L shaped Domain Combined r-h refinement
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Figure 14 : Plot of relative error norm percentage before
and after combined r-h adaption

than a single cycle of r- followed by h –adaption. A
further reduction in the potential energy and the rela-
tive error norm of the system is found to be achieved
with combined r-adaption and mesh enrichment (in the
form h-refinement). Numerical study confirms that the
proposed combined r-h adaption is more efficient than
a purely h-adaptive approach and more flexible than a
purely r-adaptive approach with better convergence char-
acteristics. The present work also gives a scope for study
of optimality of combined r-h strategy by considering r
and h parameters to appear explicitly in the formulation.
The smoothing algorithm can be improved to include a
combined laplacian and optimization based approach to
improve mesh quality at lower computational cost. A
step to improvement over the present method would be
to consider the stationarity (maximization) of potential
incorporating the energy arising due to distortion of ele-
ments. Furthermore the recent trends in adaptivity such
as the use of meshless techniques can be resorted to. The
notion of conservation based on complimentary energy
can be worked out for achieving mesh adaption in nonlin-
ear elastic problems and these form the scope of further
study.
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Appendix A: Nomenclature

e(x), ‖e(x)‖ Error function, Norm of error
function

u(x) Exact solution for displace-
ment

uh(x) Finite element solution
N Interpolation function used

for FE approximation
ûh(x) Smoothed or recovered finite

element solution
hi Element size
c Relaxation and Correction

factors
f , q Body force and traction terms
Ω, Ωi Domain and elemental vol-

umes
Γ = ΓD ∪ΓN Domain Boundary union of

Drichlet and Von Neumann
boundaries

Ψ(ui,XA) Deformation mapping func-
tion

XA,xa Referential and Present Coor-
dinates

FiA Displacement gradient
W(ui, j,xk) Strain energy density
σi j, Ci j Cauchy stress tensor and En-

ergy momentum tensor
gk Configurational body forces
GI

e, Gk Elemental and assembled
nodal configurational force

Gx1, Gx 2 Configurational force at suc-
cessive present configurations

‖∆Gi‖ Norm of change in configura-
tional force

ηG,η Relative G norm and Relative
error norm percentage




